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Since the Gyeongju earthquakes in 2016, there have been increased research inter-

ests in the areas of seismic design, building collapse, and rescue radar applications

in Korea. Ground penetrating radar (GPR) is a nondestructive electromagnetic

method that is used for underground surveys. To properly design ground penetrating

radar that detects buried victims precisely, it is important to study electromagnetic

wave propagation channel characteristics in advance. This work presents an electro-

magnetic propagation environment analysis of a trapped victim for GPR applica-

tions. In this study, we develop a realistic collapse model composed of layered

reinforced concrete and a victim positioned horizontally. In addition, the effects of

rebars and the distance between the radar antenna and target are investigated. The

numerical analysis presents the electromagnetic wave propagation characteristics,

including amplitude loss and phase difference, in the 450-MHz and 1,500-MHz fre-

quency band, and it shows the electric field distribution in the environment.
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1 | INTRODUCTION

On September 12, 2016, the Republic of Korea experienced
its largest ever earthquake since 1978, which is when the
government began to monitor seismic activity. The earth-
quakes, which had a maximum ML 5.8 and over 1,000 after-
shocks occurred continuously on the south‐eastern Korean
peninsula, Gyeongju [1]. These earthquakes highlighted the
fact that the Republic of Korea is no longer safe against earth-
quakes in spite of the fact that there has been low seismic
activity in the Korean peninsula to date. The provincial gov-
ernment of North Gyeongsang announced that property dam-
age from these strong earthquakes and the several hundred
aftershocks in Gyeongju amount to $20.8 million, including

some 4,900 shattered rooftops, cracked walls, and 32 injuries
to humans [2]. As opposed to Japan, which has suffered from
major earthquakes and tsunamis for a long time, much of the
infrastructure in the Republic of Korea was not designed con-
sidering earthquake resistance. In the Republic of Korea, seis-
mic design regulations were established in 1988, and thus
buildings that were constructed before the development of
earthquake‐resistant designs are susceptible to lateral forces
generated from earthquakes. Earthquake‐resistant buildings
currently account for 60% of apartments in the Republic of
Korea; however, only 37% of apartments in Seoul, for a long
time [3]. Besides earthquakes, sinkholes, poor construction,
dilapidated facilities, and improper maintenance are reasons
for the breakdown of old buildings.
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Ground penetrating radar (GPR) is a very important tool
for search and rescue operations after disasters such as
earthquakes or floods [4]. In order to prevent damage due
to the lack of location information of victims under debris,
it is of great importance to accurately detect their exact
locations. There are different non‐destructive search and
rescue methods, such as acoustic, seismic, and electromag-
netic techniques [5–10]. As an electromagnetic method,
GPR can be used in a variety of media, and has advantages
such as instant data collection and high lateral resolution.
However, the depth of penetration is limited, and depends
on the building material, radar operating frequency, and
radiated power. As the conductivity of building materials
increases, the penetration depth decreases because the elec-
tromagnetic energy is more quickly dissipated, leading to a
loss in signal strength at greater depths. Although higher
frequencies do not penetrate as far as lower frequencies,
they can give better resolution [11].

GPR detects buried objects by using information from
the transmitted wave and the reflected wave from a target.
It is very important to study electromagnetic wave channel
characteristics of the collapse of buildings to enable the
suitable design of GPR systems for rescue radars. In this
work, an electromagnetic propagation environment is mod-
eled based on the characteristics of existing old apartments
in Seoul, Republic of Korea. The collapse model is com-
posed of reinforced‐concrete (RC) layers and the human
body model. We investigate electromagnetic wave propaga-
tion characteristics in the collapse model, such as path
attenuation, phase difference, and electric field distribution.
In this numerical study, we employ the finite‐difference
time domain (FDTD) method because of its accuracy and
robustness [12–15].

2 | METHODOLOGY

In GPR applications, collapsed buildings are extreme cases,
and differ from ordinary archaeological environments. The
electromagnetic wave energy decays in RC that is composed
of a rebar lattice. In the higher frequency band, the penetration
depth is shorter than that at the lower frequency band, but this
can be advantageous for propagation through RC, and can
provide higher resolution. In this work, we investigate electro-
magnetic wave propagation characteristics in a collapsed
building both in the low‐ and high‐frequency bands. Toward
this purpose, we analyze the collapse model in both the 450-
MHz and 1,500-MHz bands to determine how electromag-
netic waves propagate in complex environments.

