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Abstract: In target tracking environments using over-the-horizon radar (OTHR), one target may
generate multiple detections through different signal propagation paths. Trackers need to jointly
handle the uncertainties stemming from both measurement origin and measurement path. Traditional
multitarget tracking algorithms suffer from high computational loads in such environments since they
need to enumerate all possible joint measurement-to-track assignments considering the measurements
paths unless they employ some approximations regarding the measurements and their corresponding
paths. In this paper, we propose a novel algorithm, named multi-path linear multitarget integrated
probabilistic data association (MP-LM-IPDA), to efficiently track multitarget in multiple detection
environments. Instead of generating all possible joint assignments, MP-LM-IPDA calculates the
modulated clutter measurement density for each measurement cell of each track. The modulated
clutter measurement density considers the possibility that the measurement cells originate from the
clutter as well as from other potential targets. By incorporating the modulated clutter measurement
density, the single target tracking structure can be applied for multitarget tracking, which significantly
reduces the computational load. The simulation results demonstrate the effectiveness and efficiency
of the proposed algorithm.

Keywords: multitarget tracking; linear multitarget process; data association; OTHR; multiple
detection; target existence evaluation

1. Introduction

Multitarget tracking is a challenging problem that requires confirming potential targets as well as
estimating target states. The most widely used tracking algorithms, including multiple hypothesis
tracker (MHT) [1], joint probabilistic data association (JPDA) [2] and algorithms based on the random
finite set (RFS) theory [3–5], have been shown to be effective with specific models and assumptions in
various scenarios.

The above-mentioned algorithms have a common assumption that one target can generate at
most one measurement at each scan time, which is the single detection assumption. However, in many
practical scenarios, one target may produce more than one measurement per scan. A well-known
example of such multiple detection (MD) systems is over-the-horizon radar (OTHR) [6,7]. In the
over-the-horizon radar (OTHR) system, the detection signals are reflected off ionospheric layers to
detect the area beyond the radar horizon for long-range targets surveillance. Radar signals from the
same target arrive at the receiver via different signal propagation paths, resulting in multiple detections
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of one target. The multiple detection mechanism in the OTHR system brings benefits and problems
to tracking algorithms at the same time. Compared with traditional radars, the primary advantage
of OTHR is that it can detect and track over-the-horizon targets, generating a great deal of interest
in both military and civilian groups. Meanwhile, the main challenge in OTHR is multi-path signal
propagation, which requires the tracking algorithm to jointly handle the uncertainties from both the
measurement origin and the measurement path.

There are two widely used methods for multiple detection pattern, one is the measurement
partition method [8] and the other is the random matrix method [9,10]. In the OTHR system, only
the measurement partition method is suitable. The random matrix assumes extended target or
group targets, however, the target in the OTHR system is still treated as a point target. In OTHR
systems, the measurement partition method is utilized to generate possible target detection sets,
where each set contains one or some of the selected measurements. Then, non-repeated paths are
assigned to the measurements of a set to take the measurement path uncertainty into consideration.
The path combined measurement sets are used by trackers for both true track confirmation and
target state estimatation through various data association structures. Multiple detection structures
outperform conventional single detection algorithms when applied to OTHR systems due to the
sufficient utilization of target information from different paths. However, the complexity of the
multiple detection structure exponentially increases in accordance with increases in the numbers of
tracks and possible sets of target generated measurements. More serious is the path uncertainty of
each measurement aggravates the computational burden.

Recently, several algorithms have been designed that explicitly consider the multiple-detection
pattern. Such an algorithm of multiple detection JPDA (MD-JPDA) is proposed in [11] for OTHR-based
multitarget tracking. In MD-JPDA, the association probabilities are calculated based on the probabilistic
inference made on no measurement or a measurement set originated from a target. In [12], the authors
proposed a track splitting structure for multitarget tracking in the OTHR system, and the proposed
algorithm had a better true track confirmation performance than other approaches. In multiple
detection multitarget tracking, the above-mentioned two algorithms are cumbersome due to numerous
joint events used to assign measurements to tracks. In [13], a multiple detection multiple hypothesis
tracker (MD-MHT) is proposed, in which the structure of the track hypothesis tree is very complex.
More recent algorithms include the multiple detection probability hypothesis density filter [14,15] and
multi-path Bernoulli filter [16,17], which are designed for the OTHR system based on random finite
set theory.

Due to the high computational cost, traditional joint data association structures are suitable for
scenarios in which only a small number of targets cross each other. To jointly consider the uncertainties
in the measurement origin and measurement path of the OTHR-based system, this paper proposes
multi-path linear multitarget integrated probabilistic data association (MP-LM-IPDA) for efficient
multitarget tracking. The linear multitarget integrated probabilistic data association (LM-IPDA)
algorithm [18,19] is designed for multitarget tracking, which bypasses joint measurement-to-track
assignments utilizing the modulated clutter measurement density. The modulated clutter measurement
density evaluates the possibility that a measurement is generated from clutter as well as other potential
targets. Thus, the data association events are generated for each track separately as if they are for
single target tracking, and the computational complexity linearly increases with the numbers of tracks
and measurements. LM-IPDA is the basis of our proposed algorithm.

In MP-LM-IPDA, measurement cells consisting of one or more selected measurements are
generated after the measurement selection step. The path pattern, which is a set of ordered
measurement paths, is combined with a measurement cell to ensure that each measurement of the
measurement cell has a path indicating the model from which a measurement is generated. Then,
the modulated clutter measurement density for each path pattern combined measurement cell is
evaluated. Multiple detection joint data association structures generate joint track-to-measurement cell
assignments among tracks and measurement cells. However, the MP-LM-IPDA algorithm generates
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track-to-measurement cell associations for a track τ separately by considering the influence of other
tracks on track τ through the measurement cell in terms of the modulated clutter measurement density.
The modulated clutter measurement density is used in the track update step with a little addition of
computational cost.

As contributions of this paper, the following statement can be made: In the OTHR system,
the multiple detection issue with the measurement path uncertainties significantly aggravate
computational loads of multitarget tracking algorithms. This is due to the fact that the path uncertainty
and the multiple detection issue lead to a three dimensional data association. To realize an efficient
tracker for this special tracking system, the multi-path version of the LM-IPDA algorithm is proposed
in this paper. Almost every multitarget tracking algorithm for OTHR employs a certain form of
approximation to reduce or limit the number of track-to-measurement association events or hypotheses.
However, the MP-LM-IPDA algorithm entirely bypasses the explicit joint track-to-measurement
assignment step. Without joint track-to-measurement assignments, each track of MP-LM-IPDA is
propagated using a multi-path single target tracking structure with the modulated clutter measurement
density. The algorithm proposed in this paper is different from MD-LM-IPDA proposed in [20],
which only considers the measurement origin uncertainty for multiple detection multitarget tracking
using a standard radar. This paper is an extension of the conference paper [21], which is the forerunner
that demonstrates the most important results of MP-LM-IPDA.

