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In this paper, we introduce a novel automatic method for Corpus Callosum (CC) in

midsagittal plane segmentation. The robust segmentation of CC in midsagittal plane

is key role for quantitative study of structural features of CC associated with various

neurological disorder such as epilepsy, autism, Alzheimer’s disease, and so on. Our

approach is based on Bayesian inference using sparse representation and multi-atlas

voting which both methods are used in various medical imaging, and show outstanding

performance. Prior information in the proposed Bayesian inference is obtained from

probability map generated from multi-atlas voting. The probability map contains the

information of shape and location of CC of target image. Likelihood in the proposed

Bayesian inference is obtained from gamma distribution function, generated from

reconstruction errors (or sparse representation error), which are calculated in sparse

representation of target patch using foreground dictionary and background dictionary

each. Unlike the usual sparse representation method, we added gradient magnitude

and gradient direction information to the patches of dictionaries and target, which had

better segmentation performance than when not added. We compared three main

segmentation results as follow: (1) the joint label fusion (JLF) method which is state-of-art

method in multi-atlas voting based segmentation for evaluation of our method; (2)

prior information estimated from multi-atlas voting only; (3) likelihood estimated from

comparison of the reconstruction errors from sparse representation error only; (4) the

proposed Bayesian inference. The methods were evaluated using two data sets of

T1-weighted images, which one data set consists of 100 normal young subjects and

the other data set consist of 25 normal old subjects and 22 old subjects with heavy

drinker. In both data sets, the proposed Bayesian inference method has significantly the

best segmentation performance than using each method separately.
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INTRODUCTION

The Corpus Callosum (CC), the largest white matter (WM)
structure placed beneath the cortex of the human brain, connects
homologous cortical areas of the two cerebral hemispheres
(Caminiti et al., 2009). It has been shown that many neurological
diseases give rise to changes of structural feature of the CC such
as size and shape, for example epilepsy (O’Dwyer et al., 2010;
Firat et al., 2014), autism (Frazier et al., 2012; Prigge et al.,
2013), schizophrenia (Kim et al., 2012; Joshi et al., 2013; Balevich
et al., 2015), dyslexia (Casanova et al., 2010; Elnakib et al., 2012),
Alzheimer’s disease (Zhu et al., 2014; Elahi et al., 2015; Wang
et al., 2015) and in the effect of heavy drinking (Bookstein
et al., 2002), and smoking (Lin et al., 2013). The CC defined
in midsagittal plane (MSP) of the magnetic resonance imaging
(MRI) has been generally used because it has relatively clear
boundary line and mirrors overall properties of CC (Casanova
et al., 2010; O’Dwyer et al., 2010; Joshi et al., 2013; Firat et al.,
2014; Zhu et al., 2014; Balevich et al., 2015; Elahi et al., 2015;
Wang et al., 2015). Accurate segmentation of CC in MSP is
important for the quantitative and qualitative studies of the
neurological diseases related to CC.

The manual segmentation of CC is a laborious and time-
consuming task. It also has inter-intra variability problem.
The more data there is, the more these problems become
more serious. For solving the problems resulting from manual
segmentation, Various automated methods have been proposed
to segment CC (He et al., 2007; Shyu et al., 2012; Içer, 2013; Yeo
et al., 2014). Although the general shape of the CC is relatively
regular, automated segmentation of CC has been still challenging
because the detail shape is dynamic and the fornix, bundle of
never fibers located around CC, has exceedingly similar intensity
as CC.

Voxel intensity-based segmentation is one of the most
popular approaches. Semra Içer proposed the estimated Gaussian
mixture model and fuzzy C means from intensity distribution of
CC (Içer, 2013). Voxel intensity-based segmentation, however,
cannot work well if data has noise or the structures like target
structure because it did not consider local information, intensity
information of neighborhood voxels in a target voxel. Active
Contour Model (ACM) is also popularly used to segment CC.
For segmentation of target structure, ACMuses energy consisting
of external and internal force. The external force is image
features such as gradients and lines and the internal force is
the relationship between points of contour. Both the external
and internal force develop initial contour to boundary of target
structure. He et al. proposed a context-sensitive active contour
based on evolving four seed contours, forming interconnected
parts made by initial points, into CC boundary line according
to each motion law (He et al., 2007). Shyu et al. introduced
an ACM based on region-based local intensity with a global
density distance (Shyu et al., 2012). Yeo et al. introduced a
level-set model based on Bayesian inference, which drew the
active contour to the target structure according to image feature
and shape prior (Yeo et al., 2014). Although ACM has more
robust segmentation performance than the voxel intensity-based
segmentation because of considering various information around
contour, ACM-based segmentation cannot work well if the initial

contour is set far from target structure. Furthermore, it is
difficult to segment detailed part of target structure having severe
variation because of internal energy.

