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Abstract: Since pipelines experience the largest deformation during lowering-in, structural analysis
for this construction sequence should be performed to ensure structural safety. In this study, a new
analytical model named the “segmental pipeline model” was developed to predict the structural
behavior of the pipeline. This analytical model consists of several segmental elements to represent
various boundary and contact conditions. Therefore, the segmental pipeline model can consider the
geometric configuration and characteristics of pipelines that appear during lowering-in. Adopting the
Euler-Bernoulli beam and two-parameter beam on elastic foundation theory, the new model takes
the effect of the soil and axial forces acting on the pipelines into account. This paper compares
the displacements, sectional bending moments and shear forces of the pipeline obtained from
the analytical model and finite element (FE) analysis, where good agreement was demonstrated.
Also, the paper presents three examples to demonstrate the applicability of the analytical model.

Keywords: lowering-in; analytical model; Euler-Bernoulli beam; two parameter beam on elastic
foundation; segmental pipeline model

1. Introduction

A pipeline experiences large deformation and high stress during the construction process,
especially during lowering-in. API STANDARD 1104-Appendix A limits the maximum stress during
the construction sequence to 75% of the yield stress and defines it as the Specified Minimum Yield
Strength (SMYS). In addition, this standard encourages a pipeline stress level check accompanied by
construction procedure analysis, defined as an Engineering Critical Assessment (ECA) [1]. The finite
element (FE) model, which has a strictly implemented boundary condition, can provide accurate
analysis results but it requires large model preparation and computational times. On the other hand,
the analytical model can offer a considerably shortened analysis time while providing appropriate
response results, even though the analytical model has somewhat less accuracy than the FE model.

An elastic beam model partitioned or segmented according to the geometric deformation and
loading condition was proposed by Scott et al. [2] and Duan et al. [3]. However, the proposed
model has a limitation since the factors adopted for the analysis are determined by experience.
Furthermore, the demand for continuity of the rotational angle at the boundary between each beam
element is not satisfied since the boundaries are simplified into free or fixed ends. The proposed models
are inconvenient as the factors adopted for the analysis were determined by construction conditions
based on experience. Therefore, these models are unable to simulate various states of lowering-in.

Most analytical models for the structural behavior of buried pipelines mainly deal with the
soil-pipeline interaction and stresses on pipeline. The simplest analytical modeling of a buried pipeline
was proposed by Newmark and Rosenblueth [4] and Hall and Newmark [5]. In this model, the pipeline
is assumed to be dominated by the deformation of the ground, so soil pipeline interactions cannot
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be considered. Wang et al. [6] and Nelson and Weidlinger [7] have proposed an analytical model
for a quasi-static analysis considering the soil-pipeline interaction. This model is based on a spring
supported beam to simulate buried pipelines. Although the analytical model can be estimated the axial
deformation but the cross-section response of a pipeline may not be expressed in the model. To overcome
this drawback, a shell models for pipelines have been developed [8-10]. Subsequently, Wong et al. [11],
Datta et al. [12] and Takada and Tanabe [13] have proposed the soil-pipeline interaction using a plane
strain model for the 3-D analysis of a pipeline. The cross sectional buckling and radial displacement can
be evaluated using these models. However, in this shell modeling approach, it is difficult to consider
the complete soil-pipeline interaction. Also the analysis procedures involve a series of equations,
which in turn require intensive computational effort [14].

Another analytical model for the structural performance assessment of a pipeline buried in a fault
zone was proposed by Kennedy et al. [15]. This model is assembled with both the beam on an elastic
foundation (BOEF) and a cable element. However, this model does not correctly assume the maximum
bending stress in an actual fault zone. Wang and Yeh [16], Karamitros et al. [17] and Trifonov and
Cherniy [18] tried to overcome this shortcoming by modeling the pipeline partitioned with BOEF and
a Euler-Bernoulli beam, as shown in Figure 1. In these models, the axial force of the pipeline due
to fault displacement is appropriately considered but the axial forces are absent in the BOEF zone.
Also, in the fault zone, the pipeline is modeled with the specified deformation and partitioning points.
Due to its features, it is difficult to apply these models for the analysis of the lowering-in phase.

Beam on Elastic Transition Beam on Elastic
Foundation Zone Foundation
- S . i

Anti-symmetrical Configuration

Figure 1. Analytical model for the pipeline proposed by Wang [16] (as cited from Karamitros et al. [17]).

Dixon and Rutledge [19] developed natural catenary theory, forming the stiffened catenary theory
to solve the pipeline laying problem. Catenary method is ordinary techniques to analyze pipelines and
is used in pipeline modeling for offshore installations. However, this methodology is insufficient for
analyzing the structural behavior of the dominant pipeline to the bending in the lowering phase. In the
model developed by Lenci and Callegari [20], a combination of a rigid seabed or BOEF for the seabed
and ‘cable or cable and elastic beam’ for a pipeline is considered in the modeling of the construction
process and the model is applied for two-dimensional plane behavior. The applied semi-infinite
boundary used for the seabed is not suitable for analyzing the initial step of J-lay and is not able to
achieve the double curvature of the pipeline present during lowering-in. These previous analytical
models use the semi-infinite boundary condition in the BOEF, which cannot effectively deal with finite
contact and lift-off problems for the pipeline.

In this study, a new analytical model of a pipeline applicable to various construction sequences
were developed, especially for lowering-in. By adopting existing methodologies in the new model,
the pipeline is partitioned with several elements considering geometric deformation and boundary
conditions. Two parameters, BOEF and a Euler-Bernoulli beam with axial force, are used for the new
analytical model to consider both the pipeline-soil interaction and the sectional forces of a pipeline
during lowering-in. More details are presented in the following sections and the validity of the new
model was evaluated through comparison with finite element (FE) analysis. Finally, three examples
representing various construction steps during lowering-in are presented at the end of this paper.
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2. Modeling of a Pipeline During Lowering-in

2.1. Segmental Pipeline Model Elements

Figure 2 [21] shows the construction procedure of the lowering-in of a pipeline. The pipelayers
lift the pipeline from the ground surface and pull it down on the centerline of the trench bottom.
The gravity loads from the self-weight of the pipeline activate as a force to lower the pipeline into
the trench. After one end of the pipeline is lowered into the trench, all the pipelayers subsequently
drive along the pipeline at the same speed in the direction away from the lowered end, such that the
remainder of the pipeline is lowered into the trench. This lowering-in subjects the pipeline to large
deformations and bending loads, producing significant curvature between two zones of the pipeline,
the above ground and the bottom of the trench zone [22].