This paper is organized as follows. Section 2 discusses the assumptions and models for target
tracking using OTHR. The detailed derivations of MP-LM-IPDA are demonstrated in Section 3.
Simulation studies and conclusions are given in Sections 4 and 5, respectively.

2. Assumptions and Models

The assumptions and models used for target tracking in the OTHR system are provided in this
section. Targets are located at a very long range that is beyond the horizon of the radar system.
To detect potential targets, the high-frequency wave first reflects through ionospheric layers and then
reaches the targets. Different ionospheric layers create multi-paths for the detecting signal, resulting
in transmitted signals scattered by the target that arrive at the receiver via different propagation
paths. A target can be detected through each path with a certain detection probability (usually less
than unity), which leads to multiple detections from one target. In multitarget tracking using OTHR,
the correspondence among the target, the measurement origin and the signal propagation path is
unknown to the tracker.

Key assumptions: (1) The Earth is assumed as flat, i.e., the planar OTHR measurement geometry
of Figure 1 is used in this paper. In this planar geometry, the target motion is in the same plane.
The planar OTHR geometry can be easily changed to a spherical geometry [22] with modifications
considering the curvature of the Earth. (2) The heights of the ionospheric layers are assumed to be
known and fixed, i.e., each ionospheric layer has a constant layer hight. In [23–25], the ionospheric
heights are assumed to be unknown and then jointly estimated with the target state. (3) For simplicity,
there are two ionospheric layers considered in this paper, i.e., E-layer and F-layer, with constant heights
vertical heights of hE and hF, respectively. These key assumptions are widely used in the researches
for the OTHR system [6,11,14].

2.1. Target Motion Model

The target sate xτ
k discussed in this paper consists of the ground range, ground range rate, bearing

and bearing rate xτ
k =

[
ρ, ρ̇, b, ḃ

]T . The target motion is confined to the X-Y plane, as shown in Figure 1.
The discrete-time form nearly constant velocity (NCV) model is used for target state propagation,
which is

xτ
k+1 = Fxτ

k + vτ
k , (1)
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where xτ
k+1 is the state of target τ at scan k + 1, F is the propagation matrix, and vτ

k represents the
process noise between scan k and k + 1, which has a zero-mean Gaussian pdf with covariance Q.
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Figure 1. Geometry of the planar OTHR system.

2.2. Measurement Generation Model

In Figure 1, the receiver is at the origin, with the transmitter situated on the X-axis at a distance d
from it. The Z-axis is the vertical direction. The distance between the target and the receiver is defined
as the ground range ρ, and the angle with respect to boresight is defined as the bearing b. Idealized
reflecting ionospheric layers are present at heights ht (of the transmit layer) and hr (of the receive
layer). Half of the slant ranges from the target to the receiver and from the transmitter to the target are
denoted by r1 and r2, respectively.

A two-layer signal propagation geometry is depicted in Figure 2, in which the E-layer and F-layer
are assumed to have vertical heights of hE and hF, respectively. With two ionospheric layers (E and F),
there are four possible signal propagation paths, as shown in Table 1.

F-layer

E-layer

Transmitter Receiver Target

Figure 2. Radar signal propagates through different ionospheric layers.

Table 1. Signal propagation paths.

Path Model Transmit Layer ht Receive Layer hr

1 EE hE hE
2 EF hE hF
3 FE hF hE
4 FF hF hF
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In Table 1, there are four possible signal propagation paths, each represented by a
known measurement generation function. Denoting zi (k) as the ith measurement at scan k,
the path-dependent measurement generation model can be written as

zi (k) =



hEE (xk) + wEE,k
hEF (xk) + wEF,k
hFE (xk) + wFE,k
hFF (xk) + wFF,k

clutter

model EE, Path 1
model EF, Path 2
model FE, Path 3
model FF, Path 4

otherwise,

(2)

where htr (t, r ∈ {E, F}) represents the measurement generation function with respect to a specific
signal propagation path with transmit layer t and receive layer r. The measurement noise terms
wtr,k are mutually independent, follow a zero-mean Gaussian distribution with covariance R, and are
uncorrelated with vτ

k .
The measurement from the OTHR consists of the slant range, the rate of change of the slant range,

and the apparent azimuth
[
Rg, Rr, Az

]
[6], calculated by

Rg = r1 + r2

Rr =
ρ̇
4

{
ρ
r1
+ η

r2

}
Az = sin−1 {ρ sin (b)

/
(2r1)

}
,

(3)

where

r1 = r1 (ρ, hr)
∆
=
√(

ρ
/

2
)2

+ h2
r

r2 = r2 (ρ, b, hr)
∆
=
√(

ρ
/

2
)2 − dρ sin (b)

/
2 +

(
d
/

2
)2

+ h2
t

η = ρ− d sin (b).

(4)

For simplicity, the detection probabilities of different paths are set to be the same, given by

PDEE = PDEF = PDFE = PDFF = PD. (5)

Clutter measurements also arise at each scan. The uniform/Poisson model, consisting of a uniform
spatial pdf for each clutter measurement and a Poisson probability mass function for the number of
clutter measurements, is used to generate clutter measurements in this paper. Clutter measurements
are assumed to be independent of each other.

At each scan, each track utilizes the gating method [26] to select measurements. The set of all
selected measurements at scan k is represented by Zk and consists of both target measurements and
clutter measurements, given by

Zk = {zi (k)}
mk
i=1 , (6)

where mk is the total number of selected measurements at scan k.
The cumulative set of measurements collected from the initial to current scan is Zk, given by

Zk = {Z1, Z2, . . . , Zk} . (7)

At each scan, the measurements selected by a track are used to estimate the target state and
evaluate the target existence probability under the multi-path pattern.
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3. Multi-Path Linear Multitarget Integrated Probabilistic Data Association

This section introduces the detailed derivations of MP-LM-IPDA. We begin in Section 3.1 with a
single target tracking structure for the OTHR system called multi-path integrated probabilistic data
association (MP-IPDA). Then, the notion of the modulated clutter measurement density is introduced,
which is the core of applying the single target tracking structure to the multitarget tracking. Finally,
we obtain MP-LM-IPDA, where evaluations of data associations and target existences are based on the
modulated clutter measurement density in place of the pure clutter measurement density.