Recently, the multi-atlas voting method and the patch-based
method have been widely used in medical imaging and show
good performance in practice (Liu et al., 2012; Tong et al., 2013;
Asman et al., 2015; Kim et al., 2015; Sanroma et al., 2015; Zhang
et al., 2015; Doshi et al., 2016). The multi-atlas voting method
developed from single-atlas -based segmentation. Single-atlas
based segmentation estimates a target structure of an unseen
image using an atlas image we know the right answer of the target
structure (Andreasen et al., 1996; Cuadra et al., 2004). When
applied to the target image with heavily variation, the single atlas
based segmentation generally shows poor performance due to
registration error. Multi-atlas voting based segmentation, which
uses multiple atlases instead of just one atlas, has been proposed
to overcome this issue. For final segmentation result in multi-
atlas voting based segmentation, multi-classifier voting algorithm
such as majority voting and STAPLE is required (Warfield
et al., 2004). Aljabar et al. suggested atlas selection, where
subset atlas appropriate for target image are selected through
similarity index between atlas and target image in order to reduce
registration error and computational time (Aljabar et al., 2009).
The multi-atlas voting based segmentation is still vulnerable to
the detailed estimation of the brain structure when the number
of atlas is limited and variation of the target image is large.
Patch-based segmentation uses abundant neighborhood features
(e.g., intensity or gradient) of a target voxel in target image,
overcoming lake of local information. Sparse representation, a
patch-based technique, has been introduced in various image
processing fields such as denosing (Elad and Aharon, 2006),
restoration (Mairal et al., 2008), and face recognition (Wright
et al., 2009; Yang and Zhang, 2010). The basic concept of
sparse representation is that an input target image could be
reconstructed as a sparse linear combination of dictionary
samples consisting of training images via L1-norm minimization
(Donoho, 2006). Sparse representation procedure results in
generating sparse coefficients and reconstruction error between
the target image and the sparse approximate image (Donoho,
2006). Recently, sparse representation technique has been applied
successfully in neuroimaging fields such as volume registration
(Kim et al., 2015), hippocampus segmentation (Tong et al.,
2013), AD classification (Liu et al., 2012), and brain parcellation
(Zhang et al., 2015). Since the segmentation method using
sparse representation is based on abundant local information,
it has good performance about the detailed part of target
structure. But it is ineffective about overall shape in comparison
with multi-atlas voting. In this paper, we combined the
strengths of multi-atlas voting method and sparse representation
method for CC segmentation. The proposed method avoids the
disadvantages of the pervious CC segmentation methods and has
better performance than multi-atlas voting method and sparse
representation method, respectively.

There have been several studies in which the target structure
is segmented by combining two type information. Patenaude
et al. built a Bayesian framework, consisting of probabilistic
relationships between shape and intensity extracted atlas images,
to segment subcortical region of target image (Patenaude
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et al., 2011). Sanroma et al. introduced a novel segmentation
method that fused two types of patch-based label fusion
approaches, reconstruction-based approaches and classification-
based approaches, using matrix completion for segmentation of
various brain structures (Sanroma et al., 2015). These methods
prove that segmentation method with a good combination of the
two types of information can lead to better performance than
single type information.

We combined information extracted from sparse
representation and multi-atlas voting using Bayesian inference
framework. Bayesian inference has been used in various fields
for a long time. It effectively combines prior information and
likelihood. Prior information can be specified by the user, but
usually represents a natural probability. In other words, it
calculates the probability that the target belongs to each class
based on the experience so far. In this paper, it is extracted from
the probability map resulting from multi-atlas voting. Since
likelihood is calculated based on certain condition, we estimate
the class-conditional probability that agrees with the distribution
of reconstruction errors generated from sparse representation
in each class. Multi-atlas voting based segmentation has good
segmentation performance toward global information such
as overall shape and location since atlases effectively catch
the global information of the target image using registration.
Patch-based segmentation (i.e., sparse representation based
segmentation) well catches local information such as detailed
shape variation since patches contain relation between target
voxel and its neighborhood voxels. We could successfully mix the
two types of information, which are global and local generated
from multi-atlas voting and sparse representation respectively,
in Bayesian inference. To the best of our knowledge, a combined
method of sparse representation and multi-atlas voting in
Bayesian inference has not been used for segmentation.

In this paper, we proposed a novel Bayesian inference
consisting of sparse representation and multi-atlas voting for
CC segmentation. The proposed method used the sparse
representation error of target image as the likelihood and the
probability map of CC generated from multi-atlas voting as
a prior information. We compared the performance of the
proposed method with those of other related methods as
follow: (1) the joint label fusion (JLF) method which is state-
of-art method in multi-atlas voting based segmentation for
evaluation of our method; (2) prior information estimated from
multi-atlas voting only; (3) likelihood estimated from sparse
representation error (LESRE) only; (4) the proposed Bayesian
inference consisting of sparse representation error as likelihood
and probability map of CC as a prior. Finally, we validated
robustness and accuracy by applying the proposed method to
the two data set, where one consists of young healthy group and
the other consists of heavy drinkers that generally have large
variability of CC shape (Bookstein et al., 2002).

