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Abstract: It is crucial to estimate the location of primary users (PUs) for the development of cognitive
radio networks (CRNs). Great efforts have been made in the past to develop localization algorithms
with better accuracy but low computation. In CRNs, PUs do not cooperate with secondary users
(SUs), which makes the localization task challenging. Due to this feature, received signal strength
(RSS)-based PU localization techniques, such as centroid localization (CL) and multidimensional
scaling (MDS), are the best candidates. However, most of the CL- and MDS-based PU localization
methods consider omnidirectional wireless communication. Therefore, in this paper we propose a PU
localization method which uses the RSS values at different sectors of the SU antenna, where a scoring
strategy is applied to all the sectors to estimate the PU location. Two different scoring functions are
proposed. Numerical results show that the proposed localization method is robust to PU locations and
channel conditions. The proposed method is validated in terms of various network parameters, such
as the number of SUs, beamwidth of the SU sectors, size of the grid, and placement of the PUs. Results
show that increasing the number of SUs improve the localization accuracy due to an increased number
of measurements. However, the localization accuracy degrades with an increase in the beamwidth of
the SU sector because the faraway grid points also participate in the localization. The results are also
compared with the conventional CL for PU localization. Compared with conventional CL, it offers
a significant improvement in the performance.
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1. Introduction

The radio spectrum is one of the most valuable resources in wireless communication systems.
Therefore, to efficiently use the spectrum, dynamic spectrum access has been introduced by using
cognitive radio networks (CRNs) [1–4]. The spectrum is available to unlicensed secondary users (SUs)
when the licensed primary users (PUs) are not active or do not use the spectrum fully in time, frequency,
and space domain [5]. Hence, the SUs utilize the available spectrum by sensing the spectrum in time,
frequency, and space domain. The SUs are able to utilize the spectrum by using an overlay mechanism
if it is in the coverage region of a PU; otherwise, it uses an underlay mechanism if it is outside of the
PU coverage. In the past decade, research on spectrum sensing in CRNs has mainly focused on time-
and frequency-based spectrum sensing, and few works exist on spatial spectrum sensing. However,
the channel statistics between the PU and SU may not be perfect, and can lead to possible interference
to the PU in time- and frequency-based approaches. Therefore, recently, there has been great interest
in developing PU localization schemes where the location information of a PU can be of great benefit
to provide spectrum-sensing in the spatial domain.
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Although CRNs provide efficient use of the scarce RF spectrum, it introduces security issues,
such as primary user emulation (PUE) attacks. In PUE, an attacker emulates the PU signals to deter the
SUs from accessing the unlicensed spectrum. Various approaches were developed by the researchers
to cope with PUE attacks [6–10]. For example, a localization-based approach was used in [6] to detect
the PUE attack in the unused TV spectrum. Similarly, an analytical model was used in [7] to find
the probability of detection for PUE in energy-based spectrum sensing. Moreover, a non-parametric
and passive classification method was used in [8] to detect the emulated signal from a malicious user.
Cooperative and non-cooperative detection schemes were proposed in [9] that are based on tapping
the channel power between the transmitter and receiver. Morevoer, a multipath delay-based PUE
detection mechanism was analyzed in [10]. Other techniques for PUE detection include the time
difference of arrival (TDoA) approach to estimate the location of the PU transmitter [11]. Although the
TDoA approach provides better accuracy, it requires tight synchronization between the transmitter
and the receiver. Similarly, the angle-received signal-strength-based approaches were used in [12,13]
to detect the PUE attack. Recently, a PUE detection mechanism for non-stationary PU was proposed
in [14] by using the Kalman filter.