Figure 2. Pipeline during lowering-in [21].

During this process, the pipeline experiences three-dimensional behavior with variable contact
boundary conditions at the trench bottom. Therefore, to analyze the structural behaviors of the pipeline
during lowering-in, the characteristics described above should be implemented in the analytical
model. However, previous analytical models can consider specific loading points and deformations
only, without reflecting variable loading and boundary conditions [2-20]. The 3-D behaviors of
the pipeline can be simulated by superposition of the vertical plane (x-y plane) and lateral plane
(x-z plane) behaviors. The pipeline in each plane can be partitioned into three zones: (i) contacting
soil, (ii) supported by the skid and (iii) suspended by pipelayers. Herein, the geometry continuity
and load transfer mechanism for each adjacent zone should be established. The torsional effects on
the structural behavior of the pipeline during lowering-in were ignored. The axial forces applied to
the pipeline were considered but the deformation corresponding to that forces was not considered.
Also, axial forces are assumed to be consistently distributed over the entire pipeline.

For the zone contacting soil, the pipeline may be modeled as a Winkler foundation to simplify the
pipeline-soil interaction. However, this model, which consists of independent discrete springs, fails to
consider the interactions of adjacent spring elements and traction forces at the contact surface between
the pipeline and soil. To clearly consider the pipeline and soil interaction, the pipeline contacted with
soil can be modeled with a two-parameter beam on an elastic foundation (BOEF, [23-30]); in this study,
pipeline model contacted with soil is referred to as a PCS (Pipeline Contacted with Soil) element.

For the zone supported by the skid placed on the ground along the sideline of the trench—as
shown in Figure 2—the spacing of the skids is very small compared to the entire length of the
pipeline. Consequently, the effect of the skid on the structural behavior of pipeline is negligible.
Therefore, this zone is modeled as a series of springs with a single material property representing the
skids. Thus, this model s effectively the same as the PCS element and is named a PSS (Pipeline Supported
Skid) element. In the lowering-in phase, the lateral displacement of the pipeline is constrained to prevent
the pipeline from leaving the skid and the centerline of the trench bottom. Therefore, the dislocations
and deformations of the pipeline in the lateral plane are negligibly small in these zones. On the other
hand, at the locations where the pipeline is separated from the skid and touches soil, the pipeline has
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a rotational angle in the lateral direction. Therefore, the pipeline in the lateral plane of both zones can
be modeled as a rigid beam.

Finally, in the zone where the pipeline is suspended by pipelayers, discontinuity of the shear
force is developed due to the pipelayer suspending forces and the inflection point appears due to the
double bending moments. The pipeline is partitioned into several elements for each discontinuity and
inflection point. Each element is modeled by a Euler-Bernoulli beam. These elements are named a PSP
(Pipeline Suspended by Pipelayers) element.

2.2. Mathematical Formulations for Segmental Pipeline Models

The partitioned points and elements in the vertical plane are schematically shown in Figure 3.
Here, SP(Start Point) and EP(End Point) are the starting and ending points of the pipeline, respectively.
TDP(Touch Down Point) and SSP(Separated from Skid Point) indicate the points where the pipeline
touches the soil and is separated from the skid, respectively.

QCS elemenf PSP element P§S elemept
¢

¢ * *
SP TDP IP1 LP1 --- LPN 1IP2  SSP EP

skid
trench height

==mx® | cmbedded depth
trench bottom

Figure 3. Segmental pipeline model in the vertical(x-y) plane.

LP1 through LPN are the lifting points by the pipelayers. Also, IP1 and IP2 are the inflection
points of the pipeline. The PCS and PSS elements representing the pipeline contacted with soil and
supported by a skid in the vertical plane are formulated by the following equation:

oAV (x) = Lo (x) + Eﬁlv(x) -2 1)
where g is the constant load per unit length of the pipeline, k is the soil stiffness in the vertical direction
and T is a constant traction on the laid pipeline. The two parameters of the foundation—k and T—are
evaluated from the soil properties including the elastic modulus, E;, Poisson’s ratio, vs and vertical
deformation parameter within the subsoil, y, defined as k = [Esy(1 —vs)]/[2(1 + vs)(1 —2vs)] and
T = Es/4y(1 + vs) by Vlasov and Leont’ev formulations [30], respectively. Typically, the range of y is
from 1.0 m™ to 2.0 m~! [29]. For this reason, the y was assumed to be 1.0 m™! in this study.

Upon solving the characteristic equation of Equation (1), there are three combinations of solutions
depending on the relationship between T and 2 VKEL. Generally, T < 2 VKEI is satisfied in most
engineering problems [29,30], so that the behavior of PCS and PSS elements can be defined as follows:

Vs = % + cip1(x) + cir1P2(x) + ciroP3(x) + cipada(x) @)

where, ¢;, ¢j11, ciy2 and ¢;43 are integral constants,
¢1(x) = e cos(Bx), P2 (x) = e sin(Bx),
P3(x) = e cos(Bx), pa(x) = e™**sin(px),

a = \/k/4EI+ VT /4EL B = \/k/4EI— VT /4EL
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As in previous analytical models with two parameters, BOEF assumes that the boundary condition
as semi-infinite. This condition provides a convenient calculation but has limitations when considering
the separation length increase of the pipeline from the soil or skid. Thus, the semi-infinite boundary
condition is invalid to reflect the beginning and final phase of lowering-in due to the small contact
surface between the pipeline and the soil or skid. Therefore, a model of the shear layer is necessary
to adequately consider the contact problem between the pipeline and the soil or skid beneath the
lowering-in phase. The soil pressure applied to the pipeline is defined as p(x) = kv(x) — To(x)” in
the PCS and PSS elements. The governing equation of the shear layer can be obtained by solving
the homogeneous equation of the soil pressure. By substituting boundary conditions at x — oo
(x11_>r£10 vs = 0), the governing equation of the shear layer is as follows:

v = cjyqet” (3)

where pt = Vk/T and c; 4 is an integral constant. The deflected infinitesimal element of the pipeline
suspended by pipelayers (PSP element) in the vertical plane is shown in Figure 4. Using the
equilibrium equations and the moment-curvature relationship, the PSP element is expressed by the
following equation:
do(x) Td*(x) ¢

At El d  E @)
where v(x) is the vertical displacement of the pipeline, T is the axial force applied to the pipeline and g
is defined in Equation (1). By solving Equation (4), the general solution can be obtained as follows:

2
X .

v(x) = _L;_T +¢j+ ¢jy1x + cjrosinh(Ax) + cjy3 cosh(Ax) (5)
where c¢j, ¢j11, ¢j42 and ¢j3 are integral constants. In the lateral plane, the pipeline suspended by the
pipelayers is subjected to lateral displacement, as shown in Figure 5a. By applying the equilibrium
equations and the moment-curvature relationship to the deflected element, as shown in Figure 5b,

the governing equation of the PSP element can be expressed as follows.

d*w(x) Idzw(x) _

dx*  El dx2 ©)

where, w(x) is the lateral deflection of the pipeline, while the other parameters are the same as defined
in Equation (4). T is the axial force applied to the pipeline. The general solution corresponding to the
PSP element for the lateral plane is shown in Equation (7).

w(x) = ¢ + cxr1X + Cposinh(Ax) + ¢y 3 cosh(Ax) (7)

where, A is the same as that defined in Equation (5) and c, ¢k 1, ¢k42 and cx, 3 are the integral constants.
To analyze the structural behavior of the pipeline during lowering-in, the PCS, PSS and PSP elements
are combined into segmental pipeline models, which are defined in Section 3.2. The three-dimensional
(3-D) structural behavior of the pipeline can be implemented by superposing the segmental models in
each plane. When the elements are combined, the geometry continuity at the boundaries between
adjacent elements should be satisfied. However, the shear force discontinuities need to be considered
at the lifting points of the pipelayers.
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Figure 4. Deflected infinitesimal element of a Euler-Bernoulli beam.
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Figure 5. Segmental pipeline model in the lateral (x-z) plane: (a) pipeline model using a pipeline
suspended by pipelayers (PSP) model element; (b) deflected element of a Euler-Bernoulli beam.

3. Validation of Segmental Pipeline Models

3.1. Lowering-in Process and Configuration of Pipeline

Three phases in the entire lowering-in process can be considered: Phase (1) lifting the pipeline
from the skid; Phase (2) laterally moving the lifted pipeline toward the trench; and Phase (3) lowering
the pipeline into the trench bottom. Among the three phases, the phase that is investigated is first
selected for use of the segmental pipeline model. Based on the specific phase, the pipeline is partitioned
by considering the geometry and boundary conditions.

In Phase 1, the pipeline can be partitioned into PCS or PSS and PSP elements. The PSP element can
be re-partitioned by considering the operations of the pipelayers such as the number of the pipelayers
and their distances. In Phase 2 and Phase 3, the pipeline is divided into the vertical and lateral planes
and both planes are superposed because the pipeline has a three-dimensional behavior. In the Phase 3
details, if the pipelayers are located around the central zone of the entire pipeline (TDP-SSP), both end
regions (SP to TDP, SSP to EP) of the segmental pipeline model, where the pipeline contacts with soil
and is supported by the skid, are modeled with PSS and PCS elements, respectively. The TDP to SSP
region is modeled with a PSP element.

For all elements, the segmental length of each element in the vertical plane is unknown, except for
the spacing between each pipelayer. These unknowns can be determined through the approach of the
boundary value problems. In the lateral plane, the pipeline is modeled with a PSP element without
inflection points due to the moment direction of the pipeline. The segmental length of the PSP element
in the lateral plane is determined based on the segmental length of each element obtained in the vertical
plane. The details of the segmental pipeline model for the lowering-in phase are addressed in the
next section.
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3.2. Model 1 and 2 for the Lowering-in Phase

Model 1 and Model 2 depending on the configurations of the pipelayer are defined as shown in
Figure 6a,b, respectively. Figure 6¢ shows the lateral plane of Model 2. Model 1 is composed of each
single PSS and PSP element and it includes a shear layer in the PSS element. The solutions of Model 1
are presented in Equation (3).

vs(x1) = coet™

vi(n) =1+ §1¢>1 (x1) + c2¢2(x1) + c3¢3(x1) + capa(x1) (8)
v2(x2) = —q;—% + ¢5 + ceXp + cysinh(Axp) + cg cosh(Ax;)

where, vs(x) is the deformation of the shear layer and v (x) and v, (x) are the deformations of the PSS and
PSP elements in the vertical plane, respectively. The entire length of the pipeline is known, while the
segmental lengths of each element are unknowns. The unknown lengths and integral constants
depending on the construction conditions can be obtained by using the following boundary conditions:

Ul(ls) =0
05(0) = 01(0) 02(0) =0
My(l;) =0
SP{ M;(0)=0 ,TDP! 06:(l) = 6,(0) ,LPl{ UEI(;)_(S )
Vs(0) = V1(0) M (Is) = Mz (0) 2V
Vi(ls) = V2(0)
Bl F
b V fx S O ch
15 TN, AT
Y - §
A=, "
FEErTe] ;t/r)
[ A R I N K B
front Ly }ll"'lzw 5 § 5 Wl}"'lztj
(b) (c)

Figure 6. Segmental pipeline model during lowering-in (a) Model 1; (b) Model 2; (c) lateral plane of
Model 2 (A:SP, B:TDP, C:IP1, D:LP1, E:LP2, F:LP3, G:IP2, H:SSP, I.EP).