METHODS

Data Acquisition
We used two different data sets for evaluation (Table 1). The
first data set (“OASIS”) was selected from Open Access Series
of Imaging Studies (OASIS) database (www.oasis-brain.org),

which consists of three or four individual T1-weighted MR
brain images of 416 subjects. We randomly selected 100
normal male and female subjects among them (50 males,
age range = 18–28 years, mean age = 22.1 years, standard
deviation = 2.7 years). The images were acquired 1.5T MRI
scanner (Siemens, Erlangen, Germany) using magnetization-
prepared rapid gradient sequence [TR = 9.7ms, TE = 4ms,
slice thickness = 1.25mm, flip angel = 10, TI = 20ms,
TD = 200ms, matrix size = 256 × 256 pixels (1mm × 1mm)].
All subjects used in this work gave written informed consent
and the use of these subjects was approved by the Institutional
Review Boards (IRB) of Washington University (www.oasis-
brains.org). The details have been described in Marcus et al.
(2007) for OASIS20. The second data set (“SMC”) consisted
of T1-weighted MR brain images of 47 male subjects included
22 heavy drinkers (age range = 44–80 years, mean age = 64.5
years, standard deviation = 9.1 years). The SMC data set was
obtained from Samsung Medical Center of Seoul in South
Korea. The Institutional Review Board (IRB) of SamsungMedical
Center approved this study. The participants in this study
provided written informed consent. The T1-weighted images
were acquired 3TMRI scanner (GE Signa, Milwaukee, WI) using
spoiled-gradient echo sequence (TR = 30ms, TE = 7ms, slice
thickness= 1.5mm, number of excitations= 1, flip angle= 45◦,
field of view= 22× 22 cm2, matrix size= 256× 256 pixels). The
CC shapes of the SMC data set are more variable due to heavy
drinker and old age.

Pre-processing
All T1-weighted MR images were passed through pre-processing
(Figure 1). Intensity non-uniformity correction (Sled et al., 1998)
was followed by brain extraction tool (BET) to extract brain
region (Smith, 2002). The images were, then, aligned to the
MNI152 average template using an affine transformation of
FLIRT of FSL tool (Jenkinson and Smith, 2001; Jenkinson et al.,
2002) and the intensities ranged from 2nd to 98th percentiles
were normalized to 0 and 255. Since the images were aligned
to the standard space, the median slice of x-axis was extracted
as MSP and a rectangular region containing CC was cropped.
An expert (Gilsoon Park) manually delineated the CC as the
gold standard to evaluate the proposed method and the atlas to
segment target image. We manually delineated CC according to
the protocol suggested by Luders et al. (2005) and Firat et al.
(2014). CC in MSP shows clear regions which are splenium,
isthmus, posterior body, anterior body, and anterior third. The
gold standard images were manually drawn along these regions.

TABLE 1 | Demographic information of OASIS data set and SMC data set used in

this study.

Data set

(T1-weighted)

Number

(male)

Composition

(subject

number)

Age range Mean age

(standard

deviation)

OASIS 100 (50) Normal (100) 18–28

years

22.1 years

(2.7 years)

SMC 47 (47) Normal (25)

Heavy drinker (22)

44–80

years

64.5 years

(9.1 years)
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FIGURE 1 | Raw image pre-processing flow chart consisting of the following steps: (1) intensity non-uniformity correction; (2) brain extraction; (3) aligning the image

with standard space MNI152 through affine registration; (4) intensity normalization ranging from 0 to 255 using 2nd to 98th percentiles intensities in each image

histogram; (5) image cropping in midsagittal plane.

We evaluated manually delineated image by measuring intraclass
reliability coefficient (ICC). ICC of 0.9931 was obtained for
inter-rater reliability (2 raters: Gilsoon Park and Kichang Kwak)
and 0.9940 for intra-rater reliability (3 repeats) with 5 Images are
randomly selected in each data set.

Prior Information Estimated From
Multi-Atlas Voting
Multi-atlas voting based segmentation consists of registration
and label fusion steps (Figure 2). First, all cropped atlas images
were non-linearly registered to a target image, resulting in
generation of warping information in each image. Non-linear
registration was performed using Automated Image Registration
tool (AIR 5.3.0; http://air.bmap.ucla.edu/AIR5/) (Woods et al.,
1998). The atlas images and their corresponding label images
were aligned to a target image using warping information. The
non-linear registration for aligning atlas set to target image is
the typical step in multi-atlas voting based segmentation (Aljabar
et al., 2009; Wang et al., 2013; Asman et al., 2015). The spatial
agreement of the atlas image with the target image is greatly
increased due to the non-linear registration, which improves the
results of the label fusion. Second, we compared local cross-
correlation values between patches, which is a window containing
both target voxel and its neighbor voxels on each target voxel
location, from aligned atlas images and the target image to choose
the subset of atlases. The probability map, overlapping the label
images of the subset, was acquired to contain the information of
shape and location of CC, which was used as prior information
(PIEMV) in the proposed Bayesian framework.

Likelihood Estimated From Sparse
Representation Error
Estimation of sparse representation error was like the method
proposed by Mairal et al., but different in the construction
of the patch as atom for the dictionary. The patch consisted
of image gradient magnitude and direction as well as image
intensity because of obvious shape boundary of CC. The
LESRE was used in Bayesian inference. We constructed two
types of patches: intensity information as only (Old LESRE)
and combining gradient information and intensity information
together (LESRE) to evaluated how much performance improve
by adding gradient information to patch. The process of
extracting sparse representation error has the following three
steps (Figure 3): (1) the atlas selection step, which selected
the subset of the atlases using similarity measurement between
atlases and target image; (2) the dictionary construction step,
which constructed the dictionary consist sing of the patches
extracted from the search region of the selected atlases and
extracted the target patch on target image for labeling a
target voxel; (3) the sparse representation step, which sparsely
represented the target patch as a linear combination of the
patches extracted from dictionary using orthogonal matching
pursuit (OMP) algorithm.