Besides the PUE detection in CRNs, localization of a PU in CRNs enable various applications,
such as radio resource management in the space domain, efficient routing between the SUs without
interfering the PUs, and reliable spectrum sensing [15]. There has been a great deal of attention in the
past decade to develop localization techniques due to the increasing demand for location-based services.
There are a number of applications which require location-based services (LBS), such as autonomous
cars, emergency services, and public safety applications [16]. As the wireless communication networks
have evolved from 2G to 5G, localization methods have also been improved significantly to meet the
standards. The localization accuracy of 550 m was achieved in 2G wireless communication systems,
while in 4G systems, the accuracy has been improved to tens of meters due to the time difference
of arrival ranging. Moreover, the localization accuracy can be further improved to 10 m by using
the assisted global navigation systems [17]. However, it is expected that the localization accuracy
of 5G wireless communication systems will be in the range of 1 m to 10 m for outdoor scenarios,
while the indoor localization accuracy is expected to be less than a meter [18]. Localization methods for
cognitive radio networks (CRNs) can be broadly classified into range-free and range-based methods.
Range-free methods do not require actual ranging between the PU and the SUs, and depend only on the
connectivity information. The range-free localization methods are simple but have low accuracy. On the
contrary, localization methods based on ranging are more accurate but have more complexity and cost.
Hybrid range-based and range-free localization methods have also been proposed in [15,19,20] for PU
localization in CRNs.

The features of 5G networks, such as ultra-dense networks, wide bandwidth, smart antennas,
and device-to-device communication will provide high capacity, low delay, and energy-efficient
communication. 5G networks are expected to consist of a huge number of heterogamous devices
which may use the licensed frequency band or the unlicensed frequency band. Therefore, the 5G
networks can benefit from the CRN concept to significantly increase the spectrum efficiency. However,
it will also introduce new challenges, such as optimization of the coexistence of various systems
and technologies. Furthermore, the wide bandwidth of the 5G networks is likely to be implemented
by mmWaves, which requires small-sized directional antennas. Also, the nodes are expected to
have smart antennas with the capabilities of multiple input multiple output (MIMO) techniques.
Thus, these small-sized directional antennas can provide angle information of the arrived signal at the
receiver which can be helpful for localization [21].

Motivation for this paper was how the use of directional sectorized antennas is becoming more
widespread for different applications. These directional antennas can achieve longer transmission
distance and better performance, since the transmission beam is focused to a specific direction.
Therefore, such features of directional antennas should be considered for localization as well where
most of the localization research is focused on omnidirectional wireless communication. Even though
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the cells are sectorized in cellular networks, for localization purposes, it is assumed that the antennas
are omnidirectional [22].

The remainder of the paper is organized as follows. Section 2 presents related studies.
In Sections 3 and 4, we present the system model and the proposed PU localization method, respectively.
In Section 5, we analyze the localization error of the proposed method. Section 6 presents the numerical
results to evaluate the performance of the PU localization method, and we compare the results with CL.
Section 7 concludes the work, with a few remarks.

2. Related Studies

Based on the transmission capabilities of PUs and SUs, the research on PU localization in CRNs
can be broadly categorized into the two following categories:

• Omni-directional: There has been extensive research focusing on omnidirectional CRNs localization.
Such omnidirectional localization methods estimate the location of a PU by using fingerprinting,
trilateration, and multidimensional scaling-based estimation methods [15,19,20,23–26]. The simplest
PU localization method among all these methods is centroid localization (CL) [23], which averages
out the coordinates of the SUs to estimate the PU location. CL is a very simple and range-free
approach, but due to its center-biased nature, it cannot achieve high accuracy. Therefore, the CL has
been modified to weighted centroid localization (WCL) in [24], such that the localization performance
is improved by using the weighting strategies. The weighting strategies for WCL are based on the
received power, where the accurate measurements are given more weight, and vice versa. Another
variant of WCL was proposed in [27] which tries to find a good match between the measured power
and the nearest value to that power in a database by using mean square error. In [15,19,20,26],
multidimensional scaling-based network localization methods were used to estimate the location of
SUs and PUs, where both range-based and range-free schemes are utilized. All of the aforementioned
localization methods consider how both PUs and SUs are using omnidirectional antennas. However,
a number of current applications require the use of directional antennas to achieve better performance
and a long transmission distance.

