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Abstract: Joule heating is useful for fast and reliable manufacturing of conductive composite materials.
In this study, we investigated the influence of Joule heating on curing conditions and material
properties of polymer-based conductive composite materials consisting of carbon nanotubes (CNTs)
and polydimethylsiloxane (PDMS). We applied different voltages to the CNT nanocomposites to
investigate their electrical stabilization, curing temperature, and curing time. The result showed that
highly conductive CNT/PDMS composites were successfully cured by Joule heating with uniform
and fast heat distribution. For a 7.0 wt % CNT/PDMS composite, a high curing temperature of
around 100 ◦C was achieved at 20 V with rapid temperature increase. The conductive nanocomposite
cured by Joule heating also revealed an enhancement in mechanical properties without changing the
electrical conductivities. Therefore, CNT/PDMS composites cured by Joule heating are useful for
expediting the manufacturing process for particulate conductive composites in the field of flexible
and large-area sensors and electronics, where fast and uniform curing is critical to their performance.
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1. Introduction

Attention has been paid to particulate polymer-based composites owing to their multifunctional
characteristics, such as mechanical, electrical, and thermal properties [1–9]. In particular, conductive
composites are generally obtained from networks of conductive fillers, such as metallic or carbon-based
particles that increase the electrical conductivities of the composites [10]. Amongst many filler
candidates, carbon nanotubes (CNTs) have widely been employed to make composites conductive due
to their low density, non-toxicity, high electrical conductivity, and high aspect ratio [11–13].

In previous engineering applications, conventional oven heating was mostly used to cure
polymer-based composites, but it was often observed that the heat distribution was not uniform,
and that a relatively long period of heating was required during manufacturing. Therefore, internal
heating methods, such as Joule, microwave, and induction heating, have been of great interest due to
their non-contact heating process, which creates uniform thermal distribution and requires only short
heating times [14–18]. In particular, Joule heating is one of the most effective ways to provide uniform
heating of conductive composites. For carbon nanotube-reinforced composites, an electric field in the
presence of an electric current does mechanical work by moving the current-carrying particles in the
conductor [19–21]. This work can be dissipated into the heat in the conductor. Therefore, curing by
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Joule heating will be beneficial to various applications in the field of flexible and large-area sensors
and electronics, where fast and uniform curing of the base polymer is critical to their performance.

In this study, particulate polymer-based conductive composites cured by Joule heating were
characterized. The CNT nanocomposites were prepared by a simple solution-casting method for high
and stable electrical conductivity. The nanocomposites were cured at different voltages to determine
a curing temperature for fast curing and enhanced material properties. We observed the electrical
stabilization and temperature profile of the CNT nanocomposites during the curing process. Finally, we
assessed the mechanical and electrical properties of the CNT nanocomposites cured by Joule heating
and compared them to those of samples cured by conventional oven heating.

2. Materials and Fabrication Methods

Multi-walled carbon nanotubes with an average length of 15 µm and average diameter of 10 nm
were obtained from Nanolab (Waltham, MA, USA). Polydimethylsiloxane (PDMS) (Sylgard 184) was
purchased from Dow Corning (Midland, MI, USA). The densities of the CNTs and the PDMS were
0.96 g/cm3 and 1.12 g/cm3, respectively.

Different concentrations of as-received CNTs were mixed with PDMS using a shear mixer
(ARE301, Thinky Corp., Tokyo, Japan). It operated at 2200 rpm for three minutes at room temperature.
A curing agent was added to the mixture at a weight ratio of 10:1 for the elastomer and the curing
agent and mixed by the shear mixer for another three minutes. Then, the mixture was degassed in
a vacuum chamber to eliminate air bubbles, which may cause lower electrical conductivity and poorer
mechanical properties than desired, and poured into a mold. In order to cure the mixture by Joule
heating, copper-based electrodes were attached to the ends of the mold. The curing temperature
was controlled by adjusting the input voltage with a direct current (DC) power supply, as shown
in Figure 1. The cured CNT nanocomposite was in the form of a flexible thin film, as shown in
Figure 2. The dispersion of CNTs was randomly distributed in the matrix, forming CNT networks that
resulted in the conductive composites. The measured conductivity of the fabricated composites was
approximately 3.0 S/m.
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Figure 2. Scanning electron microscope (SEM) image of CNT distribution in the matrix.

A scanning electron microscope (FEI Sirion 600, JEOL, Tokyo, Japan) was used to observe the CNT
dispersion in the matrix. The electrical resistances of the CNT nanocomposites were measured by digital
multimeters. The samples were prepared in a square shape of 30 × 30 × 2 mm3. Then, the electrical
conductivity σ of the samples was calculated by σ = l/(A·R), where l, A, and R are the length, the area,
and the resistance of the sample, respectively.