The atlas selection depending on target image was carried

out based on similarity measurement, which was implemented
as sum of squared intensity difference in this paper. This

selection step reduces computational time and error resulting
from naturally individual variation. A search region Ai was
defined in each selected atlas image. All patches on the search

Frontiers in Neuroscience | www.frontiersin.org 4 September 2018 | Volume 12 | Article 629

http://air.bmap.ucla.edu/AIR5/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Park et al. Bayesian Inference for CC Segmentation

FIGURE 2 | The flow chart of building prior information estimated from multi-atlas voting (PIEMV). This process consists of registration step and label fusion step. In

registration step, all cropped atlas images were registered to cropped target image, generating warping field map. Using warping field map, the atlas images and

golden images were aligned to a target image. Next label fusion step, the cross-correlation values of patches between target image and aligned atlas images are

calculated. Then, the patches with high correlation are selected, generating probability map containing prior information of overall shape and location of corpus

callosum of target image.

region were used to construct foreground (i.e., CC) dictionary
Df if the center voxel of the patch is labeled foreground, or
background dictionary Db otherwise. Finally, we proposed the
LESRE based on Wright et al. (2009). The target patch y was
represented approximately by the patches dli of dictionary:

y = xl1dl1 + xl2dl2 + . . . xlndln , (1)

where l is the label (i.e., l ∈ {f
(

foreground
)

, b
(

background
)

}),
n is the column vector number (i.e., patch number) in
each dictionary Dl, xln is weight coefficients. Since sparse
representation demand that representation is sparsity, most of
weight coefficients xln will be zero. Let Xl = [xl1, xl2, . . . , xln] ∈
Rn, which is sparse coefficient matrix, then the target patch y is
also represented as follow:

y = XlDl + εl, (2)

where εl is reconstruction error that is the difference between
target patch and sparse representation. The sparse coefficient
matrix Xl can be computed by solving the following L1-norm
minimization equation:

X̂l = argmin
Xl

‖Xl‖1 subject to
∥

∥y− XlDl

∥

∥

2
2
≤ εl , (3)

Equation (3) consist of L1-norm minimization and L2-norm
minimization which indicate sparsity level designated user and
searching appropriate column vector representing target patch y

as linear combination. This equation can be efficiently solved by
OMP algorithm as described in Tropp and Gilbert (2007), which
can safely recover signal with sparsity non-zero coefficients. We
selected a column vector dln withmax projection value on residue
rk (initial residue r0 = y) from Dl at each iteration k and
obtained a new sparse representation signal consisting of Xlk =

{ẋl1, ẋl2, . . . , ẋlk} and Dlk = ˙{dl1, ḋl2, . . . , ˙dlk} by solving a least
squares problems arg

∥

∥y− XlkDlk

∥

∥

2
, where ẋlk is sparse weight

coefficient corresponding to selected column vector ḋlk. Finally,
we updated residue and dictionary matrix by excluding ḋlk. This
procedure was iterated until terminating condition given user.
The final residue was the reconstruction error εl and played a key
role in LESRE.We compared the reconstruction errors generated
from each class, that is, the label of the target patch y based on
LESRE only was given as:

L
(

y
)

= argmin
l

εl(y) , (4)

The label function L of y patch assigned foreground or
background according to minimum εl of y patch over all classes.
Note that the l had only two labels consisting of foreground
belonging to CC and background in this study.

Bayesian Inference Based Segmentation
The proposed method, Bayesian inference based segmentation
(BIbS), combining prior information estimated from multi-atlas
voting (PIEMV) containing overall structure information and
LESRE containing detailed structure information in the Bayesian
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FIGURE 3 | The calculation process of sparse representation error, consisting of atlas selection step, dictionary construction step, and sparse representation step.

First, atlas images similar to target image are selected via sum of squared intensity difference. Second, patches are extracted from search region in selected atlas

images, constructing atlas patch library. Using label information of atlas golden images, foreground dictionary and background dictionary are generated. Target patch

also is extracted from target image. Finally, the target patch is sparsely represented with each patch extracted from the foreground and background dictionaries using

orthogonal matching pursuit (OMP) algorithm. The two type reconstructed patches of target patch are used to calculate sparse representation errors.

framework. Given target patch yi at i th voxel, the Bayesian
inference formulation of yi patch is as follow:

p
(

cl
∣

∣yi
)

=
p
(

yi
∣

∣ cl)p(cl)

p(yi)
(l = 1, 2, . . . , C, i = 1, 2, . . . , n), (5)

where p
(

cl
∣

∣yi
)

, posterior probability, is the probability of
belonging to class cl via yi, C is class or label number, n
is all voxel number in cropped image, p

(

yi
∣

∣ cl), likelihood, is
the probability of observing yi in class-conditional probability
distribution according to cl, p(cl), prior probability, is the
probability of observing cl reflecting our knowledge of state of
nature cl, and p(yi) is evidence which is used to normalize the
product of likelihood and prior probability, which does not affect
determining the relative probabilities of each class. The class
that maximizes the posterior probability is assigned to the target
patch yi.