• Directional: Recently the work in [28–31] have shown that the use of directional antennas certainly
reduces the localization error. In [31] the authors have investigated the impact of directional
antennas on the localization performance of sectorized cellular networks. A directional of arrival
(DoA)-based localization method for PU localization has been proposed in [29,30] where the SUs
are equipped with multiple antennas. DoA measurements are estimated by using the multiple
signal classification (MUSIC) method, and the Stansfield estimator is used to estimate the location
of a PU. A joint DoA and received signal strength (RSS)-based PU localization method has been
proposed in [28] which improves the localization performance, as compared to DoA-only and
RSS-only methods.

In this paper, we investigate the problem of PU localization in CRNs in the presence of sectorized
directional antennas at the SUs. We also analyze the error performance of the proposed method
for two-dimensional PU localization. Moreover, the root mean square performance (RMSE) of the
proposed method is compared to the conventional CL, where the results show that the proposed
method is not center-biased and robust.

3. System Model

We considered a two-dimensional CRN setup, which consists of N SUs and a PU deployed in
a square area of L× L m2, as shown in Figure 1. The two-dimensional location of i-th SU is denoted by
li = {xsi, ysi} and the location of the PU is denoted by lp = {xp, yp}. A central unit was considered,
which collects the PU presence and absence information from the SU and estimates the location of the
PU. This setup can be used to model different cellular network architectures, ranging from macrocells
to femtocells [32,33]. The transmission of the PU is assumed to be omnidirectional, while the SUs are
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equipped with M-sector antennas where the RSS at each sector is characterized by the angular sector
and path loss model. Based on the aforementioned network setup, the power received from the PU at
the m-th sector of the i-th SU is given by

Pim =
PtGtGR,M(θim, φim)

ρ(d)
(1)

where Pt is the transmit power of PU, Gt is the transmit antenna gain, ρ(d) is the path loss at distance
d, and GR,M is the receive antenna gain, which depends on θim (boresight angle) and φim (angle of
reception). Based the angle of reception, the receive antenna gain GR,M(θim, φim) is defined as

GR,M(θim, φim) =

{
GR,M if φim ∈ [−φ0, φ0]

0 Otherwise
(2)

where [−φ0, φ0] is the width of the sector. We assumed that the SUs were randomly distributed with
a random orientation, where the propagation of signals was characterized by the distance-dependent
path loss model. Therefore, the path loss from the PU at the i-th SU is given as

ρ(d) = ρ(d0) + 10η log10

(
d
d0

)
+ Si (3)

where ρ(d0) = 20 log10

(
4πd0

λ

)
is the path loss in dBs at a reference distance of d0. η is the path loss

exponent, λ is the wavelength, and Si is the shadowing effect which follows a zero mean normal
distribution. It is assumed that the shadowing effect is independent across each SU.

1

Central Node

SU

PU

SU

SU

Figure 1. System model of the CRN: the black triangle represents the PU location, and the red circles
represent SUs. Each SU has three sector antennas, where the green sectors are able to detect the
PU’s presence.

4. Proposed PU Localization Method

We considered a square region with a side length of L m, and divided the whole area into
A× A grids, where the resolution of each grid is L/A m. The SUs are uniformly distributed, where
each SU has three-sector antennas with a beamwidth of 2π

3 . The orientation of each SU is random and
follows a uniform distribution. The proposed localization method is summarized as follows:

• In CRNs, the SUs carry out spectrum sensing to find out the existence or non-existence of PU
signals in a specific channel. If the channel is idle, the signal received by the SUs is typically noise,
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but if the channel is busy, then the received signal consists of both the PU signal and the noise.
An energy detection model is usually used in such a scenario to decide the presence or absence of
the PU signal. The energy detection model consists of a binary testing hypothesis, with H0 and
H1 for the PU’s absence and presence, respectively. The binary hypothesis for the detection of
a PU is defined as [34]

H0 : y =
h

∑
k=1

w(k), (4)

and

H1 : y =
h

∑
k=1
{s(k) + w(k)}, (5)

where y is the received signal, w(k) is the additive white Gaussian noise (AWGN) with zero
mean and σ2

w variance, and s(k) is the PU signal with zero mean and σ2
s variance. Mainly,

the energy detection-based PU detection is characterized by the probability of detection (Pd)
and the probability of false alarm (Pf ). The test statistics for PU detection is a random variable
with a probability distribution function (PDF) of the chi-square distribution. If the number
of observations h is large, the PDF of the test statistics can be approximated by the Gaussian
distribution—that is:

H0 ∼ N (hσ2
w, 2hσ4

w), (6)

H1 ∼ N
(

h(σ2
s + σ2

w), 2h(σ2
s + σ2

w)
2
)

. (7)

Using the principle of constant false alarm rate (CFAR) [35], Pf and Pd are given as:

Pf = p(y > γ|H0) = Q

(
γ− hσ2

w

σ2
w
√

2h

)
(8)

and

Pd = p(y > γ|H1) = Q

(
γ− h(σ2

s + σ2
w)

h(σ2
s + σ2

w)
√

2h

)
, (9)

respectively, where γ is the threshold for decision, and Q(·) represents the Q-function. Each i-th
SU at location li = {xsi, ysi} detects the PU presence from the aforementioned test statistics.

• The SUs then span the angle range of [−φ0, φ0] to find the direction of the signal from the PU.
To elaborate, once an i-th SU receives some power from a PU, then based on its bore-sight angle
θik in the k-th sector, it determines the direction of the signal φik where φik lies between [−φ0, φ0].
This phenomena is further illustrated in Figure 2.

• Select the grid points with location la = {xa, ya} for each SU i and assign a value vi to each grid
point, where vi = 1 if the grid angle is between [−φ0, φ0] or else vi = 0.

• Aggregate the RSS values form the N SUs and select the grids with highest RSS values.
Two different scoring strategies are selected here as follows:

f (vi) =

{
vi

vi × pi
. (10)

Based on the above scoring strategies, the total number of grid points K are selected for the PU
location estimation.

• In the final step, a grid-based centroid localization method is used to estimate the PU location,
which is given as:

l̂p =
∑K

a=1 wala

∑K
a=1 wa

, (11)
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where wa =
pi−pmin

pmax−pmin
, pmin = min{pi}, and pmax = max{pi}.

φ0

-φ0

φik

ϑik

PU

SU

Figure 2. Illustration of finding the direction of a PU signal.

5. Localization Error Analysis

In order to analyze the error of the proposed PU localization method, the error is defined as
e = [x̂p − xp, ŷp − yp]T , where x̂p and ŷp are the estimated coordinates of the PU. The estimated

two-dimensional coordinates of PU defined in (11) can be written as: x̂p = ∑K
i=1 wixi

∑K
i=1 wi

, and ŷp =
∑K

j=1 wjyj

∑K
j=1 wj

,

respectively. The squared error for the two-dimensional localization is defined as:

e2 = e2
x + e2

y

=

(
∑K

i=1 wi(xi − xp)

∑K
i=1 wi

)2

+

(
∑K

j=1 wj(yj − yp)

∑K
j=1 wj

)2

(12)

=
∑K

i=1 ∑K
j=1 wiwjcij

∑K
i=1 ∑K

j=1 wiwj
,

where cij = (xi − xp)(xj − xp) + (yi − yp)(yj − yp). Consider that x́i = (xi − xp) and ýi = (yi − yp),
then cij is defined as cij = x́i x́j + ýi ýj. Arranging the values of cij in matrix form as C = x́x́T + ýýT ,
where the dimensions of x́ and ý is K × 1. Now expressing the squared localization error in (12) in
compact form as e2 =

(
WCW T

W1W T

)
, where W ∼ N (µ, σ2

s I) and 1 is the matrix of ones. Vector µ represents

the mean values of W with elements µi = E[pi]− pmin, σ2
s is the variance, and I is the identity matrix.

The mean square error can be defined as E[e2] = E
[

WCW T

W1W T

]
, where E[·] is the expectation operator.