Before proceeding with realistic collapsed building
structures, we first investigate a simple RC layered collapse
model, as shown in Figure 1A. A GPR antenna is located
above a five‐layer‐RC (1 m × 1 m × 0.125 m, 5 ea). The

rebar spacing is 50 mm, and the diameter of the rebar is
10 mm. The electrical properties of concrete were adopted
from the ITU‐R recommendation (εr = 5.31, σ = 0.03027
S/m at 450 MHz and εr = 5.31, σ = 0.045265 S/m at
1,500 MHz) [16]. The rebars in the design were set as per-
fect electric conductors (PEC). To analyze the propagating
environment, a wide‐band quasi horn antenna was used for
the ground penetrating radar. The antenna is well‐matched
from 400 MHz to 2 GHz, and an input power of 1 V was
delivered to the antenna port [17–19].

The time‐averaged field intensity is depicted in Fig-
ures 1B and C for two collapse models at 450 MHz and
1,500 MHz, respectively. Compared to the collapse model
without rebars, the field intensity exhibits more attenuation
for the collapse model with rebars. This phenomenon holds
for both the 450-MHz and 1,500-MHz bands. Note that the
signal strength is proportional to the field intensity. As
expected, electromagnetic fields are more focused for the
higher band owing to the smaller wavelength relative to the
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FIGURE 1 Time‐averaged field intensity in RC layers: (A) RC
layered collapse model, (B) field intensity at 450 MHz, and (C) field
intensity at 1,500 MHz
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lower band. It should be noted that a higher field intensity
was observed for the 1,500-MHz band below the RC layers
compared with the 450-MHz band. The penetration depth of
the wave is generally proportional to the wavelength. How-
ever, in the collapse model with rebars, there are electromag-
netic shielding effects that are due to the rebar lattices [20].
This implies that a suitable GPR frequency band depends on
the complexity of the environment.

Figure 2 shows the path attenuation of the RC‐layered
collapse model. To determine the role of the rebar lattice,
we performed a parametric study of the rebar spacing. The
rebar spacing values that we adopted are 50 mm, 200 mm,
and 400 mm, and these are represented as RC #1, RC #2,
and RC #3, respectively. The observation point is 30 mm
below the bottom plane of the collapse model. Using a
concrete model as a reference level, the path attenuation of
RC #1 is higher in the 450-MHz band than 1,500-MHz
because of electromagnetic shielding effects. However, the
path attenuation decreases as the rebar spacing increases in
the 450-MHz band. Note that the path attenuation of RC
#3 is even lower than that of the concrete model. More-
over, the path attenuation of RC #2 is lower than that of
RC #3 in the 1,500-MHz band. These phenomena indicate
that it is difficult to estimate accurate path attenuation
owing to the resonance resulting from the rebar lattices
[21]. Therefore, the margin of path attenuation is needed
by considering the worst‐case scenario in the design of
GPR applications.

3 | NUMERICAL RESULTS

Next, we consider a collapsed building model that is based
on the floor plan and reinforcement placing of existing
apartment buildings constructed before the implementation

of seismic design regulations in the Republic of Korea, as
illustrated in Figure 3 [22]. To consider the worst case, lay-
ered RC ceilings were used for the debris of the collapse.
The dimension of the environment is 2 m × 2 m × 2 m.
As mentioned previously, we employed geometrical param-
eters obtained from [22]. The thickness of the ceiling and
the wall are 175 mm and 125 mm, respectively. The rebar
spacing values of the top and bottom of the ceilings are
175 mm and 350 mm, respectively, and the rebar spacing
of the walls is 250 mm. The diameter of the rebar is
10 mm. To consider the victim under collapse, a human‐
body model software developed by the IT'IS (Information
Technologies in Society) foundation was adopted [23]. The
model is a 34‐year‐old male lying on the floor of the col-
lapse void. The electrical property of the human model
used is that for dry skin (εr = 45.753, σ = 0.7088 S/m
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at 450 MHz, and εr = 39.433, σ = 1.0716 S/m at
1,500 MHz) [24]. Note that the distance from the center of
the aperture of the GPR antenna and the top of the collapse
model is 60 mm. The observation point is located 50 mm
below the center of the antenna aperture. The distance
between the antenna and the top of the chest of the human
model is 1,591 mm.

In order to determine the reflected signal from the
human body model, we simulated separately two collapsed
building models (with a victim and without a victim). In
other words, the electromagnetic wave at the observation
point for the model with a victim (Figure 3B) is subtracted
by the electromagnetic wave at the same point for the
model without a victim (Figure 3A). Using this field
extraction method, we can obtain the amplitude and phase
information of the reflected wave due only to the presence
of the victim.

In order to determine the effect of the RC thickness and
the distance between the GPR antenna and a target, we
modeled three cases. Figure 4A shows the case with a 7‐
ceilings and 1‐bottom model (7C1B), which represents the
worst case. For comparison with the case of Figure 4A,
Figure 4B shows a 3‐ceilings and 1‐bottom model (3C1B),
which has the same distance between the antenna and the
target, but with fewer RC layers. Finally, the 3‐ceilings and
5‐bottoms model (3C5B) is depicted in Figure 4C. The last
case has the same number of ceilings and overall structure
size as the model shown in Figure 4B. However, the dis-
tance between the antenna and the target is shorter than in
the previous cases.