The PIEMV was used as the prior probability in Bayesian
inference since it includes pre-defined anatomical knowledge of
shape and location of CC. Therefore, the prior probability of
observing a class at given patch yi was:

p (cl) =

∑N
a=1 δ(La (i) , l)

N
, (6)

where N is selected atlas number of forming probability map,
δ (, ) is the Kronecker delta function, and La (i) is the label
from the labeled image of a th atlas image at i th voxel. The
reconstruction error of LESRE was used as class-conditional
probability distribution model using gamma distribution. The
gamma distribution reflects the following two properties of
the distribution of the error ratio (i.e., foreground error
rate/background error rate): (1) the smaller the error ratio
generated from label dictionaries, the higher the likelihood of
belonging to the label; (2) the frequency of the error ratio close
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to zero sharply decreases.

p
(

yi
∣

∣ cl) = p(εi|Dl).

p (εi|Dl) =
εi

αl−1e
εi
βl

Ŵ (αl) β
αl
l

, (7)

where εi is reconstruction error ratio at i th voxel, resulting
from sparse representation based on dictionary Dl consisting of
error ratios labeled class l and αl is shape parameter and βl is
scale parameter in each class. The αl and βl are obtained by
reconstruction error ratio set of atlas images we know label.
Finally, we labeled the target voxel through comparison of
posterior probability:

p
(

yi
∣

∣ cl)p (cl) =
εi

αl−1e
εi
βl

∑N
a δ(La (i) , l)

Ŵ (αl) β
αl
l

N
(εi ≥ 0).

Lp
(

yi
)

=



























foreground
εi

αf −1
e

εi
βf Ŵ(αb) β

αb
b

εi
αb−1e

εi
βb Ŵ

(

αf
)

β
αf

f

≥
∑N

a δ(La(i), b)
∑N

a δ(La(i), f )

background
εi

αf −1
e

εi
βf Ŵ(αb) β

αb
b

εi
αb−1e

εi
βb Ŵ

(

αf
)

β
αf

f

<

∑N
a δ(La(i), b)

∑N
a δ(La(i), f )

,

(8)

where Lp of yi patch is labeling function using Bayesian inference
at i th voxel. The left and right side of comparison consist of
above-mentioned likelihood and prior probability each.

Validation
We used the Dice index (DI), a quantitative measure of the
spatial agreement, to evaluate the segmentation accuracy of the
proposed method as follows:

DI (A, B) =
2|A ∩ B|

|A| + |B|
× 100 (%), (9)

where | · | is the number of voxels consisting of positive region
in binary segmentation image, and |A ∩ B| is the number of
voxels of common region between A and B binary segmentation
image. The binary segmentation images for using DI evaluation
are golden standard image made by manual delineation and
segmentation result of proposed method. The Dice index range
from 0 to 100 percentage, and the value close to 100%indicates
the better segmentation performance.

We further evaluated the JLF method (Wang and Yushkevich,
2013; Wang et al., 2013) for CC segmentation and compared
our method (BIbS) with JLF in a quantitative and qualitative
aspects. JLF improved weighted voting of label fusion step in
multi-atlas voting method. The weighed voting of JLF consider
pairwise dependency between atlases as explicitly modeled the
joint probability of two atlases making a labeling error at a
voxel as well as minimizing the total expectation of labeling
error (Wang et al., 2013). JLF was conducted using open-source
(https://www.nitrc.org/projects/picsl_malf; version 1.3).

The leave-one-out cross validation was performed on each
data set to compare the performance of each segmentation

method. In OASIS data set, one subject was selected as target
image and the other 99 subjects were used as atlas set, and this
process was repeated 100 times. In SMC data set, one subject was
selected as target image and the other 46 subjects were used as
atlas set, and this process was repeated 47 times. A paired t-test
was conducted to analyze statistical differences in the Dice index
distribution resulting from each method at each data set.

RESULTS

Comparison of Methods
We used leave-one-out cross validation to evaluate segmentation
performance, where one subject was selected as target image and
the other subjects as atlas image. All method was conducted
on each optimal parameter set. The segmentation results of JLF
was generated from optimal four primary parameters which are
the radius of the image patch (rp), the radius of the search
neighborhood (rs), the model parameter for transferring image
similarity measures into atlas dependencies (β), and the weight
of the conditioning identity matrix added to dependency matrix
(α). We set the parameter set according toWang and Yushkevich
(2013), which were rp = 1, rs = 3, β = 2, and α = 0.1 in OASIS
data set and rp = 2, rs = 3, β = 2.5, and α = 0.1 in SMC
data set. The parameters of PIEMV were the number of atlases
and path size. The optimal number of atlases were determined
10 in OASIS and 5 in SMC data set respectively and the optimal
path size of both data sets 7 × 7 in PIEMV (Figure S1). The
parameters of LESRE were the number of atlases, search region
size and path size. The optimal number of atlases was determined
25 and 15, the optimal search region size 7× 7 and 7× 7, and the
optimal patch size 13× 13 and 9× 9 in OASIS and SMC data sets
respectively in LESRE (Figure S2). Table 2 shows segmentation
results for the mean Dice index and standard deviation in each
data set. The table compared the results of the suggested methods
with the other methods. In OASIS data set, the results of mean
Dice index are that JLF is 96.38 ± 1.78, Old LESRE is 92.96 ±