The expression for the expectation is extracted by using the moment generating function (MGF), which
is given as

E
[

WCW T

W1W T

]
=
∫ ∞

0
ϕ(0,−t)

(
Tr(A) + µ́T Aµ́

)
dt, (13)

where Tr(·) is the trace operator and ϕ(0,−t) is the combined MGF of A = QTCQ and µ́ = QTµ.
Note that matrix Q is of the dimension K× K and satisfies the condition QTQ = 1

(I+2t1) = D(t). Now,
the MGF function can be expanded as:

ϕ(0,−t) = 1√
|(I+2t1)|

× exp(
1
2 (µ

T(I+2t1)−1µ−µTµ)),
(14)
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where | · | represents the determinant. Simplifying (14), we get:

ϕ(0,−t) = 1√
|(I+2t1)|

× exp

(
µT (I+2t1)−1µ

2 − µT µ
2

) (15)

Note that |(I + 2t1)| = 1 + 2Kt, which yields

ϕ(0,−t) =
1√

1 + 2Kt
exp

(
µT D(t)µ

2 − µT µ
2

)
. (16)

The exponential terms can be expanded as follows:

µT D(t)µ
2 − µTµ

2 = µTµ
2 −

tµT1µ
1+2Kt −

µTµ
2

= − tµT1µ
1+2Kt .

(17)

Substituting (17) in (16) yields the expression for joint MGF—that is:

ϕ(0,−t) =
1√

1 + 2Kt
exp

(
− tµT1µ

1+2Kt

)
. (18)

The expressions for Tr(A) and µ́T Aµ́ in (13) are derived as follows:

Tr(A) = Tr(QTCQ) = Tr(CQQT) = Tr(CD(t))
= Tr(C)− 2tTr(C1)

1+2Kt
(19)

and
µ́T Aµ́ = µTQAQTµ = µTQQTCQQTµ

= µTZ(t)µ
(20)

where Z(t) = D(t)CD(t). By expanding Z(t), we get:

Z(t) = C− 2tC1
1 + 2Nt

+

(
2t

1 + 2Nt

)2
1C1. (21)

Substituting (21) in the left-hand side of (20) yields:

µTZ(t)µ = µTCµ− 2t
1 + 2Kt

µTC1µ

− 2t
1 + 2Kt

µT1Cµ (22)

+

(
2t

1 + 2Kt

)2
µT1C1µ.

Combining the expressions for Tr(A) and µ́T Aµ́, we get

Tr(A) + µ́T Aµ́ = Tr(C) + µTCµ

−2tTr(C1)
1 + 2Kt

− 4tµT A1µ

1 + 2Kt
(23)

+

(
2t

1 + 2Kt

)2
µT1C1µ.
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By substituting (18) and (23) in (13), we obtain the final expression for the mean square error
as follows:

E[e2] =
∫ ∞

0

1√
1 + 2Kt

exp

(
− tµT1µ

1+2Kt

)
(

Tr(C) + µTCµ− 2tTr(C1)
1 + 2Kt

− 4tµT A1µ

1 + 2Kt
(24)

+

(
2t

1 + 2Kt

)2
µT1C1µ

)
dt.

6. Numerical Results

In this section, we perform numerous simulations to evaluate the performance of the proposed
localization method. A 50 m × 50 m square area is considered where the area is divided into
11 × 11 grids with the resolution of 5 m, as shown in Figure 3. The location of PU is assumed to
be [25 m, 25 m], and a set of SUs are randomly selected within the area, following uniform distribution.
Here, we assume a 5G directional CRN setup, where the SUs are equipped with multiple directive
antennas and are able to detect the PU signal. The SUs are equipped with three sector antennas with
random orientation and beamwidth of 2π/3. Transmit power of the PU is set to 20 dBW, with path-loss
exponents of 3 and 5, respectively. The shadowing effect is considered to be σs = 0 dB and σs = 10 dB,
respectively. The performance metric for the proposed localization method is considered to be the root

mean square error (RMSE), that is, RMSE =

√
∑R

i=1(x̂pi−xp)2+∑R
i=1(ŷpi−yp)2

R , where R is the total number
of estimated PU locations and x̂pi, ŷpi is the two-dimension location of the PU for a single realization.