3.1. Track State Expression

During tracking, tracks are initialized and updated using the selected measurements.
These selected measurements can be target detections or false alarms, which leads to tracks that
may track targets (which are treated as true tracks) or clutter (which are treated as false tracks). The
true or false status of a track is evaluated according to the tracking performance, which is mainly based
on the data association results. In this paper, the track state at scan k consists of the trajectory state and
the target existence event. The track state is expressed by a hybrid pdf, given as

p
[

xτ
k , χτ

k |Z
k
]
= p

(
xτ

k |χ
τ
k , Zk

)
P
(

χτ
k |Z

k
)

, (8)

where the trajectory state is defined only for a given target existence.
In this manuscript, p

(
xτ

k |χ
τ
k , Zk

)
and P

(
χτ

k |Z
k
)

are propagated according to the following
predict-update manner [27]:

p
(

xτ
k−1|χ

τ
k−1, Zk−1

)
P
(

χτ
k−1|Z

k−1
) →

p
(

xτ
k |χ

τ
k , Zk−1

)
P
(

χτ
k |Z

k−1
) → data

association
→

p
(

xτ
k |χ

τ
k , Zk

)
P
(

χτ
k |Z

k
) (9)

The main difference among various tracking algorithms lies in the data association
mechanism, i.e., how to build measurement-to-track relations and how to evaluate corresponding
association probabilities.

3.2. Measurement Utilization

Since the multi-path problem is considered in this paper, the measurements selected by a track
are first used to generate measurement cells, and then these measurement cells are combined with
suitable paths. The path combined measurement cells are used for the data association to update the
track state. Each measurement cell is a set of possible target detections, consisting of one or some
of the selected measurements. Combining a measurement cell with a proper path ensures that each
measurement in the measurement cell has a non-repeated measurement generation model.

For example, assume that four measurements {z1 (k) , z2 (k) , z3 (k) , z4 (k)} are selected by track τ

and that there are four paths, as shown in Table 1. Then, measurement cells are generated as follows:

• Assuming that only one of the selected measurements is generated by the target (ϕτ = 1,
i.e., each measurement cell consists of one of the selected measurements), and the corresponding
measurement cells are

z1,1 (k) = {z1 (k)} , z1,2 (k) = {z2 (k)} , z1,3 (k) = {z3 (k)} , z1,4 (k) = {z4 (k)} .

then the measurement cell-related parameters are c1 = C4
1 = 4 and n1 ∈ {1, 2, 3, 4} in this case.
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• Assuming that two of the selected measurements are generated by the target (ϕτ = 2, i.e., each
measurement cell consists of two of the selected measurements), and the corresponding
measurement cells are

z2,1 (k) = {z1 (k) , z2 (k)} , z2,2 (k) = {z1 (k) , z3 (k)} , z2,3 (k) = {z1 (k) , z4 (k)} ,
z2,4 (k) = {z2 (k) , z3 (k)} , z2,5 (k) = {z2 (k) , z4 (k)} , z2,6 (k) = {z3 (k) , z4 (k)} .

then c2 = C4
2 = 6 and n2 ∈ {1, 2, 3, 4, 5, 6}.

• Assuming that three of the selected measurements are generated by the target (ϕτ = 3, i.e., each
measurement cell consists of three of the selected measurements), and the corresponding
measurement cells are

z3,1 (k) = {z1 (k) , z2 (k) , z3 (k)} , z3,2 (k) = {z1 (k) , z2 (k) , z4 (k)} ,
z3,3 (k) = {z1 (k) , z3 (k) , z4 (k)} , z3,4 (k) = {z2 (k) , z3 (k) , z4 (k)} .

then c3 = C4
3 = 4 and n3 ∈ {1, 2, 3, 4}.

• Assuming that all of the selected measurements are generated by the target (ϕτ = 4,
i.e., a measurement cell consists of all of the selected measurements), and the corresponding
measurement cell is

z4,1 (k) = {z1 (k) , z2 (k) , z3 (k) , z4 (k)}.

then c4 = C4
4 = 1 and n4 ∈ {1}. After the measurement cell generation, a total of 15 measurement

cells are formed using the selected measurements under different assumptions on the number of
target-originated measurements.

In the OTHR system, different signal propagating paths correspond to different measurement
generation models. Therefore, the measurement cell path pattern should be assigned to each
measurement cell to utilize the measurement cells. The measurement cell path pattern contains
the path for each measurement of a specified measurement cell. Denote by

Aj

(
zϕτ ,nϕτ

(k)
)

, j =
{

1, 2, . . . ,
L!

(L− ϕτ)!

}
(10)

the measurement cell zϕτ ,nϕτ
(k) that is generated by a path pattern Aj

(
zϕτ ,nϕτ

(k)
)

. Aj

(
zϕτ ,nϕτ

(k)
)

represents that zϕ,nϕ (k) originates from one of L!
(L−ϕ)! possible path pattern allocations. For example,

suppose that L = 4 for the measurement cell z2,2 (k) = {z1 (k) , z3 (k)}, then the the set of possible
measurement cell path patterns is

{(1, 2) , (2, 1) , (1, 3) , (3, 1) , (1, 4) , (4, 1) , (2, 3) , (3, 2) , (2, 4) , (4, 2) , (3, 4) , (4, 3)} . (11)

For example, the measurement cell path pattern can be chosen as A5 (z2,2 (k)) = (1, 4),
representing that measurement z1 (k) is generated through path 1 and measurement z3 (k) is generated
through path 4.

In MP-LM-IPDA, the likelihoods of the path combined measurement cells are used for calculating
the modulated clutter measurement density. The truncated pdf of zϕτ ,nϕτ

(k) through path pattern

Aj

(
zϕτ ,nϕτ

(k)
)

is restricted inside the validation gate of track τ, satisfying

p
(〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉
|χτ

k , Zk−1
)
=

N
(

zϕτ ,nϕτ
(k) |ζAj(zϕτ ,nϕτ (k))

, SAj(zϕτ ,nϕτ (k))

)
(PG)

ϕτ
. (12)
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In Equation (12), the Gaussian pdf is used for measurement cell zϕτ ,nϕτ
(k) allocated with the

measurement cell path pattern Aj

(
zϕτ ,nϕτ

(k)
)

. PG is the gating probability of a single detection
through a path. ζAj(zϕτ ,nϕτ (k))

represents the measurement prediction based on the track state

prediction with respect to the measurement cell path pattern Aj

(
zϕτ ,nϕτ

(k)
)

. SAj

(
zϕτ ,nϕτ

(k)
)

is
the corresponding measurement cell innovation covariance with respect to measurement cell path
pattern Aj

(
zϕτ ,nϕτ

(k)
)

. The details of calculating the parameters used in Equation (12) can be found
in [6,7].

