TaCl₅-C₃H₆-H₂ 계에서 TaC CVD 공정의 열역학 해석

김현미^{1,2}·최균^{1†}·심광보²·조남춘³·박종규³ ¹한국세라믹기술원 이천분원, ²한양대학교 신소재공학부, ³국방과학연구소 제4기술연구본부

Thermodynamic Prediction of TaC CVD Process in TaCl₅-C₃H₆-H₂ System

Hyun-Mi Kim^{1,2}, Kyoon Choi^{1†}, Kwang-Bo Shim², Nam-Choon Cho³ and Jong-Kyoo Park³

¹Icheon Branch, Korea Institute of Ceramic Engineering & Technology, Icheon 17303, Republic of Korea ²Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea

³The 4th R&D Institute, Agency for Defense Development, Daejon 34186, Republic of Korea

(Received November 20, 2017 : Revised November 29, 2017 : Accepted November 30, 2017)

Abstract An ultra-high temperature ceramic, tantalum carbide, has received much attention for its favorable characteristics: a superior melting point and chemical compatibility with carbon and other carbides. One drawback is the high temperature erosion of carbon/carbon (C/C) composites. To address this drawback, we deposited TaC on C/C with silicon carbide as an intermediate layer. Prior to the TaC deposition, the TaCl₅-C₃H₆-H₂ system was thermodynamically analyzed with FactSage 6.2 and compared with the TaCl₅-CH₄-H₂ system. The results confirmed that the TaCl₅-C₃H₆-H₂ system had a more realistic cost and deposition efficiency than TaCl₅-CH₄-H₂. A dense and uniform TaC layer was successfully deposited under conditions of Ta/C = 0.5, 1200 °C and 100 torr. This study verified that the thermodynamic analysis is appropriate as a guide and prerequisite for carbide deposition.

Key words tantalum carbide, erosion of C/C composite, thermodynamic analysis, chemical vapor deposition.

1. 서 론

기존 고온 세라믹의 한계를 극복하고, 2000 ℃ 이상의 초고온 환경에서 응용 가능한 재료로써 초고온 세라믹 스(ultra-high temperature ceramics, UHTCs)가 있다. 초 고온 세라믹스는 주기율표의 3족에서 5족에 해당하는 전 이 금속을 포함하는 붕화물, 질화물 또는 탄화물계 세 라믹스로 약 3000 ℃ 이상의 높은 녹는점을 갖는다.^{1,2)} 이와 같은 특성으로 인해 초고온 세라믹스는 우수한 고 온 물성과 부품 경량화를 동시에 필요로 하는 항공 우주 분야에서 각광 받고 있다. 그 중에서도 tantalum carbide (TaC)는 가장 높은 녹는점(~3950 ℃)을 갖고 있고 우수 한 열충격 저항성과 고온 침식에 대한 내성을 갖고 있 어서 UHTCs 분야에서 잠재적 가능성이 높다. 하지만

© Materials Research Society of Korea, All rights reserved.

TaC는 일반적인 세라믹 재료와 마찬가지로 취성 파괴 거 동을 보이는 한계가 있다. 한편, 탄소섬유강화 복합재료 (carbon-carbon composite, C/C)는 고온에서 높은 강도와 파괴 인성을 갖고 있어서 가장 신뢰도가 높은 소재이나 내산화 거동이나 내마모 특성이 부족하여 이를 보완하 기 위하여 C/C에 TaC를 증착시키는 연구가 활발히 진 행되고 있다.³⁻⁶⁾ 이 때, TaC 코팅은 C/C를 습한 산소를 포함하는 고온의 공기로부터의 산화를 억제할 뿐만 아 니라 초고속 입자로부터의 삭마를 억제하는 두 가지 효 과를 기대할 수 있다.

일반적인 TaC 코팅 방법 중 화학기상증착법(chemical vapor deposition, CVD)은 가장 치밀하고 균일하게 막을 형성할 수 있다는 점과 TaC의 합성과 복합체에서의 코 팅이 동시에 일어나기 때문에 간단한 공정으로 진행할

[†]Corresponding author

E-Mail:knchoi@kicet.re.kr (K. Choi, KICET)

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

수 있어서 주목받고 있다. 그러나 CVD 법은 여러 실 험 변수들의 영향을 전체적으로 분석할 수 있는 열역학 분석이 필수적이고 반응기 내부의 유체 흐름에 따른 영 향이 크기 때문에 전산유체(computational fluid dynamics, CFD) 해석이 중요하다. 이를 통하여 반응기 내부의 기 상 및 고상 반응을 예상하고 치구의 모양이나 시편의 위 치를 정함으로써 더 균일한 코팅이 가능하다.^{7.9)}