The integral constants are function of the segmental lengths, which are obtained by substituting
Equation (9) except for the boundary condition of v, (1) = dy into Equation (8). Considering the total
length of the pipeline, the segmental lengths presented in Figure 6 are determined by substituting
the integral constants into the boundary condition of v3(l1) = 6y. The results are expressed with
a2 X2 system in Equation (10).

2
f1(ls, h) = _q2l_1T +es5(ls, 1) + co(ls, ) o + c7(Is, 1 )sinh(Aly) 4 cg cosh(Aly) — &y (10)
f2(ls/ ll) = Lt - ls - ll

where, I; and I; are the length of each element for Model 1. This nonlinear algebraic 2 X 2 system can
be solved using the Newton-Raphson method and so forth.

Model 2 is defined in Figure 6b,c, which present the behavior of the vertical and lateral planes.
If three pipelayers are applied, Model 2 has three discontinuity points of shear forces and two
inflection points in the vertical plane and three discontinuity points of shear forces in lateral plane.
Therefore, in the vertical plane, Model 2 is assembled with each single PSS and PCS element and six
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PSP elements. Thus, 10 equations for the vertical displacements of the elements including the shear
layer are applied, as shown in Equation (11).

v1(x1) =4+ 621¢1(x1) + c2p2(x1) + c3pa(x1) + cacpa(x1)

On(xn) = =55 + can3 + Can—2%n + can_18inh(Axn) + can cosh(Axy) (11)
vs(xs) = T + oo (x8) + ca0p2(xs) + c313(x8) + c320p4(x5)

0s(xs) = czel™

where,n =2, 3,---, 6, 7 for the case of three pipelayers, vs(x1) and vs(xg) are the deflections of the shear
layer, v1 (x1) and vg(xg) are the deflections of the PCS and PSS element in the vertical plane, respectively.
There are 34 integral constants and 6 unknown lengths (I, I, I3, I3, I3 and I) in Equations (11).
All unknown parameters can be obtained by applying the following boundary conditions:

v1(le) =0 02(l) = v3(0) '
0,(0) = 01(0) 02(0) = 0 6a(l1) = 63(0) 242’)) oat!
SP{ My(0)=0 ,TDP{ 6:1() = 62(0) ,IP1{ My(l})=0 ,LP1 93 (12) _ 6“(0) ,
Ve(0) = V1(0) Mi () = Ma(0) M3(0) =0 Ma(ly) = Ma(0)
Vi(le) = V2(0) Va(h) = V3(0) S
v6(13) = v7(0) vg(0) =h
0sl0) = duz + Wl =0t gs) = 05(0) o) = (12)
ppa) Pa(51) =0l o) Usls) =dw b, Me(l3) =0, SSP{ 0;(l;) = 05(0) ,
04(s1) = 65(0) 05(s2) = 66(0) My(0) = 0 My(ls) = Mg (0)
Ma(s1) = Ms(0) Ms(s2) = M(0) Va(ls) = Va(0) Valls) = Vs(0)

As shown in Figure 6b, the lengths of SP to LP2 and LP2 to EP are Lgont = Ic + 11 + 12 + 51 and
Lback = I3 + 14 + I + 52, respectively. Similar to Model 1, the boundary conditions except for the end
displacements of each PSP element, which are v3(ly) = 0y1 +h, v4(s1) = Ova +h, v5(sp) = Oy3 + 1
and v7(ly) = h, are substituted into Equation (11). Then, the integral constants can be defined as
a function of the segmental lengths of the elements. Through substituting these integral constants into
the excepted boundary conditions, the 6 X 6 nonlinear system related to the end displacements of the
PSP elements is defined as shown in Equation (13).

fille,11,12) = Leront — l —h-h-%

(Ia,la,Is) = Lback —lg=l—s;

(I, 11, ) = + C9 + Cipla + Cy1sinh(Alp) 4+ Cyp cosh(Al) = 6y1 — h

(I, I, 1) = + Ci13 + C1481 + Cis8inh(Asy) + Cigcosh(Asy) — Oy — h (13)
(I, 11, 1) = + C17 + Cigs2 + Crgsinh(Asy) + Cog cosh(Asy) — 6y3 — 1

( ) =

fo(l3,14,1s + Cos + Cagly + Cazsinh(Aly) + Cogcosh(Aly) —h

mEE

In this equation, the integral constants C19p—Cy3 are functions of I and /1 and C14-C»1 are functions
of I, I and I. Also, the integral constants Cys—Cpg are functions of I3, I and Is. This nonlinear system
can be solved with the Newton-Raphson method.



Appl. Sci. 2019, 9, 2595 9 0f 20

Model 2 in the lateral plane is assembled with four PSP elements if three pipelayers are applied.
Thus, the 4 equations for the horizontal displacements of the elements are shown below.

w1(x1) = ¢1 + cax1 + c3sinh(Axy) + ¢4 cosh(Axq)

wy(x2) = ¢5 + cgxp + cysinh(Axy) + cg cosh(Axy)
w3 (X3) = C9 + C10X3 + C1lsil’1h(/\X3) +C12 COSh(AX3)
w4(xg) = €13 + c14X4 + c158inh(Axy) + 16 cosh(Axyg)

(14)

The segmental length of each PSP element in the lateral plane can be determined by adopting
the results of each element length calculated by Equation (13). The boundary conditions to obtain the
integral constants in Equation (14) are defined in Equation (15).

wy(h 4+ 1) = 6m wy(s1) = On2 w3(s2) = On3
wi(0) =d w2(0) = Om w3(0) = o2 w4(0) = Op3
TDP , LP1 , LP2 , LP3 p
{ M;(0) =0 01(lh + 1) = 02(0) 02(s1) = 03(0) 03(s2) = 04(0)

Myl + 1) = My (0) Ma(s1) = Ms(0) Ms(ss) =My(0) (D)

ZU4(13 + 14) =0
SSP
{ My(ls+14) =0

Through the above processes, the sectional force of the segmental pipeline model can be evaluated
using the elastic theory with M(x) = Elv” (x) and V(x) = Elv” (x) — Tv'(x). Using the segmental
pipeline model, the assessment for the 3-D behavior of a pipeline is performed on the sectional force
and Von-Mises stress by root means square (RMS). Details for analyzing the Models 1 and 2 are
included in Appendix A.