3.3. MP-IPDA

The single target tracking structure of MP-IPDA is used for the track update in MP-LM-IPDA.
The probabilities of data associations and target existence for the measurement update step of MP-IPDA
are developed in this section. The obtained expressions of MP-IPDA are straightforward modifications
of IPDA [28], with differences arising from the multi-path pattern leading to a non-homogeneous
clutter environment.

For an established track τ, the number of path pattern combined measurement cells is M. A total
of M + 1 possible data association events are considered for the track, such that one of the path
pattern combined measurement cells is from the potential target or all the path pattern combined
measurement cells are from clutter. The a posteriori track state estimate under each data association
event is generated, along with the corresponding data association probability. The contribution of each
path pattern combined measurement cell to the overall a posteriori track state estimate is weighted
according to the data association probability.

The a posteriori probability that zϕτ ,nϕτ
(k) is generated by target τ through path pattern

Aj

(
zϕτ ,nϕτ

(k)
)

is given by

βτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

=P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

|χτ
k , Zk

)

=

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k |Z

k
)

P
(
χτ

k |Zk
) .

(13)

Similarly, the a posteriori probability that all the measurements are from clutter given target τ

exists is calculated by

βτ
k,0 = P

(
χτ

k,0|χ
τ
k , Zk

)
=

P
(

χτ
k,0, χτ

k |Z
k
)

P
(
χτ

k |Zk
) . (14)

The numerator of Equation (13) is written out explicitly, using Bayes’ formula, as

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k |Z

k
)

= c−1
k p

(
Zk|χτ

k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
, χτ

k , Zk−1
)

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

|χτ
k , Zk−1

)
ψ̄

, (15)

where ck is a normalization constant.
The joint density of measurement set Zk, given that measurement cell zϕτ ,nϕτ

(k) is generated

by target τ through path pattern Aj

(
zϕτ ,nϕτ

(k)
)

and all other measurements in Zk are clutter
measurements, is the product of probability density functions of the path pattern combined
measurement cells and clutter measurements, which is
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p
(

Zk|χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k , Zk−1

)
= p

(〈
zϕτ ,nϕτ

(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉
|χτ

k , Zk−1
)

pc
k

(
Zk|χτ

k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
, χτ

k , Zk−1
)

,
(16)

where p
(〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉
|χτ

k , Zk−1
)

is given in Equation (12).

The clutter likelihood pc
k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
, given that all the measurements of Zk are clutter,

satisfies the non-homogeneous Poisson distribution [29], given by

pc
k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
= µF (mk)

mk

∏
i=1

ρτ
zi(k)

λ
, (17)

where λ =
∫

V ρk,zdz is the mean number of non-homogeneous clutter measurements in the validation

gate with volume V. The probability density of observation zi (k) is ρτ
zi(k)

/
λ, and the probability of

observing mk measurements is µF (mk) =
λmk
mk ! e−λ, which follows a Poisson distribution.

Therefore, pc
k

(
Zk|χτ

k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
, χτ

k , Zk−1
)

in Equation (16) can be calculated based

on Equation (17) by eliminating the measurements in zϕτ ,nϕτ
(k) from Zk, given by

pc
k

(
Zk|χτ

k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
, χτ

k , Zk−1
)
= µF (mk − ϕτ) ∏

∀zi(k)/∈zϕτ ,nϕτ (k)

ρτ
zi(k)

λ
. (18)

The a priori probability P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

|χτ
k , Zk−1

)
in Equation (15) satisfies

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

|χτ
k , Zk−1

)
= L!

ϕτ !(L−ϕτ)!
(PDPG)

ϕτ (1− PDPG)
L−ϕτ ϕτ !(mk−ϕτ)!

mk !
(L−ϕτ)!

L! ,
(19)

which consists of detecting and selecting ϕτ measurements with a specific path.
In Equation (15), ψ̄ is the notation for P

(
χτ

k |Z
k−1
)

, which is the predicted probability of target
existence and is calculated by

P
(

χτ
k |Z

k−1
)
= a11P

(
χτ

k−1|Z
k−1
)
+ a21P

(
χ̄τ

k−1|Z
k−1
)

, (20)

where P
(

χτ
k−1|Z

k−1
)

and P
(

χ̄τ
k−1|Z

k−1
)

are the updated probabilities of target existence and target
non-existence at scan k− 1, respectively. a11 and a21 are the transition probabilities that describe the
change of existence state between scans, defined as

a11 = P
(
χτ

k |χ
τ
k−1
)

, (21)

a21 = P
(
χτ

k |χ̄
τ
k−1
)

. (22)

The target existence and non-existence probabilities satisfy

P
(

χτ
k |Z

l
)
+ P

(
χ̄τ

k |Z
l
)
= 1, (l ∈ {k− 1, k}). (23)

Combining Equations (16), (19) and (20) into Equation (15) yields

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k |Z

k
)

.
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Using the theorem of total probability, we have

P
(

χτ
k,0|Z

k
)
+

ϕτ,max

∑
ϕτ=1

cϕτ

∑
nϕτ=1

∑
j

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k |Z

k
)
= 1, (24)

in which the event
{

χτ
k,0

}
(no measurement is originated from target τ) is the union of event

{
χτ

k,0, χτ
k

}
(no measurement is originated from target τ and target τ exists) and event

{
χτ

k,0, χ̄τ
k

}
(no measurement

originates from target τ and target τ does not exist). Thus, the probability of
{

χτ
k,0

}
is

P
(

χτ
k,0|Z

k
)
= P

(
χτ

k,0, χτ
k |Z

k
)
+ P

(
χτ

k,0, χ̄τ
k |Z

k
)

. (25)

P
(

χτ
k,0, χτ

k |Z
k
)

in Equation (25) is calculated by

P
(

χτ
k,0, χτ

k |Z
k
)
=c−1

k pc
k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
P
(

χτ
k,0|χ

τ
k , Zk−1

)
ψ̄

=c−1
k pc

k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
(1− Pτ

Dec) ψ̄

=c−1
k

e−λ

mk!

mk

∏
i=1

ρτ
zi(k)

(1− Pτ
Dec) ψ̄,

(26)

where Equation (17) is used for pc
k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
, and Pτ

Dec is the probability that there is at least
one target τ generated measurement among the mk gated measurements for the multi-path pattern
such that

Pτ
Dec =

L

∑
ϕτ=1

Pτ
DGϕτ

=
L

∑
ϕτ=1

L!(PDPG)
ϕτ (1− PDPG)

L−ϕτ

ϕτ ! (L− ϕτ)!
. (27)

Similar to Equation (26), P
(

χτ
k,0, χ̄τ

k |Z
k
)

in Equation (25) is

P
(

χτ
k,0, χ̄τ

k |Z
k
)
=c−1

k pc
k

(
Zk|χτ

k,0, χ̄τ
k , Zk−1

)
P
(

χτ
k,0|χ̄

τ
k , Zk−1

)
P
(

χ̄τ
k |Z

k−1
)