2.77 (%), LESRE is 94.09± 1.82 (%), PIEMV is 95.44± 1.58 (%),
and BIbS is 95.80± 1.52 (%). In SMC data set, the results of mean
Dice index are that JLF is 94.99± 1.89, Old LESRE is 88.43± 4.17
(%), LESRE is 90.71 ± 2.83 (%), PIEMV is 93.4 ± 2.93 (%), and
BIbS is 93.72 ± 2.58 (%). Figure 4 shows box plots for the Dice
index of each method excepted JLF method in both data sets. The
black lines and diamond shapes in box plots are median points
and mean points respectively. The Figure 4 indicated BIbS has
statistically significant better segmentation performance (p-value
in OASIS data set: 7.77e-04, p-value in SMC data set: 0.0436)
than both LESRE and PIEMV in both data sets and LESRE has
statistically significant better segmentation performance than old
LESRE. The segmentation results resulting from SMC data set
have the worse segmentation performance than OASIS data set
because of variation of CC induced heavy drinkers and old age.
The average computation time per image of JLF, PIEMV, LESRE,
and BIbS in each optimal parameter set were 10, 68, 124, and
141 s each on a Linux workstation with 2.4 GHz clock speed.
JLF was implemented in C language and the other methods
were implemented in MATLAB 9.1.0 excepted non-linear
registration.

Frontiers in Neuroscience | www.frontiersin.org 7 September 2018 | Volume 12 | Article 629

https://www.nitrc.org/projects/picsl_malf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Park et al. Bayesian Inference for CC Segmentation

The Effect of Parameters of BIbS on
Segmentation Performance
We investigated the effect of parameters in BIbS, which are
the number of atlases, search region, and patch size, on
segmentation performance. Figures 5–7 show the relationship
between segmentation performance of BIbS (mean Dice index)
and the parameters in BIbS. The optimal values of parameters
are as follow in both OASIS data set and SMC data set: (1) the
number of atlases: 30; (2) search region: 7 × 7; (3) patch size:
13 × 13. In each evaluation, we observed the BIbS performance
trend according to target parameter, and the other parameters
fixed at optimal values. First, we evaluated the BIbS performance
trend according to the number of atlases ranging from 5 to 40
by 5 increments on OASIS data set and SMC data set (Figure 5).
The optimal number of atlases with maximum segmentation
performance is 30 in both OASIS data set and SMC data set.
After the optimal point, the segmentation performance of BIbS
decreased. The width of change of mean Dice index about

TABLE 2 | Mean Dice index and standard deviation of segmentation results in

OASIS data set and SMC data set.

Dice index

OASIS data set SMC data set

Mean Standard deviation Mean Standard deviation

JLF 96.38 1.78 94.99 1.89

Old LESRE 92.96 2.77 87.91 4.67

LESRE 93.99 2.30 90.77 2.70

PIEMV 95.44 1.58 93.45 2.93

BIbS 95.68 1.54 93.74 2.30

the number of atlases is 0.48 and 1.03 in OASIS data set and
SMC data set, respectively. Second, we investigated the effect
of search region on BIbS performance. The search region was
changed from 3 × 3 to 15 × 15 by 2 × 2 increments. The BIbS
performance trend depending on search region was reported in
Figure 6. The BIbS performance reached saturation point at 7 ×
7 search region in both data sets. The width of change of mean
Dice index about the search region is 0.49 and 0.90 in OASIS data
set and SMC data set, respectively. Finally, the BIbS performance
trend according to patch size was studied on OASIS data set and
SMC data set. The patch size was changed from 3 × 3 to 15 ×

15 by 2 × 2 increments. Figure 7 shows that the maximum of
the BIbS performance according to patch size is 13 × 13 in both
OASIS data set and SMC data set. After the maximum point,
the segmentation performance of BIbS decreased. The width of
change of mean Dice index about patch size is 0.46 and 0.68 in
OASIS data set and SMC data set, respectively.

Images of Segmentation Results of
Proposed Method
Figure 8 shows segmentation results of BIbS method in OASIS
data set, which consist of best subjects, median subjects, worst
subjects, and outlier subjects based on Dice index. From overlap
images of outlier subjects and worst subjects, we observed that
many false positive occurred because of dilated segmentation
results. The top subject of outlier subjects has the noise of bright
intensity in the genu of CC, resulting in many false positive. The
other false positive shows inter variability problem of manual
segmentation rather than showing the problem of the proposed
method. In fact, in Figure 8, the segmentation results of all
the subjects are robust, but CCs of golden images of the worst
subjects and outlier subjects are relatively thin compared to the

FIGURE 4 | Box plots for Dice index of segmentation results in (A) OASIS data set and (B) SMC data set. In OASIS data set, the results of mean Dice index are that

PIEMV is 95.44 ± 1.58 (%), old LESRE is 92.96 ± 2.77 (%), LESRE 93.99 ± 2.30 (%), and BIbS is 95.68 ± 1.54 (%). In SMC data set, the results of mean Dice index

are that PIEMV is 93.45 ± 2.93 (%), old LESRE is 87.91 ± 4.67 (%), LESRE is 90.77 ± 2.70 (%), and BIbS is 93.74 ± 2.30 (%). The results indicate two facts that

BIbS consisting of multi-atlas voting as prior information and sparse representation error as likelihood has better segmentation performance than the other method

with one infromation (i.e., PIEMV and LESRE) and the LESRE with intensity information and gradient information has good segmentation performance than old LESRE

with only intensity information.
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FIGURE 5 | The trend of mean Dice index of BIbS results depending on the number of atlases in (A) OASIS data set and (B) SMC data set. The segmentation

performance was evaluated by adjusting the number of atlases from 5 to 40 by 5 increments. The other parameters, search region size, and patch size, are fixed. In

both OASIS and SMC data set, the search region size was fixed at 7 × 7 and the patch size was fixed at 13 × 13. The results show that when the number of atlases

exceeds a certain number (In both OASIS and SMC data set: 30), the segmentation performance is saturated.