The Joule heating was applied to the CNT nanocomposite (30 × 30 × 2 mm3) samples in
a pre-polymer state by inducing different voltages using a DC power supply (6211A, Hewlett Packard,
Palo Alto, CA, USA). Temperature was recorded using a digital thermocouple logger (SL500TC, Supco,
Allenwood, NJ, USA), which was attached to the middle of the mold. Thermal images of the samples
were also taken using a thermal infrared camera (TH7102WX, NEC, Tokyo, Japan). All tests related to
Joule heating were conducted with samples with the dimensions of 30 mm × 30 mm × 2 mm.

The mechanical properties of the CNT nanocomposites cured by conventional oven heating and
Joule heating were characterized using a motorized materials tester (ESM301L, Mark-10, Copiague,
NY, USA). The samples were prepared in a rectangular shape 10 mm wide, 50 mm long, and 2 mm thick.
A tensile test was performed at a rate of 30 mm/min at room temperature. A set of five specimens was
used for each material to evaluate its electrical, thermal, and mechanical properties.

To evaluate the curing performances of the proposed Joule heating and the conventional
oven heating methods, thermoanalytical experiments were conducted using a differential scanning
calorimeter (DSC, Q100, Texas Instruments, Dallas, TX, USA). Two identical CNT nanocomposite
samples with the same conductivity of approximately 3.0 S/m were prepared. One was cured by oven
heating and the other was cured by Joule heating for the same period of time. The curing temperature of
the Joule-heated sample was equivalent to that of the oven-heated one in this experiment. Each sample
was placed in the DSC and heated at 70 ◦C for three minutes to measure the heat flow.

3. Results

3.1. Electrical Conductivity of CNT Nanocomposites

Figure 3 shows the electrical conductivity of the CNT nanocomposites as a function of CNT
concentration. It is clear that the conductivity of the CNT nanocomposites significantly increased
with an increase of the CNT concentration. At a low CNT concentration, CNTs did not form
a continuous network in the matrix, resulting in a low electrical conductivity. Above a certain
concentration, CNTs initially made a continuous network that became the path of electrons, which
is called a percolation threshold. The electrical conductivity of the CNT composites was fitted to the
relations of the percolation threshold law, as shown in Equation (1).



Materials 2018, 11, 1775 4 of 10

σDC ∼
{

(φc − φ)−swhen φc < φ

(φ − φc)
t when φ < φc

(1)

where φc is the threshold volume fraction for electrical percolation, and s (~0.7) and t (~5.2) are
critical exponents before and after the percolation threshold, respectively. In this study, the percolation
threshold occurred at around 4.0 wt % of CNTs, which is a relatively higher value compared to the
result of previous work, due to different fabrication methods [10,22–24]. At a high concentration
of CNTs, the electrical conductivity gradually increased as a result of the full capacity of electron
paths. For Joule heating applications controlled by input voltages, high electrical conductivity is
useful in terms of energy efficiency. Therefore, for all further investigations, we used samples of CNT
nanocomposites with 7.0 wt % of CNTs, whose electrical conductivity was approximately 3.0 S/m.
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Figure 3. Electrical conductivity of CNT nanocomposites as a function of CNT concentration.

3.2. Current Stabilization

To demonstrate the electrical stabilization of CNT nanocomposites, we prepared CNT
nanocomposite samples with 7.0 wt % of CNTs showing ~500 Ω at room temperature. Different DC
voltages were then applied to the electrodes of the samples. Figure 4 shows the change in normalized
electric current (I/I0) of nanocomposites with different voltages applied. An increase in current
(or decrease in resistance), based on Ohm’s law, of all the samples was observed as time increased.
This is because the CNT-polymer composites have a negative temperature coefficient (NTC) of
resistance. An NTC occurs in materials that show a decrease in resistance when their temperature is
increased due to the material properties, such as the thermal expansion coefficient, melting point, glass
transition, and physical properties of fillers [25,26]. In particular, the NTC for CNT/PDMS composites
was caused by the reduction in interlayer thickness between CNTs due to the thermal expansion of
the PDMS during the heating [27]. All samples showed stable current changes except for the sample
to which 25 V was applied. In this study, the nanocomposite under 25 V showed a sudden drop in
current (i.e., a dramatic increase in resistance) during Joule heating, indicating a destruction of the
CNT networks in the matrix due to the high concentration on voltage amongst CNTs [28]. Therefore,
optimization of voltage was required for the fast curing application using Joule heating.
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3.3. Fast Curing by Joule Heating