=c−1
k

e−λ

mk!

mk

∏
i=1

ρτ
k,zi

(1− ψ̄) .
(28)

P
(

χτ
k,0|Z

k
)

is obtained by substituting Equations (26) and (28) into Equation (25).
Through Equation (24), the normalization constant ck used in the calculations can be obtained by

ck =
e−λ

mk!

mk

∏
i=1

ρτ
k,zi

(1− (1−Λτ
k ) ψ̄) , (29)

in which Λτ
k is the measurement likelihood ratio, defined as

Λτ
k

∆
= 1− Pτ

Dec +
ϕτ,max

∑
ϕτ=1

cϕτ

∑
nϕτ=1

∑
j

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

ρτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

(PDPG)
ϕτ (1− PDPG)

L−ϕτ , (30)

where pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

is defined in Equation (12), and ρτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

is calculated by

ρτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

= ∏
∀zi(k)∈zϕτ ,nϕτ (k)

ρτ
zi(k)

, (31)
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where ρτ
zi(k)

= ρ, ∀zi (k) ∈ zϕτ ,nϕτ
(k) for independent clutter measurements.

P
(

χτ
k |Z

k
)

, which is the denominator of Equations (13) and (14), satisfies

P
(

χτ
k |Z

k
)
= P

(
χτ

k,0, χτ
k |Z

k
)
+

ϕτ,max

∑
ϕτ=1

cϕτ

∑
nϕτ=1

∑
j

P
(

χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k |Z

k
)

. (32)

The probability of target existence (PTE) is updated by Equation (32) with Equation (30), given by

P
(

χτ
k |Z

k
)
=

Λτ
k P
(

χτ
k |Z

k−1
)

1−
(
1−Λτ

k
)

P
(
χτ

k |Zk−1
) , (33)

where P
(

χτ
k |Z

k−1
)

is calculated by (20).
The data association probabilities of Equations (13) and (14) are finally obtained as

βτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

=
(PDPG)

ϕτ (1− PDPG)
L−ϕτ

Λτ
k

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∏
∀zi(k)∈zϕτ ,nϕτ (k)

ρτ
k,zi(k)

(34)

and

βτ
k,0 =

1− Pτ
Dec

Λτ
k

, (35)

respectively.

3.4. Modulated Clutter Measurement Density for the Path Pattern Combined Measurement Cell

In the MP-LM-IPDA algorithm, the modulated clutter measurement density forms the basis
of constructing the computationally efficient multitarget tracking algorithm from the single target
tracking structure, but without enumerating the feasible joint events among tracks, measurements
and paths.

The modulated clutter measurement density is a modification of the pure environment clutter
density by taking into account the contribution of other potential targets on a path pattern combined
measurement cell. The extra calculation involved in the modulated clutter measurement density is
minor, resulting in the computational load of MP-LM-IPDA linearly increasing with the numbers of
tracks and path pattern combined measurement cells.

The modulated clutter measurement density for multi-path multitarget tracking with
non-homogeneous clutter is developed in this section, which is used to replace the non-homogeneous
clutter measurement density used in MP-IPDA.

Denote by Pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

the probability that target τ exists and measurement cell

zϕτ ,nϕτ
(k) is generated by target τ through path pattern Aj

(
zϕτ ,nϕτ

(k)
)

. In the LM framework,
the a priori data association probabilities are calculated by first assuming that there is only one
potential target. Since zϕτ ,nϕτ

(k) is one of the path pattern combined measurement cells that contain
ϕτ detections, Pτ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
is calculated by

Pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∆
= P

(
χτ

k |Z
k−1
)

Pτ
DGϕτ

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

/
ρϕτ

∑
nϕτ

∑
j

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

/
ρϕτ

, (36)
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in which
pτ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

/
ρϕτ

∑
nϕτ

∑
j

pτ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

/
ρϕτ

is the ratio of exponential distances indicating the relative

closeness of zϕτ ,nϕτ
(k) with the specified path pattern Aj

(
zϕτ ,nϕτ

(k)
)

to the predicted measurement
of track τ among the measurement cells with ϕτ measurements through different path patterns.
pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

is the path pattern combined measurement cell likelihood defined in

Equation (12), and ρ denotes the pure environment clutter density.
For the measurement cell that contains only one measurement with a specified measurement path,

the probability Pτ
〈zi(k)|Aj(zi(k))〉 is

Pτ
〈zi(k)|Aj(zi(k))〉

∆
= P

(
χτ

k |Z
k−1
)

Pτ
DG1

pτ
〈zi(k)|Aj(zi(k))〉

/
ρ

∑
n1

∑
j

pτ
〈zi(k)|Aj(zi(k))〉

/
ρ

, (37)

which is a single detection version of Equation (36).
Assume that there are a total of T tracks under consideration in the environment at scan k.

The probability that the path pattern combined measurement cell
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

is not
generated by any other potential targets excluding target τ is defined by

Q0
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∆
= ∏
∀σ∈T\τ

∏
Θ

(
1− Pσ

〈zi(k)|Aj(zi(k))〉

)
. (38)

The influence on
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

from the other potential targets excluding target

τ represented in (38) is regarded as that of clutter by disassembling
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

into path combined measurement cells consisting of single measurements. In the above calculation,
Θ is notation for ∀

〈
zi (k) |Aj (zi (k))

〉
∈
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

, which represents utilizing
every single measurement in zϕτ ,nϕτ

(k) combined with the corresponding single measurement path

in Aj

(
zϕτ ,nϕτ

(k)
)

. For instance, 〈z2,2 (k) | (1, 4)〉, which, as mentioned in Section 3.2, should be
disassembled into 〈z1 (k) | (1)〉 and 〈z3 (k) | (4)〉 for the calculation of (38).

If both σ and τ are omitted from the set T, the expression of Equation (38) is changed to

Qσ
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∆
= ∏
∀w∈T\(τ,σ)

∏
Θ

(
1− Pw

〈zi(k)|Aj(zi(k))〉

)
=

Q0
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∏
Θ

(
1− Pσ

〈zi(k)|Aj(zi(k))〉

) . (39)

MP-LM-IPDA applies the single target tracking structure of MP-IPDA to multitarget tracking
with modulated clutter measurement densities accounting for other potential targets as well as clutter.
When associating

〈
zϕτ ,nϕτ

(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

to track τ in a multitarget tracking scenario, the

modulated clutter measurement density at
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

is represented by taking into
account the influence of pure clutter as well as other potential targets. This is written as
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ρτ
c,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

=ρϕτ Q0
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

+ ∑
∀σ∈T\τ

pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

Pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

Qσ
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

=Q0
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

ρϕτ + ∑
∀σ∈T\τ

pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

Pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∏
Θ

(
1− Pσ

〈zi(k)|Aj(zi(k))〉

)


∆
=Q0

τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

,

(40)

in which Equations (38) and (39) are used. ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

in (40) is defined as the modulated

clutter measurement density for
〈

zϕτ ,nϕτ
(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

, given as

ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∆
= ρϕτ + ∑

∀σ∈T\τ

pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

Pσ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

∏
Θ

(
1− Pσ

〈zi(k)|Aj(zi(k))〉

) . (41)

Each path pattern combined measurement cell has a unique ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, resulting in

a non-homogeneous clutter environment for the multitarget tracking.