FIGURE 6 | The trend of mean Dice index of BIbS results depending on search region. The segmentation performance was evaluated by adjusting the size of search

region from 3 × 3 to 15 × 15 by 2 × 2 increments. The other parameters, atlas selection number and patch size, are fixed. In both (A) OASIS data set and (B) SMC

data set, the atlas selection number was fixed at 30 and the patch size was fixed at 13 × 13. The results show that when the search region reaches a certain size [In

both (A) OASIS data set and (B) SMC data set: 7 × 7], the segmentation performance is saturated or decreased.

other subjects. Also, it strongly indicates the inter variability
problem of manual segmentation that the most of false positives
is generated uniformly along the boundary line of segmentation
results in the outlier subjects and worst subjects. Nevertheless,
TheDice index of the worst subjects and outlier subjects exceeded
91 and 92%, respectively. In addition, the fornix and noise
with intensity like CC were not detected as false positives in
segmentation results of other subjects except the top subject of
outlier subjects.

DISCUSSION

Comparison of Methods
In this paper, we introduced a novel method for the segmentation
of CC. From Table 2 and Figure 4, we observed that BIbS had
better segmentation performance than both LESRE and PIEMV.

It is mean that PIEMV and LESRE are effectively combined
on Bayesian inference by improving strengths and weakness of
each methods. From comparison of between old LESRE and
LESRE, we know that the gradient information significantly
improves segmentation performance, since the information
reinforce difference between foreground and background for
sparse representation. The segmentation performance of SMC
data set is relatively lower than OASIS data set because of SMC
data set features consisting of elders and heavy drinkers, resulting
in variation of CC. But, despite variation of CC the proposed
method shows good segmentation performance with 93.74% of
mean Dice index.

While JLF had a higher Dice index of about 0.5–1% than
BIbS in quantitative aspect, JLF had holes or small regions far
from CC that rarely occur in BIbS, which were more frequent
and worse in the SMC data set having large CC variation in
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FIGURE 7 | The trend of mean Dice index of BIbS results depending on patch size. The segmentation performance was evaluated by adjusting the size of patch from

3 × 3 to 15×15 by 2 increments. The other parameters, atlas selection number and search region size, are fixed. In both (A) OASIS data set and (B) SMC data set,

the atlas selection number was fixed at 30 and the search region size was fixed at 7 × 7. The results show that when the patch reaches a certain size [In (A) OASIS

data set and (B) SMC data set: 13 × 13], the segmentation performance is saturated.

FIGURE 8 | The Segmentation result images of BIbS method in OASIS data set. The images are divided into best subjects, median subjects, worst subjects, and

outlier subjects according to Dice index. The overlap images of outlier subjects and worst subjects have many false positive because of dilated segmentation results.

The most of false positives result from inter variability problems of manual segmentation because of as follow: (1) the segmentation results of all the subjects are

robust, but CCs of golden images of the worst subjects and outlier subjects are relatively thin compared to best subjects and median subjects; (2) the false positive is

generated uniformly along the boundary line of the segmentation results in the worst subjects and the outlier subjects.

qualitative aspect (Figure 9). It is important to extract CC as
one closed curve since it is generally used as seed for fractional
anisotropy (FA) analysis and fiber extraction. Table 3 showed

the number of subjects belonging to each value of connected
components and Euler number of each method at each data set.
If the connected component is not 1, it indicates that the result
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FIGURE 9 | The Segmentation result images of our method (BIbS) and joint label fusion (JLF) method in OASIS data set and SMC data set. JLF creates segmentation

image of CC having holes or small region far from CC of ground truth, but these results were disappeared in BIbS method.

TABLE 3 | The number of subjects belonging to each value of connected

components and Euler number of each method at each data set.

Connected

components

Euler number

1 2 −1 0 1 2

OAIS data set

(100 subjects)

BIbS 99 1 0 0 99 1

JLF 96 4 2 3 91 4

SMC data set

(47 subjects)

BIbS 47 0 0 0 47 0

JLF 44 3 4 1 39 3

If the connected component is not 1, it indicates that the result has a small region far from

CC, and if the Euler number is not 1, it indicates that the result has a hole or the small

region exists. The results of BIbS method have not the hole or the small region except only

one subject in OASIS data set, but the results of JLF method have the hole or the small

region in many subjects and these results of JLF method are more frequent and worse in

SMC data set having large CC variation.

has a small region far from CC, and if the Euler number is not
1, it indicates that the result has a hole or small region exists.
BIbS does not have holes or small regions except only one subject
in OASIS data set, but JLF has holes or small regions in many
subjects, which are more frequent and worse in SMC data set
having large CC variation. The qualitative results of JLF could
be improved if proper post-processing is applied or Bayesian
framework is adapted to use JLF as prior information. While JLF

showed a slightly better quantitative result, our proposed method
based on Bayesian framework could be improved by adopting
state-of-the-art multi-atlas voting like JLF as prior information.