3.3. Finite Element Analysis for the Lowering-in Phase

The segmental pipeline model for Models 1 and 2 was verified by finite element (FE) analysis using
ABAQUS [31]. In the FE model, the pipeline is modeled with a 3-D beam element (B31) to simulate the
bending behavior in the vertical and lateral plane. Also, the pipeline was assumed to behave in the
elastic range. Its diameter and thickness were applied as 0.762 m and 0.021 m, respectively. The trench
was modeled using 3-D shell elements (54) and the geometry of the trench was determined considering
the standard of SP 42-102-2004 [32] and the diameter of the pipeline. The deformable depth of a soil
was assumed to be 1 m, considering the depth of the active layer and the freezing layer in common soil.
This depth is reflected with the thickness of the shell element. The plastic behavior of the soil was
ignored and considered as an elastic material. The material and geometric properties of the pipeline
and trench are summarized in Table 1. The grade of the pipeline is X70 and considering the stiff
soil condition, an elastic modulus and Poisson’s ratio were 40 MPa and 0.32, respectively. The skid
had the same material properties as the trench and its height was the initial position of the pipeline.
The pipelayers control the displacement only to support the pipeline. A general contact option in
ABAQUS was used to implement the contact boundary condition between the pipeline and the trench.
The general contact was applied to provide interactions such as traction on the surface between the
pipeline and the trench. Before the lowering-in, the boundary conditions of displacement for the
pipeline were free but the displacement on all sides of the trench was fixed. The pipeline was placed by
self-weight at the top of trench, assumed as a skid and the general contact was accommodated between
the pipeline and the trench. During lowering-in, the pipeline was lowered into the trench bottom
by the displacement loads at the lifting point of pipelayers. In this process, the surfaces between
the pipeline and trench contacted with each other were applied as general contact. A hard contact
condition and friction coefficient of 0.3 were considered for the normal and tangential behaviors of
the contact surfaces, respectively. Typically, the frictional coefficients between the steel and soil have
a range of 0.14 to 0.26. To prevent slippage between the pipeline and the soil, the frictional coefficient
of the soil used was as 0.3, which is slightly larger than typical values.
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Table 1. Material and geometric properties for the finite element (FE) models.

Classification Pipeline Trench
density 7850 kg/m? 1520 kg/m®
material properties elastic modulus 210 GPa 50MPa
Poisson’s ratio 0.3 0.32

- @ 2
geometric properties section property - 2m
t=0.021m

length 400 m 400 m

The static analysis was performed discretely for each phase of the lowering-in. The bending
moments in the vertical and lateral plane were carried out from SM 1 and 2 in the output of Abaqus,
respectively. Also, the output variables corresponding to the shear forces in the vertical and lateral

plane are SF2 and 3. The results of FE analysis for Model 1 and Model 2 represented as shown
in Figure 7.

SM, SM1 SF, SF2

(Avg: 75%) (Avg: 75%)
1369983.000 §7057.844
1253451.750 71250.188
1136920.625 55442.516
1020389.500 39634.848
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TBY327.125 8019512
670795,.838 -7788.156
554264,750 -23595.824
437733.594 -39403.492
321202.438 -55211.160
2045671.281 -71018.828
88140.109 -86826, 500
-28391.051 -102634.172

(a) (b)
SM, SM1 SF, SF2
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1198022.000 98538.172
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-1578263.250 147825 813 L)

(© (d)

Figure 7. Sectional forces of FE model (rendering contour): (a) bending moments for Model 1 (unit :
N-m); (b) shear forces for Model 1 (unit : N); (c) bending moments for Model 2 (unit : N-m); (d) shear
forces for Model 2 (unit : N).
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3.4. Comparison of the Analytical and FE Analysis Results

The analysis results for the vertical deflections, bending moments and shear forces of Model 1
are shown in Figure 8. Compared to the results of FE model, the deflections show good agreement,
where the bending moments and shear forces are only slightly different near the TDP and SSP.

analytical model —— FE model analytical model —— FE model analytical model —— FE model
B ‘ E 2000 200
£ Z i —~ 4
=
g 17 = 1000 £ 100
5 B =1 4 9] b
& g g
5 0 g 0 § 0
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= B kst i %] i
4 =
2 T T T T T T T 3 -2000 T T T T T T T -200 I T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
longitudinal length (m) longitudinal length (m) longitudinal length (m)
(@) (b) (0)

Figure 8. Comparison of Model 1 to the FE analysis results during lowering-in: (a) deflection;

(b) bending moment; (c) shear force.

Figure 9a,b show the structural behavior of Model 2 compared to the FE model results. It should
be noted that the analytical model provides better accuracy in the vertical plane than the lateral
plane. For the lateral plane, the deformation of the pipeline is almost the same as in the FE analysis.
However, the maximum and minimum bending moments and shear forces are somewhat different
form the results of the FE analysis. Further, a difference appeared near the TDP and SSP.
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Figure 9. Comparison of Model 2 to FE analysis results during lowering-in: (a) vertical plane (x-y plane);

(b) lateral plane (x-z plane).