3.5. MP-LM-IPDA

The calculations involved in the MP-LM-IPDA for multitarget tracking considering multi-path
patterns are introduced in this section.

The clutter likelihood function pc
k

(
zk|χτ

k,0, χτ
k , Zk−1

)
in Equation (17), which considers all the

obtained measurements in Zk as clutter, is changed to

pc
k

(
Zk|χτ

k,0, χτ
k , Zk−1

)
= µF (mk)

mk

∏
i=1

ρτ
c,zi(k)

λ
, (42)

where λ =
∫

V ρτ
c,zdz =

∫
V Q0

τ,zρ̃τ
k,zdz is the mean number of non-homogeneous clutter measurements

in the volume V of the surveillance region.
For multitarget tracking, the likelihood function p

(
Zk|χτ

k,zϕτ ,nϕτ
, χτ

k , Zk−1
)

in Equation (16) is

modified as

p
(

Zk|χτ
k,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

, χτ
k , Zk−1

)
= pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

Q0
τ,〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

e−λ

(mk−ϕτ)!
λmk−ϕτ ∏

∀zi /∈zϕτ ,nϕτ

ρτ
c,zi(k)

λ ,
(43)

where pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

is given in (12). Note that both Equations (42) and (43) reflect the

influence from other potential targets excluding target τ.
If Equations (42) and (43) are used in the derivation of MP-IPDA in place of Equations (17) and (18),

respectively, the following probabilities of data associations and target existence are obtained for
MP-LM-IPDA with consideration of other potential targets:
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βτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

=
(PDPG)

ϕτ (1− PDPG)
1−ϕτ

Λ̃τ
k

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

(44)

and

βτ
k,0 =

1− Pτ
Dec

Λ̃τ
k

(45)

with

Λ̃τ
k

∆
= 1− Pτ

Dec +
ϕτ,max

∑
ϕτ=1

cϕτ

∑
nϕτ=1

∑
j

pτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

(PDPG)
ϕτ (1− PDPG)

L−ϕτ , (46)

where ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

is the modulated clutter measurement density at zϕτ ,nϕτ
(k) with

path pattern Aj

(
zϕτ ,nϕτ

(k)
)

, and Pτ
Dec is the probability that there is at least one target generated

measurement in Zk, as defined in (27).
The probability of target existence, in MP-LM-IPDA, is updated by

P
(

χτ
k |Z

k
)
=

Λ̃τ
k P
(

χτ
k |Z

k−1
)

1−
(
1− Λ̃τ

k
)

P
(
χτ

k |Zk−1
) . (47)

One can apply the extended Kalman filter (EKF) to obtain state estimates for each of the data
association events [6,7], and a Gaussian mixture is used to yield the track state based on all of the data
association events [20].

Compared to MP-IPDA, MP-LM-IPDA utilizes the modulated clutter measurement density
instead of the pure clutter measurement density to evaluate the data association probabilities
and the probability of target existence. Thus, the single target tracking structure is maintained
for multitarget tracking with only a minimal additional computational load required by the
calculation of ρ̃τ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
. The use of ρ̃τ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
in MP-LM-IPDA, instead

of ρτ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

as in a conventional tracker like MP-IPDA, when updating track τ with〈
zϕτ ,nϕτ

(k) |Aj

(
zϕτ ,nϕτ

(k)
)〉

is the core of the proposed LM approach.
The following procedure (Algorithm 1) illustrates how to update a track in MP-LM-IPDA.
It is clear that the above procedure maintains the single target tracking structure without requiring

joint assignments among the tracks and measurement cells.
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Algorithm 1: MD-LM-IPDA Track Update Process
1: for each track τ find
2: The track state prediction p

(
xτ

k |χ
τ
k , Zk−1

)
and the probability of target existence

prediction P
(

χτ
k |Z

k−1
)

3: The measurement selection (the gating method), the measurement cell generation (the
measurement partition) and the path pattern combination

4: The modulated clutter measurement density ρ̃τ
〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉

for each path pattern

combined measurement cell
5: A posteriori data association probabilities βτ

〈zϕτ ,nϕτ (k)|Aj(zϕτ ,nϕτ (k))〉
in (44) and βτ

k,0 in (45)

6: The updated probability of target existence P
(

χτ
k |Z

k
)

in (47)

7: The updated track state p
(

xτ
k |χ

τ
k , Zk

)
generated by a Gaussian mixture based on all the

data association events
8: end for

4. Complexity Analyses

Multi-path multitarget tracking algorithms jointly assign measurements to tracks. A detailed
analysis of the complexity of joint measurements-to-track assignments is given in Section 3.3. A in [12].
As a result, the number of unique joint assignments is combinatorially increased with the number of
measurements and tracks. Multi-path multitarget tracking algorithms need to enumerate and evaluate
all the joint measurements-to-track assignments, which makes these algorithms hard to implement
even when there is just a small number of closely spaced targets.

The MP-LM-IPDA algorithm proposed in this paper works in a completely different way.
It reduces the computational load of multi-path multitarget tracking algorithms by entirely bypassing
the joint assignment process. Thus, each track in MP-LM-IPDA is propagated separately. The possibility
that a measurement is generated by other potential targets is evaluated in the modulated clutter
measurement density. Assume that there are a total of T tracks and M path pattern combined
measurement cells, the computational complexity of MP-LM-IPDA, in this case, is T ×M. In effect,
MP-LM-IPDA can be treated as a bank of coupled MP-IPDA filters, and the coupling is realized by the
modulated clutter measurement density.

5. Simulation

Two simulation scenarios were considered. Compared to Scenario 1, Scenario 2 considered more
targets and a higher clutter density environment. From the simulation results, MP-LM-IPDA provides
a satisfactory trade-off between the implementation complexity and the tracking performance.