본 연구에서는 TaC 증착에 따른 열역학 해석을 상용 소프트웨어인 FactSage6.2를 통하여 수행하였다. TaCl₅-C₃H₆-H₂ 계에서 TaC 코팅 층을 효율적으로 얻기 위하 여 온도, 압력 및 조성을 변수로 하여 얻어지는 증착상 인 C, TaC와 Ta₂C의 상대적인 몰 비를 예측하였고 동 시에 가장 이상적인 TaC 상을 효과적으로 얻을 수 있 는 조건을 열역학적인 관점에서 추론하였고 이를 실험 적으로 확인하였다.

2. 실험 방법

2.1 열역학 계산

열역학 평형 계산은 상용 소프트웨어인 FactSage 6.2 프로그램(thermofact/CRCT>T-thchnologies)을 사용하 였는데 여기서 m 화학종의 기상과 s 화학종의 고상이 혼재한 경우의 Gibbs 자유에너지는 다음과 같이 표현될 수 있다.

$$\mathbf{G} = \sum_{i=n_i}^{m} \left(n_i^{\mathrm{g}} \Delta G_{\mathrm{fig}}^{\mathrm{o}} + \mathrm{RT} \ln P + RT \ln \frac{n_i^{\mathrm{g}}}{N_{\mathrm{g}}} \right) + \sum_{i=1}^{S} n_i^{\mathrm{g}} \Delta G_{\mathrm{fig}}^{\mathrm{o}} \tag{1}$$

위 식에서 ΔG_{fg}° 은 가스 종들을 형성하는 자유에너지, G_{fs}° 은 고체 종들을 형성하는 자유에너지, n_{i}^{s} 는 기체 상 의 몰수, n_{i}^{s} 은 고체 상의 몰수, 그리고 N_{g} 는 기체 종의 총 몰수이다. 위의 식을 이용하여 특정 압력, 온도, 조 성에서의 자유에너지 값을 계산함으로써 해당 조건에서 의 안정한 상과 그 양을 구하였으며, 같은 계산을 반복 적으로 수행함으로써 증착상에 대한 열역학 상태도를 도 출할 수 있었다.⁸⁾ 계산에 사용된 총 54개의 화학종(45 개의 기상 종과 9개의 고상 종) 내에서 진행되었으며, 해 당 화학종을 Table 1에 정리하였다.

열역학 계산 범위는 일반적으로 증착에 사용되는 조 건^{3-6,9-11)}인 압력 10~500 Torr, 온도 1100~1400 ℃로 진 행하였다. 증착된 고상의 농도를 기준으로 전체의 0.1 mol%가 되는 점을 경계로 하여 상평형도를 도시하였고 조성은 Ta와 C의 비율을 변수로 압력과 온도에 따른 증 착상의 영역을 표시하였다.

2.2 증착 공정

TaC의 증착 공정에 사용된 반응기는 수직형 반응기로 국내 제작(Thermvac Co., Ltd., Korea)되었으며 vertical type의 hot-wall CVD 반응기에 SiC를 증착할 수 있는 MTS(methyl-trichlorosilane, CH₃SiCl₃) 버블러와 고상의 TaCl₅ 분말을 승화시켜 TaC를 증착할 수 있는 기화기가 구비된 장치를 사용하였다. Fig. 1에 해당 장비의 모식 도를 나타내었다. 기판으로는 탄소섬유강화 탄소복합재(C/ C composite, Daeyang Industries Co., Ltd., Korea)를 사용하였는데 카본과 TaC 코팅층과의 열팽창 계수의 차 이가 커서 중간층인 탄화규소 층을 20에서 50 um 정도 형성한^{6,7)} 후 TaC 공정을 진행하였다.

Ta의 원료인 TaCl₅(H.C. Stark, GmbH, 99.5%) 500 g 를 승화기에 넣고 약 185 ℃의 온도로 가열한 후, H₂와 C₃H₆가 9:1로 혼합된 가스를 캐리어 가스로 사용하여 증착 챔버 내로 공급되었다. 증착에 사용된 가스의 유 량은 mass flow meter를 통하여 500 sccm으로 고정하 였고 증착 완료 후 잔류된 TaCl₅의 양을 확인하여 소모 량으로부터 Ta와 C의 비율을 확인하였다.

Table 1. Chemical species to calculate thermodynamic equilibrium including 45 gas species and 9 solid species.