(e.g.
sSSP

The segmental pipeline model simulates the interaction of the pipeline and the support layer
soil or skid) by applying vertical springs and shear layers. In the lateral plane, the TDP and
of the segmental pipeline model were simplified to pin-supported conditions and the pipeline
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supported by the skid and contacted with the soil was assumed to be a rigid beam. In addition,
the effects of the soil and skid on the pipeline behavior in the lateral plane were assumed to be
negligible. In the segmental pipeline model, the axial force of the pipeline was assumed to be constant
and the deformation corresponding to the axial force was ignored. In contrast, for the FE analysis the
interaction between the pipeline and the support layer was rigorously implemented by considering
the material properties in addition to the normal and tangential behaviors of the contact surface.
In particular, the TDP and SSP of the FE model were affected by the interaction between the trench and
the pipeline in the lateral plane. Therefore, it seems that simple modeling of the interactions between
the pipeline-trench and simplified boundary conditions of the segmental pipeline model lead to some
difference, compared to the results of the FE analysis.

However, for the sectional force in the pipeline, the absolute value of the differences was very
small compared to the overall values. Moreover, during lowering-in, the vertical displacement of the
pipeline should be carefully controlled and investigated for structural safety. This means that the
vertical plane behavior of the segmental pipeline model is more important and the model performance
is dependent on the accuracy of the vertical plane results.

4. Application of the Segmental Pipeline Model

The number of pipelayers and their locations are key parameters to identifying the structural
behavior of the pipeline during lowering-in. Equation (8) represents the vertical displacements of
Model 1. Note that Model 1 simulates the pipeline behavior during the lifting construction sequence
and it considers only one pipelayer. However, several pipelayers can be added in Model 1 to simulate
different construction sequences, which are presented in Table 2. Case 1 considers two pipelayers
during lifting construction sequence (Phase 1) and Case 2 considers three pipelayers for the same
construction sequence of Case 1. Additionally, Case 3 considers three pipelayers and the construction
sequence is the placing the pipeline down into the trench bottom, which is Phase 3 during lowering-in.
In Case 3, the lateral behavior of the pipeline should be depicted. In Table 2, LP1 to LP3 are the first to
third pipelayer and their locations are presented in Table 2. For Case 1, the segmental pipeline model
is modeled with three PSP elements due to the presence of one inflection point and one additional
lifting point. For Case 2, the segmental pipeline model is modeled with four PSP elements due to the
additional lifting point compared to Case 1. For Case 3, the segmental pipeline model is modeled with
six PSP elements due to one more inflection point, compared to Case 2. For all cases one PSS element
is considered.

Table 2. Case examples of the segmental pipeline model.

LP1 LP2 LP3
Case (Location of First Pipelayer) (Location of Second Pipelayer) (Location of Third Pipelayer)
Locati Displacement Locati Displacement Locati Displacement
0CatON  yrertical ~ Lateral ocation Vertical Lateral 0CatON  yrertical  Lateral
1 380 15 - 400 1.8 - - - -
2 365 24 - 385 25 - 400 2.4 -
3 45 0.0 0.5 65 0.5 15 80 04 2

The analysis results for Case 1 and Case 2 are shown in Figure 10a,b, respectively. The zero-vertical
deflection is the initial elevation of the skids. The vertical deflections remain negative up to about
a pipeline length of 300 m and the amounts of the vertical deflections are almost identical to the
initial deflections caused by the pipeline self-weight. For the range showing positive deflection values,
the bending moment increases significantly but becomes zero at the final location of the pipelayers
(for instance, LP2 for Case 1 and LP3 for Case 3). The maximum shear force resulting from Case 2 is
slightly larger than for Case 1 but the difference is very small.
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Figure 10. Analysis results of the segmental pipeline model during lowering-in for (a) Case 1; (b) Case 2.

The sectional forces of Case 3 in the vertical plane are larger than those in the lateral plane,
as shown in Figure 11. The ratios of the absolute maximum force for Case 1 to Case 2 are about 0.91 for
the bending moment and 1.17 for the shear force, respectively. This shows that evaluation of the
shear force is needed when the addition of a pipelayer is required for safety. The ratios of absolute
maximum force in the lateral direction to the vertical direction are about 0.56 for the bending moment
and 0.68 for the shear force, respectively. This indicates that it is necessary to evaluate the sectional
forces of pipeline in the lateral direction as well to ensure safety under construction.
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Figure 11. Analysis results of Case 3: (a) vertical plane (x-y plane); (b) lateral plane (x-z plane).

The case examples show the extension of the segmental pipeline model with increasing pipelayers

for both pipeline-lifting and putting construction sequences (lowering-in). In this extension process,



Appl. Sci. 2019, 9, 2595 14 0f 20

it is convenient to build the segmental model by reflecting the locations of the pipelayers and adding
proper elements corresponding to the boundary conditions.

5. Discussion

The load and boundary conditions applied to the pipeline which depend on the construction
conditions during lowering-in are continuously changing. Therefore, to analyze the structural behavior
of a pipeline, these characteristics should be considered. The previous analytical models are well
established but they are limited with respect to formalized conditions such as the geometric, load and
boundary conditions. The aims of the segmental pipeline model are to properly consider the formalized
conditions, especially for the lowering-in conditions of a pipeline and to obtain numerical accuracy,
applicability and convenience in the structural analysis. The segmental pipeline model was verified
through FE analysis. In addition, assessment of the applicability and convenience was performed
with 5 examples, including Models 1 and 2. The segmental model provides a good accuracy and can
accommodate the construction features of lowering-in.

Torsions as well as bending moments are parameters that effect on the three-dimensional behavior
of the pipeline. The proposed model and FE model, which based on the beam elements, are ignored
the torsional effect on the structural behavior of pipeline. The pipeline-soil interaction of the FE model
is implemented by the tangential and normal direction parameters in the surface between the pipeline
and the soil as well as the material properties of the soil. Thus, the interaction between the pipeline and
the soil, such as the lateral traction force, is considered in FE model. On the other hand, the pipeline-soil
interaction of the segmental pipeline model is simplified to a vertical spring and shear layer with
Vlasov and Leont’ev formulas. In addition, the proposed model was modeled without pipeline-soil
interaction in the lateral plane. The pipeline of proposed model contacted with both the soil and skid
in the lateral plane was assumed as a rigid beam. These rigid beams were not modeled in proposed
model but the pipeline except for these rigid beams was modeled as Euler-Bernoulli beams. And
then, the adjacent boundaries between the rigid beam and the Euler-Bernoulli beam (TDP and SSP in
Figure 3) were pin-supported. In addition, the proposed model was assumed to have constant axial
force in all cross sections. Such a simplification of the pipeline-soil interaction and lateral plane model
lead to main difference from FE model.