Figure 5 illustrates the round‐trip path attenuation of the
collapse models shown in Figure 4. The path losses
decrease as the number of RC layers decreases because the
reflections and resonances that occur in RC layers are
reduced. Moreover, as the distance between the antenna
and the target increases, the path losses are increased. This
information is required when setting the design parameters
of GPR applications, such as the penetration depth, avail-
able input power, and link budget.

Next, we consider a realistic collapsed building model.
The most common collapse types can be assumed as “lean‐
to” collapses, which involve a collapsed load‐bearing ceil-
ing and a void [25].

Figure 6 shows the time‐averaged field intensity in the
collapse model in the 450‐MHz band. As the electromag-
netic wave propagates through the collapse model without
rebars, electromagnetic energy is dissipated owing to the
lossy concrete. For the collapse model with rebars, electro-
magnetic energy is severely attenuated owing to both lossy
concrete and conductor lattices, especially for the locations
near the left and right walls. Compared to the collapse
model without rebars, the time‐averaged field intensity is
more complex because of the multiple reflections of rebars.
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(A) 7‐ceilings and 1‐bottom model, (B) 3‐ceilings and 1‐bottom
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To implement an enlarged thoracic cage of the victim dur-
ing inhalation, a 10‐mm‐thick chest pad is placed on the
chest of the body model (0.015 λ at 450 MHz and 0.05 λ
at 1,500 MHz).

Figure 7 illustrates the phase differences between the
exhalation and inhalation of the human body model. In the
450‐MHz band, the phase difference between inhalation
and exhalation is 1.74°. It is well known that the Doppler
frequency can be estimated from the successive time series
if the system phase noise level is low enough to distinguish
the signal [26–29]. To detect a reflected signal clearly in
the 450‐MHz band, the phase‐noise performance of the
GPR system should be designed such that it is better than
that of the higher band. By adopting the simulation data
for micro Doppler, it is believed that a victim can be
detected by his/her respiration [30, 31].

The time‐averaged field intensity in the collapse model
in the 1,500‐MHz band is illustrated in Figure 8. As
expected, the field distribution for the 1,500‐MHz band is
different from the corresponding distribution for the 450‐
MHz band. As depicted in Figures 8A and B, the electro-
magnetic energy is attenuated as it propagates through the
layered structures. Note that the field intensity on the vic-
tim is lower than that of the lower frequency band. How-
ever, as shown in Figure 8B, the electromagnetic wave
propagates further than expected through the rebar lattices.
This phenomenon implies that the use of the GPR system
in the 1,500‐MHz band may be advantageous for compli-
cated practical situations if a high input power is utilized
for rescue radar applications that need high‐resolution data.

Figure 9 shows the phase differences between exhala-
tion and inhalation of the human body model. The phase
difference between the inhalation and exhalation states is
6.44° in the 1,500‐MHz band. Because the phase difference
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in the high‐frequency band is greater than that in the low‐
frequency band, GPR radar can obtain higher‐resolution
data in the 1,500‐MHz band compared with that in the
450‐MHz band.

Figure 10 shows the round‐trip path attenuation of the
proposed collapse model. When the rebars exist, the path
attenuations are 72.60 dB and 95.86 dB at 450 MHz and
1,500 MHz, respectively. If the debris is composed of con-
crete only, the path attenuations are 74.24 dB and
86.48 dB at 450 MHz and 1,500 MHz, respectively. As
with the case involving the simple RC layered collapse,
owing to resonances that result from the complicated metal-
lic structure, the round‐trip path attenuation for the collapse
model with RC is lower than the model without RC in the
450‐MHz band for this specific collapse model that is con-
sidered.

4 | CONCLUSION

In this paper, we presented an electromagnetic propagation
environment analysis of buried victims for GPR applica-
tions. To determine the effects of rebars and the distance
between the antenna and a target, we developed a realistic
model that is based on the footprint of an existing old
building in the Republic of Korea and the respiration of a
victim model. Moreover, the field intensity and the path
attenuation in a RC layered collapse model were investi-
gated. In addition, we studied the differences in the electro-
magnetic wave propagation characteristics that are obtained
for the low‐ and high‐frequency bands. This feasibility
study can provide design parameters for GPR systems,
such as the path loss and link budget. By following the
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numerical simulation procedure presented here, electromag-
netic propagation analysis can be extended to various res-
cue operations such as flood and collapsed high‐rise
buildings.
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