45 gas-phase species					
Н	CH ₂	C_3H_6	C_2H_5Cl	CH ₂ CCl ₂	CHCl ₃
H_2	CH ₃	Cl	C_2H_6	CH ₂ CHCl	CHClCCl ₂
С	CH ₄	Cl_2	C ₂ HCl	CH_2Cl_2	Та
C_2	C_2H	HCl	C ₆ Cl ₆	CH ₃ CHCl ₂	TaCl ₄
C_3	C_2H_2	C_2Cl_2	CCl	CH ₃ Cl	TaCl ₅
C_4	C_2H_3	C_2Cl_4	CCl ₂	CHCl	
C_5	C_2H_4	C_2Cl_5H	CCl ₃	CHCl ₂ CH ₂ Cl	
СН	C_2H_6	C_2Cl_6	CCl ₄	CHCl ₂ CHCl ₂	
9 solid phase species					
C (graphite)	C (diamond)	TaC	Ta ₂ C	Та	TaCl ₃
TaCl ₄	TaCl ₅	Ta_2Cl_5			

Fig. 1. Schematic of the deposition system used for SiC and TaC deposition.

증착된 코팅 층의 상을 확인하기 위해서 X-ray diffraction(XRD, Rigaku D/MAX-2500PC)이 수행되었고, 추가적으로 코팅 층을 구성하고 있는 성분을 확인하기 위해 energy dispersive spectrometer(EDS, Oxford INCA penta FET X-3)을 사용하였다. 코팅 층의 외형은 FE-SEM(SEM, JEOL JSM-6701F)을 통하여 관찰하였다.

3. 결과 및 고찰

3.1 TaCl₅-C₃H₆-H₂ 계와 TaCl₅-CH₄-H₂ 계에서 상 평형도

TaCl₅-C₃H₆-H₂ 계에서 조성은 3종의 가스 농도에 의 해 결정되는데, H₂와 C₃H₆가 9:1로 혼합된 가스를 캐 리어 가스로 TaCl₅를 승화시키면 H/C 비는 8로 고정되 고, TaCl₅의 양은 승화기의 온도를 조절함으로써 변화될 수 있다. 이 때 일어나는 화학 반응은 다음과 같다.

$$TaCl_{5(g)} + 1/3C_{3}H_{6(g)} + 3/2H_{2(g)} \rightarrow TaC_{(s)} + 5HCl_{(g)}$$
 (2)

이와 같은 화학 반응을 고려하여 온도, 압력 변화에 따 른 해당 계에서의 열역학 상태도를 Fig. 2에 나타내었 다. 증착온도를 1100 ℃에서 1400 ℃까지 100 ℃ 간격으 로 도시하면 나타나는 고상은 TaC, Ta₂C와 C 상이며 두 상의 공존 영역까지 총 4개의 영역을 확인할 수 있다. 온도가 상승할수록 빨간색 선으로 표현 된 TaC와 Ta₂C 의 공존 영역이 넓어지는 것을 확인할 수 있고 압력의 경우에는 압력이 높아질수록 TaC 단일 상 영역이 넓어 진다. 한편, Ta/C의 경우에는 Ta/C가 1에 가까울수록 TaC의 양이 많아지며 단일 상을 얻을 확률이 높아짐을 확인할 수 있다. 따라서 TaCl₅-C₃H₆-H₂ 계에서 TaC 단 일상을 증착하기 위해서는 1100 ℃ 나 1200 ℃ 정도의 공정 온도에서 100 torr 이상의 압력으로 Ta/C의 양을 1에 가깝게 유지하는 것이 TaC를 증착하는데 더 효과 적인 조건임을 알 수 있다.

마찬가지로 TaCl₅-CH₄-H₂ 계에서도 조성은 3종의 가 스 농도에 의해 결정되는데, H/C 비는 42로 고정하고, TaCl₅의 양을 변화시키면서 열역학 계산을 진행하였다. 이 때 일어나는 화학 반응은 다음과 같이 묘사될 수 있다.

$$TaCl_{5(g)} + CH_{4(g)} + 0.5H_{2(g)} \rightarrow TaC_{(s)} + 5HCl_{(g)}$$
(3)

이와 같은 화학 반응을 고려하여 각각 1100 °C에서 1400 °C까지 100 °C 간격으로 상태도를 나타내면 Fig. 3 과 같다. 생성되는 고상은 TaC, Ta₂C와 C 뿐만 아니라 Ta 상까지 생성되어 4 종류의 고상이 생성되고 두 상의 공존 영역까지 총 6 개의 영역으로 나뉘어지는 것을 확 인할 수 있다. H/C가 커지면서 Ta 금속이 석출되는 영역이 존재하며 Ta/C가 1에서 5까지 변화하는 동안 여러 가지 석출 상의 변화가 나타난다. 특히, 저온에서는 Ta 석출 영역이 저압으로 한정되지만 1300 °C 이상에서는 전 압력에 걸쳐서 Ta가 Ta₂C와 공존하는 영역이 나타나게 된다. 반면에 TaC 단일 상은 1100 °C에서 가장 넓은 석 출 영역을 보여주며 온도가 상승할수록 그 영역이 좁아 지는 것을 확인할 수 있다. 그러나 1100 °C의 경우에도