The simulation studies were used to compare MP-LM-IPDA with MP-JIPDA [12] and single
path LM-IPDA (SP-LM-IPDA) with respect to the true track confirmation, the target state estimation
accuracy, and the computational efficiency in multitarget crossing environments with clutter. Note
that only one specific path (Path 1 with measurement model EE) is applied in SP-LM-IPDA, indicating
that there is at most one detection from a target at each scan.

5.1. Simulation Scenario 1

We modeled the target dynamics in the ground plane, as shown in Figure 1, using a nearly
constant velocity (NCV) model given by Equation (1). As shown in Figure 3, five targets occurred at
scan k = 1 and disappeared at scan k = 40. From scan k = 30 to scan k = 33, these five targets were
closely spaced, which increased the complexity of the multitarget data association. The initial target
states are given by
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Target 1 =
[

1055km 0.15km/s 0.09472rad 8.72665× 10−5rad/s
]

Target 2 =
[

1220km −0.14km/s 0.10432rad 7.72665× 10−5rad/s
]

Target 3 =
[

1270km −0.185km/s 0.16401rad −2.79865× 10−5rad/s
]

Target 4 =
[

1150km 0km/s 0.17201rad −4.45665× 10−5rad/s
]

Target 5 =
[

1030km 0.185km/s 0.16251rad −2.25665× 10−5rad/s
]

.

(48)
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Figure 3. Simulation Scenario 1.

The state propagation matrix F and the process noise covariance Q are

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (49)

with the time interval T = 20 s, and

Q = blockdiag

([
7.8× 10−1, 4.4× 10−4

4.4× 10−4, 1.3× 10−5

]
,

[
1.5× 10−12, 1.1× 10−13

1.1× 10−13, 1.1× 10−14

])
. (50)

Simulation data for 200 Monte Carlo runs were tested, with each run comprising 40 scans.
The measurement generation model is introduced in Section 2. The other parameters related to the
simulation environment are given in Table 2, in which some parameters are similar to those given
in [30,31].
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Table 2. Simulation parameters.

Parameter Value

Slant range size 1000–1400 km
Rate of slant range size 0.013889–0.22222 km/s
Apparent azimuth size 0.069813–0.17453 rad

Mean number of clutter per each scan 25
Transmitter to receiver distance d 100 km

Hight of layer E, hE 100 km
Hight of layer F, hF 260 km

Target detection probability in each path PD = 0.4
Gating probability PG = 0.997

Measurement noise covariance R diag (25 km2, 1 × 10−6 km2/s2, 9 × 10−6 rad2)

Two point differencing [26] was used for track initialization and each new born track was assigned
an initial PTE. The initial track state covariance is given by

P0|0 = diag
(

25km2, 1× 10−5km2/s2, 9× 10−6rad2, 6.4× 10−8rad2/s2
)

. (51)

The parameters used for the predicted probability of target existence calculation are

a11 = 0.98 and a21 = 0, (52)

in which a21 was set 0 since the track birth was considered by the track initialization process.
Different tracking algorithms were compared such that they had the same number of confirmed

false tracks controlled by utilizing different values of the “initial PTE” and maintaining the same value
of the “confirmation PTE”, as depicted in Table 3.

Table 3. Simulation parameters for different algorithms (Scenario 1).

SP-LM-IPDA MP-LM-IPDA MP-JIPDA

Initial PTE 0.000093 0.0009 0.0025
Confirmation PTE 0.98 0.98 0.98
Termination PTE 0.000093/5 0.0009/5 0.0025/5
Number of CFTs 5 5 5

The number of confirmed true tracks, the RMSE of the range, and the RMSE of the bearing are
shown in Figures 4–10. The detailed process of generating the number of confirmed true tracks is
introduced in [12,20].

The number of confirmed true tracks (CTTs) following each of the five targets for 200 runs
is depicted in Figure 4. This statistics parameter was used to record the number of tracks that
were following targets at each scan. In Figure 4, the perfect number of confirmed true tracks
(i.e., 100%) is 1000. In Figure 4, we can see that MP-LM-IPDA and MP-JIPDA had excellent true
track confirmation performances where the numbers of CTTs increased to the maximum value (1000)
after an initial period of time and then remained stable, even around the target intersect scans. In
the initial period of time, MP-JIPDA had more CTTs than MP-LM-IPDA, for example at scan k = 6,
the numbers of CTTs of MP-JIPDA and MP-LM-IPDA were 714 and 684, respectively. However, the
performance of SP-LM-IPDA was unsatisfactory in that the number of the CTTs grew slowly and
could not attain the maximum value. The performances shown in Figure 4 indicate the multi-path
pattern provided sufficient information on the true track confirmation, thus the multi-path algorithms
(MP-LM-IPDA and MP-JIPDA) achieved much better performances compared to the single path
algorithm (SP-LM-IPDA).
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Figure 4. Number of confirmed true tracks for all targets.

For the tracking accuracy evaluation, the RMSEs of Targets 1, 3 and 5 are demonstrated here.
Figures 5–10 depict the RMSEs for the range estimation and bearing estimation. All three algorithms
had the same trend in that the estimation errors decreased as the scan increased due to more target
state information being collected. In addition, the performances of MP-LM-IPDA and MP-JIPDA were
overall significantly better than that of SP-LM-IPDA because of sufficient handling of the multi-path
dependent target information. MP-LM-IPDA obtained almost the same track accuracy as MP-JIPDA.

The simulation was implemented on a 4.00 GHz, Intel Core i7 PC and run with MATLAB. The CPU
times per each Monte Carlo run of SP-LM-IPDA, MP-LM-IPDA and MP-JIPDA were 2.63 s, 6.46 s and
21.44 s, respectively.
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Figure 5. RMSE of range for Target 1.
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Figure 7. RMSE of range for Target 5.
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5.2. Simulation Scenario 2

Compared to Scenario 1, there were nine targets in this scenario, as shown in Figure 11. Moreover,
the mean number of clutter per each scan was increased to 50. Therefore, the tracking task was more
burdensome as there could be more measurements shared among tracks, which leads to heavier data
association complexity.

1000 1050 1100 1150 1200 1250 1300 1350 1400

rang/km

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

b
e

a
ri
n

g
/r

a
d

Target 1

Target 2

Target 3

Target 4

Target 5

Target 6

Target 7

Target 8

Target 9

Start point

Figure 11. Simulation Scenario 2.