The segmental pipeline model consists of PCS, PSS and PSP elements and each element can
be combined to simulate various construction sequences in lowering-in. With these elements,
the requirement of continuity in the geometry and sectional forces should be satisfied in the boundaries
between each element. In the TDP and SSP positions, the segmental model has a small error in the
sectional forces, compared to the FE analysis results. The error of the sectional forces is larger in the
lateral plane than in the vertical plane. The boundary conditions suitable for the segmental model
are limited to the translation and rotational displacements only. Also, the pipeline-soil interaction in
the segmental model is simply considered with vertical springs and shear layers. If the limitation
and simplification are implemented strictly into the model, the analysis results become more accurate.
However, a rigorous model will be very complicated.

6. Conclusions

A segmental pipeline model was proposed to analyze the structural behavior of the pipeline
during lowering-in, considering geometric and boundary conditions. The segmental pipeline model
was formulated based on the two parameter BOEF and Euler-Bernoulli beam theory. The conclusions
obtained from this study are as follows.

1. The structural behavior resulting from the segmental pipeline model and the FE analysis showed
good agreement, except for being slightly different in terms of the bending moments and shear
forces near the TDP and SSP positions. The small difference is caused due to the limitation of
applicable boundary conditions and simplification of the modeling of pipeline-soil interaction.
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2. During lowering-in, the boundary conditions of the pipeline are continuously changed due to
the use of pipelayers. The segmental pipeline model can simulate variable boundary conditions,
combining several PCS, PSP and PSS elements. This makes it more convenient to expand the
segmental model to cover various construction sequences during lowering-in.

3.  The necessary elements in the modeling process can be intuitively selected by considering the
geometric deformations and boundary conditions. The segmental pipeline model is built by
combining the necessary elements and the final system equations of the segmental model are
nonlinear, which can be solved easily through a numerical approach.

4.  The ratios of the absolute maximum bending moment and shear force in Case 2 to Case 1 were
about 0.91 and about 1.17, respectively. Additionally, the ratios of the absolute maximum bending
moment and shear force in the transverse direction to the vertical direction were about 0.56 and
0.68, respectively. This indicates that it is necessary to consider the sectional forces of pipeline
in the lateral direction and the shear forces for an increase of pipelayers when analyzing the
structural behavior of pipelines.
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Appendix A

As shown in Figure A1, an example for segmental pipeline model is a lowering phase applied
three pipelayers. Each of spacing between pipelayers is 20 m (LP1 to LP2) and 15 m (LP2 to LP3),
respectively. The lifting heights at LP1, LP2 and LP3 measured from the trench bottom are assumed to
be 2m, 2.5 m and 2.4 m, respectively. Also, the height from the trench bottom to the skid is assumed to
be 2 m.

LP2

1P2

IP1

SSP EP
20m  |25m|24m v

T

SP TDP

—
2zzeaat
l' N
L

N3 N3 N3 NN
K K K XK

L L, 2m |[15m L l

front Lback

Figure A1. Schematic representation of the lowering-in phase with 3 of pipelayers.

The equations for each element of the segmental pipeline model are summarized in Table Al.
The material and geometric properties of the pipeline and trench are the same as in Table 1 in the
Section 3.3. Also the variables in the equations for each element such as g, T, A and p are calculated
according to the assumptions and model settings of this paper.
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Table Al. The equations for each element of the segmental pipeline model.

Equations for Each Element

shear layer of PCS vs(x1) = cpel 2440
SP to TDP PCS v1(x1) = 0.0138 + 11 (x1) + capa(x1) + c3p3(x1) + capa(x7)
TDP to IP1 PSP 1 03 (x2) = —0.0262x22 + ¢5 + coxo + c75inh (0.0102x7) + cg cosh (0.0102x,)
IP1 to LP1 PSP 2 v3(x3) = —0.0262x32 + cg + c19x3 + ¢115inh(0.0102x3) + 15 cosh(0.0102x3)
LP1 to LP2 PSP 3 v4(xg) = —0.0262x42 + c13 + c14%4 + ¢155inh(0.0102x4) + c14 cosh(0.0102x4)
LP2 to LP3 PSP 4 v5(x5) = —0.02629(52 + €17 + ¢18X5 + ¢19sinh (0.0102x5) + c29 cosh(0.0102x5)
LP3 to IP2 PSP 5 06(x6) = —0.0262x62 + Co1 + C2%6 + C235inh (0.0102x4 ) -+ o4 cosh(0.0102x¢)
IP2 to SSP PSP 6 v7(x7) = —0.0262x72 + 35 + Co6X7 + co75inh (0.0102x7) + cog cosh(0.0102x7)
SSP to EP PSS 7)3(7{8) = 0.0138 + cp9¢p1 (Xg) + c30¢2 (xg) + 3103 (xg) + C32¢)4(X8)

shear layer of PSS vs(xg) = czel 944

In order to analyze behavior of pipeline in the vertical plane, the integral constants and unknown
lengths of the equations for each element should be obtained firstly. The boundary conditions at the
partitioning points to obtain the unknown variables are represented in Equation (Al).

Ul(ls) =0 Uz(ll) = 03(0)
{ v5(0) = v1(0) 2(0) =0 62(1) = 65(0) v4(0) =2
SP{ M;(0)=0 ,TDP{ 6:1(.) = 6,(0) ,IP1] My(l}) =0 , LP1) 63(l) = 04(0)
Vs(0) = V1(0) M;(Ic) = M2(0) M;(0) =0 Ms(la) = M4(0)
Vi(le) = V2(0) Va(ly) = V3(0)
ve(l3) = v7(0) 05(0) = 2
v5(0) = 2.5 v6(0) = 2.4 06(13) = 07(0) (L) — 6a(0 (A1)
LPZ{ 04(20) = 65(0) LP3{ 05(15) = 05(0) , IP2{ Mg(l3) =0  , SSP ]\;(?) __AS/I( )0 ,
M (20) = Ms(0) Ms(15) = Mg(0) | Ms(0) =0 ile) = Ma(0)

V7 (ly) = Vg(0)

Ug(ls) =2
EP! Ms(l) =0
Vs(ls) = Vs(ls)
By approaching the boundary value problem using equations for elements, summarized in
Table Al and Equation (A1), all integral constants can be obtained as a function of elemental lengths.