The Effect of Parameters of BIbS on
Segmentation Performance
We examined the effect of BIbS parameters, which are the
number of atlases, search region, and patch size, on segmentation
performance (i.e., LESRE parameters included BIbS). The
optimization parameter of BIbS in both OASIS and SMC data set
is that the atlas selection number is 30, search region size is 7 ×

7, and patch size is 13× 13.
Figures 5–7 described the changes of the segmentation

performance of the BIbS depending on each parameters control,
and show that the search region has the most influence on
segmentation performance in OASIS data set. The search region
determines how much the neighborhood patches around the
location of the target patch in atlases are included in a dictionary
for the sparse representation. As the search region is larger, the
patches corresponding to the target patch of target image will
be extracted from the atlases and included in the dictionary
of foreground or background, resulting in the accuracy of a
dictionary for sparse representation is improving. Therefore, the
search region should be larger than a certain size (i.e., 3 × 3 in
this paper) for the properly working of the sparse representation
and if the search region exceeds a certain size (i.e., 7 × 7 in this
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paper), it no longer has a significant influence on segmentation
performance. Figure 6 shows that the segmentation performance
of BIbS is increased when the search region is more than a
certain size, and the BIbS performance is saturated or decreased
by increasing search region.

In Figure 5, the number of atlases most influenced BIbS
performance in SMC data set. The number of atlases is
associated with the dictionary quality to classify foreground
and background. As the number of atlases increases, the atlas
less like target image is used and the dictionary consist of
various patches, which can improve or worsen segmentation
performance. If there are the atlases very similar to a target
image, adding the patches from other atlases to the dictionary
can reduce segmentation performance. In OASIS data set, the
number of subjects is larger than SMC data set and the variations
of the CCs are smaller than SMC data set because the OASIS
data set consist of normal young people. Therefore, there can
be the atlases very similar to the target image in the OASIS
data set and using the additional atlases can have slightly
better segmentation performance. However, if there is a lot of
variations between data like SMC data set, adding the various
patches of atlases to the dictionary can improve the segmentation
performance. For this reason, Figure 5 shows that the influence
of the number of atlases in OASIS data set is lower than in SMC
data set.

In Figure 7, patch size slightly influenced BIbS performance
in both data sets. The patch size is associated with the spatial
information of the patch in the dictionary. The large patch
size can improve segmentation performance by adding spatial
information to patch, assisting more clear distinction between
foreground and background, but can also constitute patch
containing unwarranted spatial information. Thus, the patch
size, like the number of atlases, has an optimal point depending
on the characteristics of the data set. Figure 7 shows that the
segmentation performance of BIbS in both data set is increased
when the patch size is more than a certain size (i.e., 13 × 13 in
this paper), and the BIbS performance is decreased by increasing
patch size.

CONCLUSION

In this paper, we developed a novel method for CC segmentation
in MSP, based on Bayesian inference We used reconstruction
error resulting from sparse representation as likelihood and
probability map generated from multi-atlas voting method as
prior information. The segmentation results show that the
combination of sparse representation error and multi-atlas
voting, based on Bayesian inference, has the significantly better

segmentation performance than using each method alone. We
also observed that the data set having large CC variation
was sensitive to the number of atlases for good segmentation
performance. In the future, we will develop a more robust
segmentation method about target image having large variation
of CC based on Bayesian inference by improving likelihood and
prior information and developing framework to effectively search

optimal parameters. We will also apply our method to brain
structure which is more difficult to segmentation.
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Figure S1 | The trend of mean Dice index of PIEMV results depending on the

number of atlases and patch size. The segmentation performance was evaluated

by adjusting the number of atlases from 5 to 40 by 5 increments and the size of

patch from 3 × 3 to 15 × 15 by 2 increments. The other parameters except the

test parameter were fixed to the optimal value. The optimal parameter set of

PIEMV in OASIS data set was that the number atlases is 10 and the patch size is

7 × 7. The optimal parameter set of PIEMV in SMC data set was that the number

atlases is 5 and the patch size is 7 × 7. The results show that the performance of

PIEMV in SMC data set having large CC variation was sensitive to the change of

the number of atlases and patch size than OASIS data set.

Figure S2 | The trend of mean Dice index of LESRE results depending on the

number of atlases, search region size, and patch size. The segmentation

performance was evaluated by adjusting the number of atlases from 5 to 40 by 5

increments, the size of search region 3 × 3 to 15 × 15 by 2 increments, and the

size of patch from 3 × 3 to 15 × 15 by 2 increments. The other parameters

except the test parameter were fixed to the optimal value. The optimal parameter

set of LESRE in OASIS data set was that the number atlases is 25, the search

region size is 7 × 7, and the patch size is 13 × 13. The optimal parameter set of

LESRE in SMC data set was that the number atlases is 15, the search region size

is 7 × 7, and the patch size is 11 × 11. The change width of performance

according to parameter changes is similar in both data sets.
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