Fig. 2. Isothermal sections at (a) 1100 °C, (b) 1200 °C, (c) 1300 °C and (d) 1400 °C of phase diagram of $TaCl_5-C_3H_6-H_2$ system where H/C = 8.

Fig. 3. Isothermal sections at (a) 1100 °C, (b) 1200 °C, (c) 1300 °C and (d) 1400 °C of phase diagram of $TaCl_5-CH_4-H_2$ system where H/C = 42.

Ta/C가 40을 넘어서야만 단일 상을 얻을 수 있고 이것 은 값비싼 원료인 TaCl₅의 상당 량이 증착되지 못하고 소모되는 것을 의미하므로 현실적으로 바람직한 조건이 라고 볼 수 없다.

반응기 내부의 hot zone 형성과 온도 구배를 고려하 여 두 계를 1200 ℃에서 비교하였다. 1200 ℃에서 계산된 Fig. 2(b)와 Fig. 3(b)의 두 상태도를 비교해보면, Fig. 2(b)가 더 낮은 Ta/C 구간에서 TaC 상을 형성하는 것을 확인할 수 있다. 이를 통해 더 적은 TaCl₅의 공급으로 TaC 상을 형성할 수 있음을 예측할 수 있다. 또한 Fig. 2(b)는 4 개의 영역(C, TaC+C, TaC, TaC+Ta₂C)으로 증 착 구간이 나뉘어 지지만 Fig. 3(b)의 경우는 총 6 개의 영역(C, TaC+C, TaC, TaC+Ta₂C, Ta+Ta₂C)으로 나뉜다. 이를 고려하면 C₃H₆와 H₂의 혼합가스를 이용하 여 TaCl₅를 승화시키는 방법이 단일 상 형성에 더 효과 적임을 확인할 수 있고 이 연구에서는 TaCl₅-C₃H₆-H₂ 계 에서 공정을 진행하였다.

3.2 수소의 영향

수소 가스는 단순히 운반 가스가 아니라 실질적으로 TaCl₅와 화학적으로 반응하여 Ta를 공급하는 중요한 요 소이다. 따라서 수소 가스의 농도에 따라 화학 반응에 어떠한 영향을 주는지를 Factsage 프로그램을 통해 계산 하여 Fig. 4에 도시하였다. TaCl₅와 C₃H₆를 각각 3 몰과 1 몰씩을 넣고(Ta/C = 1), 1200 °C, 100 Torr에서 공급하 는 수소 가스의 양을 늘리면서 계산한 결과이다. C와 TaC는 고체로 석출되고, H₂, TaCl₄, TaCl₅는 가스 상으 로 존재한다. 수소 가스의 몰수가 0일 때를 보면, 수소 가 없이 소량의 TaC가 형성되는 것을 확인할 수 있다. 그러나 TaCl₄와 TaCl₅는 기상으로 존재하고 대부분의 C 는 탄소로 석출되므로 수소의 양을 늘림으로써 TaC의 석 출량을 증가시킬 수 있다. 즉, 5 몰 이상의 수소를 공급 함으로써 TaC의 석출량을 100 %에 가깝게 만들 수 있다.

한편, TaCl₅가 3 몰이 들어있는 닫힌 계에 1 몰의 수 소와 프로필렌 혼합가스가 존재할 때, 수소와 프로필렌 의 비가 TaC의 석출량에 미치는 영향을 Fig. 5에 도시 하였다. C는 C₃H₆의 분해과정에서 생성되며, TaC를 형 성하기 위한 C₃H₆와 H₂의 적정 비율을 전산 열역학 계 산을 통해 예측하였다. H₂와 C₃H₆의 비율을 변화시키면 서 석출되는 상의 변화를 보면, 수소가 100% 일 때에 는 석출되는 상이 형성되지 않았기 때문에 0~95% 까 지 범위에서 계산을 수행하였다. H₂의 몰분율이 약 88% 이상 일 때, TaC가 더 우세하게 석출되는 것을 확인할 수 있다. 이로 부터 H₂와 C₃H₆ 간의 혼합가스의 몰비는 9:1로 정하였다.