The displacement of the PSP elements of LP1, LP2, LP3 and SSP to estimate the unknown variables can
be obtained as follows.

?Jg(lz) = 2, 04(20) = 2.5, U5(15) = 2.4, U7(l4) =2 (AZ)

Substituting the integral constants, which are the function of the elemental length,
into Equation (A2) then the following nonlinear system is obtained:

Fle, 1, 1) = —22 4 Co + Cyoly + Cpysinh(0.010213) + Cyz cosh(0.010215) — 2.0
falle, I, 1) = —@ + C13 + C14(20) + Cy55inh(0.204) + Cy6 cosh(0.204) — 2.5
fs(le, I, 1) = —@ + C17 + C15(15) + Cy9sinh(0.153) 4 Cag cosh(0.153) —

folla,Ia 1) =~ 4 Cas + Cagly + Carsinh(0.01021y) + Cag cosh(0.01021;) — 2.0

(A3)

Two additional equations are needed to calculate the unknown the elemental length of the
segmental pipeline model. If the length of the pipeline from SP to LP 2 is defined as Lgont and the
length from LP 2 to EP is defined as Ly, the two additional equations required to solve Equation (A3)
are obtained as follows.

{fl(zc,zl,zz)zzoo—zc—zl—zz—zo A

fo(lz,1g,1s) =200 =13 — 1y — 15— 15

A combination of Equations (A3) and (A4) yields a 6 by 6 nonlinear system, which can be solved
with the Newton-Raphson method. The unknowns such as the elemental lengths and integral constants
obtained through this calculation procedure are summarized in Table A2.
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Table A2. The unknown lengths of each element.

Front Side of LP2 Back Side of LP2
elements Length of elements elements Length of elements
PCS (I) 128249 m PSP 4 (s7) 15m
PSP 1 (Iy) 39.606 m PSP 5 (I3) 23.223 m
PSP 2 (Ip) 12.145m PSP 6 (l4) 6.855 m
PSP 3 (s1) 20 m PSS (I5) 154.922 m

In the lateral plane, the pipeline contacted with the soil and supported by the skid is assumed to
be a rigid beam. Also, since the pipeline does not have inflection point and is only partitioned at the
lifting point of the pipelayer. Therefore, the pipeline in the lateral plane can be described as shown

0.5m
‘ SSP¢
1.0m
15m LP3
LP2 20m
M LP1

NZ N N|
7N 7N 1

I, +1, 20m 15m 5 +1,

in Figure A2.

4>

z

Figure A2. Segmental pipeline model in the lateral plane with 3 pipelayers.

The locations of TDP, LP1, LP2, LP3 and SSP were assumed to be the same as both the vertical and
lateral plane. Therefore, the elemental length of the model in the lateral plane can be calculated as the
sum of [; and I, the sum of I3 and I4, respectively. The equations and lengths for each element are
summarized in Table A3.

Table A3. The equations for each element of the segmental pipeline model in the lateral plane.

Equations for Each Element Elemental Length
TDP to LP1 PSP 1 w1(x1) = ¢1 + cax1 + ¢35inh (0.0102x1 ) + ¢4 cosh(0.0102x1 ) 51.752 m
LP1 to LP2 PSP 2 wy(x2) = ¢5 + cex2 + c7sinh (0.0102x;) + cg cosh(0.0102x;) 20 m
LP2 to LP3 PSP 3 w3 (x3) = c9 + c10x3 + ¢115inh (0.0102x3) + ¢12 cosh(0.0102x3) 15m
LP3 to SSP PSP 4 wy(x4) = 13 + €14X4 + €158inh(0.0102x4) + c16 cosh(0.0102x4) 30.078 m

The integral constants of the equations for each element in Table A3 can be obtained by using the
following boundary conditions.

w1 (51.752) = 1.5 w,(20) = 1.0 ws(15) = 0.5
w1(0) = 2.0 w(0) = 1.5 w3(0) = 1.0 ws(0) = 0.5
TDP{ M =0 N 051752 = 0,0) ) 02020 = 650) * 3] 0515 = B4(0) - A5
My (51.752) = My (0) Mj(20) = Ms(0) Ma(15) = My(0) D)

w4(30.078) = 0
P
S5 { M4(30.078) =0

By substituting the integral constants obtained through the above procedure into the equations
for each element, the behavior of the pipeline in the lateral plane can be analyzed. The sectional force
of the segmental pipeline model can be evaluated using the elastic theory with M(x) = EIv” (x) and
V(x) = Elv” (x) — Tv'(x). Figures A3 and A4 show the analysis result for the segmental pipeline
model in the vertical plane and the lateral plane.
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Figure A3. Analysis results of the segmental pipeline model in the vertical plane: (a) deflections;
(b) bending moments; (c) shear forces.
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Figure A4. Analysis results of the segmental pipeline model in the lateral plane: (a) deflections;
(b) bending moments; (c) shear forces.

Using the segmental pipeline model, the assessment for the 3-D behavior of a pipeline is
performed on the sectional force and Von-Mises stress by root means square (RMS). The 3-D deflections,
sectional forces (bending moments and shear forces) obtained by using RMS and Von-Mises stress of
segmental pipeline model are represented as shown in Figure A5.
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Figure A5. The 3-D analysis results of the segmental pipeline model: (a) deflections; (b) bending
moments obtained by using RMS; (c) shear forces obtained by using RMS; (d) Von-Mises stress.
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