These nine targets appeared at scan k = 1, disappeared at scan k = 40, and were most closely
spaced around scan k = 30. Trajectories of these nine targets are shown in Figure 11, and the initial
states of these nine targets are given by
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Target 1 =
[

1050km 0.15km/s 0.09472rad 8.72665× 10−5rad/s
]

Target 2 =
[

1165km −0.05km/s 0.09472rad 8.72665× 10−5rad/s
]

Target 3 =
[

1220km −0.14km/s 0.09992rad 7.72665× 10−5rad/s
]

Target 4 =
[

1250km −0.185km/s 0.11992rad 4.45665× 10−5rad/s
]

Target 5 =
[

1250km −0.19km/s 0.16201rad −2.72665× 10−5rad/s
]

Target 6 =
[

1165km −0.05km/s 0.17201rad −4.45665× 10−5rad/s
]

Target 7 =
[

1090km 0.085km/s 0.16951rad −4.23665× 10−5rad/s
]

Target 8 =
[

1030km 0.185km/s 0.15951rad −2.25665× 10−5rad/s
]

Target 9 =
[

1050km 0.15km/s 0.14701rad 0rad/s
]

(53)

SP-LM-IPDA, MP-LM-IPDA and MP-JIPDA were compared such that they had the same number
of confirmed false tracks by utilizing different values of the “initial PTE” and maintaining the same
value of the “confirmation PTE”, as depicted in Table 4. The values of other simulation parameters are
the same as those given in the Scenario 1.

Table 4. Simulation parameters for different algorithms (Scenario 2).

SP-LM-IPDA MP-LM-IPDA MP-JIPDA

Initial PTE 0.00008 0.0009 0.0027
Confirmation PTE 0.98 0.98 0.98
Termination PTE 0.00008/5 0.0009/5 0.0027/5
Number of CFTs 7 7 7

The number of the confirmed true tracks, the RMSE of the range, and the RMSE of the bearing are
shown in Figures 12–14.

The CTTs following each of the nine targets for 200 runs is depicted in Figure 12. In this
figure, the perfect number of CTTs (i.e., 100%) is 1800. In this figure, we can see that the increasing
rates of the CTTs of all the three algorithms were reduced compared to the performances shown
in Figure 4. This is because there were more clutter measurements. When the numbers of CTTs
of MP-LM-IPDA and MP-JIPDA reached a stable level, the maximum values were 1791 and 1796,
respectively. The performance of SP-LM-IPDA became even worse compared to MP-LM-IPDA and
MP-JIPDA in this scenario.

Here, we use the RMSE of Target 3 as an example to show the performance of the tracking
accuracy. As shown in Figures 13 and 14, the performances of MP-LM-IPDA and MP-JIPDA were
almost the same, and both MP-LM-IPDA and MP-JIPDA had much better performances compared to
SP-LM-IPDA.

In this scenario, the CPU times per each Monte Carlo run of SP-LM-IPDA, MP-LM-IPDA and
MP-JIPDA were 5.97 s, 17.72 s and 117.54 s, respectively.

Both simulations demonstrate the effectiveness of MP-LM-IPDA, which had comparably good
performances regarding true track confirmation and target state estimation, through just a fraction of
the execution time required for MP-JIPDA. In Scenario 1, MP-LM-IPDA costs 30% of the execution time
for MP-JIPDA. In Scenario 2, MP-LM-IPDA took only 15% of the execution time of MP-JIPDA. Thus,
MP-LM-IPDA was more efficient compared to MP-JIPDA, especially in the target crossing scenario
in a highly dense cluttered environment. Comparing the results of these two simulation scenarios,
more closely spaced targets in a highly dense cluttered environment created heavier data association
burden for all algorithms, resulting in the true track confirmation performance degeneration and the
computational time increase.
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Figure 12. Number of confirmed true tracks for all targets.
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Figure 13. RMSE of range for Target 3.
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Figure 14. RMSE of bearing for Target 3.

6. Conclusions

In this paper, MP-LM-IPDA is proposed to resolve the measurement origin uncertainty and the
measurement path uncertainty problems for multitarget tracking with the OTHR system. The main
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benefit of this approach is that it bypasses the generation of feasible joint events among the tracks,
the measurements, and the paths. The modulated clutter measurement density, specified by each path
pattern combined measurement cell, is introduced for multitarget tracking. Utilizing the modulated
clutter measurement density, each track propagates separately, i.e., the single target tracking structure
could be applied for multitarget tracking.

To demonstrate the superiority of the proposed algorithm, we compared it with the MP-JIPDA
algorithm and the SP-LM-IPDA algorithm in two multitarget tracking environments using OTHR
measurements. The simulation results indicate that this new algorithm provides a trade-off between
the computational complexity and the performance. Based on the results, the proposed algorithm
could be considered as one of the efficient approaches in multitarget tracking for OTHR, especially
tracking in complex situations where a large number of closely spaced targets are involved in highly
dense cluttered environments.

Our future work will consider time-varying ionospheric layer heights in MP-LM-IPDA, geared
toward making the proposed algorithm more suitable for practical use.

Author Contributions: Conceptualization, Y.H., Y.S. and T.L.S.; methodology, Y.H., Y.S. and T.L.S.; software,
Y.H.; validation, Y.H., Y.S. and T.L.S.; formal analysis, Y.H. and Y.S.; investigation, Y.H.; resources, Y.H. and
T.L.S.; data curation, Y.H.; writing—original draft preparation, Y.H.; writing—review and editing, Y.S. and T.L.S.;
visualization, Y.H., Y.S. and T.L.S.; supervision, Y.H., Y.S. and T.L.S.; project administration, T.L.S.; and funding
acquisition, T.L.S.

Funding: This work was supported by the Zhejiang Provincial Natural Science Foundation (grant number
LQ19F010009). This work was also supported by the LIG-Nex1 Co. through grant Y17-006.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PDA Probabilistic data association.
MD-JPDA Multiple detection joint probabilistic data association.
MHT Multiple hypothesis tracker.
LM-IPDA Linear multitarget integrated probabilistic data association.
PTE Probability of target existence.
OTHR Over-the-horizon-radar.
MP-JIPDA Multi-path joint integrated probabilistic data association.
MP-LM-IPDA Multi-path LM-IPDA.
NCV Nearly constant velocity.
CFT Confirmed false track.
CTTs Number of the confirmed true tracks.
RMSE Root mean square error.
Nomenclature
τ A track as well as the potential target being tracked by this track.
mk The number of selected measurements at scan k.
L The number of signal propagation paths in the OTHR system.
ϕτ,max The maximum number of target-originated measurements, which satisfies

ϕτ,max = min(L, mk).
ϕτ The number of target originated measurements ϕτ ∈ {1, 2, . . . , ϕτ,max}.
nϕτ A variable that enumerates the measurement cells under the condition that there are

ϕτ measurements generated by target τ, nϕτ ∈
{

1, 2, . . . , cϕτ

}
and cϕτ = Cmk

ϕτ
= mk !

ϕτ !(mk−ϕτ)!
.

zϕτ ,nϕτ
(k) A measurement cell specified by ϕτ and nϕτ at scan k.

χτ
k The event that target τ exists at scan k.
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