3.3 TaC의 증착

열역학 계산 결과를 기반으로 1200 ℃, 100 Torr에서 H₂와 C₃H₆가 9:1로 혼합된 가스를 2 시간 동안 흘리 면서 TaC를 증착하였다. 증착 후 TaCl₅의 소모량으로부 터 계산된 Ta/C는 0.5이었다. XRD를 사용하여 디스크 시 편 위에 증착된 결정상의 회절 패턴을 Fig. 6에 나타내

Fig. 4. Effect of hydrogen addition on TaC formation where 3 moles of $TaCl_5$ and 1 mole of C_3H_6 exist in a closed system.

Fig. 5. Effect of hydrogen fraction on TaC formation where 3 moles of $TaCl_5$ exist in a closed system.

었다. XRD 피크들은 JCPDS 카드의 No. 00-035-0801의 TaC 상과 No. 03-065-0360의 SiC 상에 잘 부합하고 있 음을 확인할 수 있었고, 미반응의 C 또는 Ta₂C, Ta와 같은 고체 상들은 관찰되지 않았다.

증착된 시편의 표면과 TaC 층과 SiC 층의 두께를 확 인하기 위하여 FE-SEM으로 표면과 단면을 각각 Fig. 7 에 나타내었다. Fig. 7(a)에서 TaC가 C/C 표면에 전체 적으로 고르게 증착된 것을 확인할 수 있다. Fig. 7(b) 의 단면 사진에서 TaC는 10 μm, SiC는 40 μm의 두께 로 증착되었음을 확인할 수 있다. 또한 코팅 층의 구성 원소를 Fig. 7(c)로부터 확인할 수 있듯이 Ta와 C로 구 성되어 있다. 이로부터 열역학 분석으로 예측하였듯이 CVD를 통하여 성공적으로 TaC 층을 형성할 수 있음을

Fig. 6. XRD pattern of the film deposited at 1200 °C, 100 Torr with TaCl₃-saturated mixed $gas(H_2: C_3H_6 = 9: 1)$.

확인하였다.

4. 결 론

상용 프로그램인 FactSage6.2 열역학 계산 S/W를 이

용하여 TaC 증착을 위한 열역학 계산을 수행하였고 이 를 통하여 TaCl₅-C₃H₆-H₂ 계를 선택하였다. 프로필렌과 수 소의 1:9 혼합가스를 사용하여 고체 분말인 TaCl₅ 원료 를 승화시키고 이를 1200°C, 100 Torr의 hot-wall CVD 반응기로 유입시켜서 TaC를 증착하였다. 증착된 상에 대 한 XRD와 EDS 분석을 통하여 TaC임을 확인하였다.

Acknowlegement

This work was supported by the Korea Government(Ministry of Trade, Industry and Energy, MOTIE and Defense Acquisition Program Adminstration, DAPA) through Institute of Civil-Military Technology Cooperation.

References

- 1. S. Tang and C. Hu, J. Mater. Sci. Tech., 33, 117 (2017).
- X. Yang, C. Zhao-hui and C. Feng, J. As. Ceram. Soc., 2, 305 (2014).
- G.-D. Li, X. Xiong, B.-Y. Huang and K.-L. Huang, Tans. Nonferrous Met. Soc. China, 18, 255 (2008).
- 4. L.-M. Huang, Y. Xiang, F. Cao, R.-J. Liu and C.-R.

Fig. 7. SEM images of (a) TaC surface, (b) cross-sectional section and (c) EDS spectrum of the deposited TaC film.

- D. Kim, S. M. Jeong, S. G. Yoon, C. H. Woo, J. I. Kim, H.-G. Lee, J.-Y. Park and W.-J. Kim, J. Korean Ceram. Soc., 6, 597 (2016).
- Z. Li, Y. Wang, X. Xiong, X. Li, Z. Chen and W. Sun, J. Alloys Compd., 705, 79 (2017).
- J.-W. Kim, Y.-S. Han, K. Choi and J. H. Lee, J. Comput. Fluids Eng., 18, 67 (2013).
- 8. K. Choi and J.-W. Kim, Curr. Nanosci., 10, 135 (2014).
- J.-W. Seo, J.-W. Kim and K. Choi, J. Korean Phy. Soc., 68, 170 (2016).
- S.-B. Ahn, Y. Lee, J.-W. Bang, D.-G. Shin and W.-T. Kwon, Korean J. Mater. Res., 27, 471 (2017).
- H. J. Bae, B. H. Kim and D.-K. Kwon, Korean J. Mater. Res., 23, 702 (2013).