To investigate the effect of Joule heating on the curing temperature and time of CNT
nanocomposites, different voltages (5, 10, 15, and 20 V) were applied to the pre-polymer state
composites except for 25 V due to the instability observed in the previous section. Figure 5 shows the
temperature profiles of the CNT nanocomposite cured at different voltages. The curing temperature
of the nanocomposite dramatically increased with an increase of the applied voltage. In particular,
the nanocomposite cured at a high voltage showed a significantly higher temperature increase rate in
the initial linear region (approximately 0–100 s), as summarized in Table 1. For example, the initial
temperature increase rate and the maximum temperature of the nanocomposite cured at 20 V are
approximately 10 times and three times higher than those of the nanocomposite cured at 5 V and 10 V,
respectively. In addition, after the initial temperature increase, the nanocomposite showed temperature
stability over an extended period of time with all three voltages. Figure 6 presents the infrared images
of the nanocomposites cured at different voltages with temperature distributions. The nanocomposites
cured by Joule heating also showed uniform temperature distribution. Therefore, the elevated curing
temperature of PDMS significantly reduced the curing time due to the higher degree of crosslinking of
the PDMS network, as discussed in Reference [29]. Figure 7 shows the maximum temperature of the
CNT nanocomposites and the curing time as a function of the applied voltages. The maximum curing
temperature significantly increased with increasing voltages. For example, while the curing time of
the nanocomposite at room temperature was around 24 h, the curing time of the nanocomposite to
which 20 V was applied was only several minutes. The curing times of the Joule-heated samples and
the oven-heated samples were the same. The polymerization of CNT nanocomposites cured by Joule
heating and oven heating will be discussed in Section 3.4.

Table 1. Temperature increase rate in the initial linear regions of CNT nanocomposites cured at
different voltages.

Applied Voltage 5 V 10 V 20 V

Temperature Increase Rate (×10−2 ◦C/s) 4.85 19.87 50.15
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3.4. Effect of Joule Heating on Electrical and Mechanical Properties of CNT Nanocomposites

Representative tensile stress-strain curves for CNT nanocomposites cured by oven heating and
Joule heating are shown in Figure 8a. Young’s modulus of the CNT nanocomposites was determined
based on the secant modulus at the tensile strain of 50.0% considering the nonlinear behavior of the
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polymer-based composite. The nanocomposites cured by Joule heating showed higher stiffness than
those cured by oven heating due to the uniform heat distribution of Joule heat. The nanocomposites
cured at a higher voltage showed a higher stiffness compared with those cured at room temperature or
at lower voltages. This indicates that the high internal curing temperature accelerated the cross-linking
reaction rate of the polymer and increased the extent of cross-linking. Figure 8b shows a comparison
of the maximum tensile stress and strain of CNT nanocomposites cured by Joule heating. The tensile
strength of the samples cured by Joule heating increased as the applied voltages increased. For example,
the maximum tensile strength of the samples cured at 10 V and 20 V was respectively three and four
times higher than that of the samples cured at room temperature. However, a similar maximum tensile
strain of the nanocomposites cured at different voltages was observed in this study.
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The effect of curing by Joule heating can also be explained by thermoanalytical experiments
conducted using a DSC. Figure 9 shows the heat flow of the CNT nanocomposite samples (~3.0 S/m)
cured by oven heating and Joule heating. A much higher exothermic peak was observed in the
sample cured by oven heating than in the sample cured by Joule heating, indicating higher and
longer crosslinking reactions in the oven-heated polymer sample. This is because internal heating
(i.e., Joule heating) creates a more uniform thermal area and rapid temperature increase than heating
by convection (i.e., oven heating) [30]. Therefore, we can confirm that Joule heating expedites the
curing process of CNT nanocomposites compared with conventional oven heating, leading to higher
stiffness as well.

Figure 10 demonstrates comparison of the electrical conductivities of the CNT nanocomposites
cured at different temperatures through Joule heating and conventional oven heating. It is clearly
observed that the electrical conductivity of the nanocomposites did not change regardless of different
applied voltages and curing methods. This indicates that both curing methods did not affect the
change in the CNT network since electrons only pass through the CNT networks in the composite due
to the non-conductive polymer. Therefore, curing assisted by Joule heating is a useful manufacturing
technology for conductive polymer-based composites that enhances production quality.
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Figure 10. Electrical conductivity of CNT nanocomposites at different curing temperatures, comparing
Joule heating and conventional oven heating.

4. Conclusions

In summary, the effect of Joule heating on the curing time and the material characteristics
of CNT nanocomposites was investigated in terms of both mechanical and electrical properties.
Conductive polymer mixtures were prepared by mixing PDMS with multi-walled carbon nanotubes.
The electrical conductivity of the CNT nanocomposites significantly increased with an increase of
CNT concentrations. Then, highly conductive pre-polymer was cured at different voltages using
a DC power supply. It was observed that too high an input voltage might impair the CNT networks
during the curing process, which requires the selection of an appropriate operating condition when
Joule heating is used for the curing of the CNT nanocomposite. In addition, our experimental results
confirmed that curing by Joule heating (1) significantly reduced the curing time and (2) enhanced
the mechanical properties of the CNT nanocomposites. However, the electrical conductivity of the
composites cured by Joule heating was no different from that of the samples cured by conventional oven
heating. Therefore, Joule heating not only expedites the manufacturing process, but also enhances the
mechanical properties of conductive nanocomposites without degrading their electrical conductivity.
One area of future work will be the investigation into the effect of Joule heating on the exothermic
behavior of the induced polymerization in order to directly observe the Joule effect.
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