0 10 20 30 40 50

x(m)

0

10

20

30

40

50

y
(m

)

Figure 3. CRN setup in a 50 × 50 square area, where the area is divided into 50 × 50 grids with the
resolution of 5 m. Location of PU is [25 m, 25 m], and three SUs are selected.

Figure 4a,b compares the performance of the proposed localization method with the centroid
localization technique when the number of SUs are increased from 10 to 100. Note that increasing
the number of SUs improves the RMSE performance up to a certain level, after which the RMSE
remains stable and the performance improvement is not obvious. Surprisingly, the performance of
the proposed PU localization method in Figure 4a,b follows the same pattern, which means that the
proposed method is robust to the scenario settings, while the performance of the centroid localization
method is highly affected by changing the scenario. Specifically, when the PU location is moved
from the center to the edge, the performance of centroid localization is highly degraded due to the
center-biased nature of these methods. Even though an increase in the number of SUs will not help to
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reduce the localization error, the proposed PU localization method is robust to the PU location as long
as a sufficient number of SUs is available. The effect of the path-loss exponent has also been evaluated
in Figure 4a,b, where the RMSE for centroid localization is large for a small value of η. Furthermore,
the effect of shadowing σs was tested in Figure 4c,d for two different PU locations. Note that the
proposed PU localization method is more robust to the shadowing effects as compared to the centroid
localization methods.

10 20 30 40 50 60 70 80 90 100

Number of SUs

10
-1

10
0

10
1

10
2

R
M

S
E

 (
m

)

CL,  =  3 CL,  =  5 Proposed,  =  3 Proposed,  =  5 Theoretical MSE

(a)
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(b)
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S
E

 (
m

)

CL, 
s
 =  10 dB CL, 

s
 =  0 dB Proposed, 

s
 =  0 dB Proposed, 
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(c)

10 20 30 40 50 60 70 80 90 100
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10
-1

10
0

10
1

10
2

10
3

R
M

S
E

 (
m

)

CL, 
s
 =  10 dB CL, 

s
 =  0 dB Proposed, 

s
 =  0 dB Proposed, 

s
 =  10 dB Theoretical MSE

(d)
Figure 4. (a) RMSE when PU is located at [25 m, 25 m]; (b) RMSE when PU is located at [40 m, 10 m];
(c) impact of η and σs when PU is located at [25 m, 25 m]; (d) impact of η and σs when PU is located at
[40 m, 10 m].

In Figure 5a, the impact of SU sectors is investigated for two different PU locations. Figure 5a
shows that reducing the sector size improves the localization accuracy, because the closer grid points
to the PU have been selected for final position estimation. Additionally, the impact of PU location is
also shown in Figure 5a, where the location of the PU in the center (at [25 m, 25 m]) of the network is
estimated with better accuracy as compared to the PU located at [40 m, 10 m]. Furthermore, Figure 5a
shows that increasing the sector beamwidth up to 2π results in the conventional CL technique.

Since the grid-based localization algorithms strongly depend on the size of the grid, we evaluated
the performance of the proposed method with five different grid sizes, as shown in Figure 5b.
The simulation parameters for the results in Figure 5b consists of a PU located at [25 m, 25 m],
where number of SUs are 10, η = 3, and σs = 10 dB. Figure 5b shows that the smaller grid size results
in better localization accuracy, because closer grid points are selected to localize the PU. However,
reducing the size of the grid can significantly increase the complexity of the network. Also, it is shown
in Figure 5b that the proposed localization method outperforms the CL method due to the use of
directional antennas to select the grids near to the PU.
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(b)
Figure 5. (a) Impact of beam width on RMSE; (b) impact of grid size on RMSE.

7. Conclusions

In this paper, we have proposed a grid-based PU localization method where the SUs are equipped
with the sectorized antennas. Different scoring functions were introduced, where the location of the
PU was estimated by the grids with highest score function. Moreover, for the theoretical analysis,
the expression for mean square error of the proposed method was derived. Furthermore, the RMSE
of the proposed localization method was compared with the CL method under different simulation
setups, where the results show that the proposed method has better localization accuracy and is robust
to the scenario settings.
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