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Abstract: Recommendation systems are widely used in conjunction with many popular personalized
services, which enables people to find not only content items they are currently interested in,
but also those in which they might become interested. Many recommendation systems employ the
memory-based collaborative filtering (CF) method, which has been generally accepted as one of
consensus approaches. Despite the usefulness of the CF method for successful recommendation,
several limitations remain, such as sparsity and cold-start problems that degrade the performance of
CF systems in practice. To overcome these limitations, we propose a content-metadata-based approach
that uses content-metadata in an effective way. By complementarily combining content-metadata with
conventional user-content ratings and trust network information, our proposed approach remarkably
increases the amount of suggested content and accurately recommends a large number of additional
content items. Experimental results show a significant enhancement of performance, especially under
a sparse rating environment.
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1. Introduction

As recommendation services are widely used on-line, many recommendation techniques have
been developed. Memory-based collaborative filtering (CF) has been used most widely because it
indirectly predicts the rating score of content for an active user (without any direct calculation of
user-content similarity) based on a number of similar users (or similar content) [1,2]. Especially, with
the popularity of personalized devices such as smartphones and smart TV, coverage of CF services
has received more attention because many users desire not only content they are currently interested
in, but also more diverse content in which they might become interested. However, conventional
CF has often failed to reach its potential success level because it suffers from sparsity and cold-start
problems [3–6]. For example, the Epinions dataset (http://www.epinions.com), which is a publicly
available movie rating benchmark, has less than 2% user-movie pair ratings among all its rating pairs.
This inadequacy, commonly referred to as the sparsity problem, often causes CF to recommend few
content items to some users. Apart from the sparsity problem, the cold-start problem arises when a
new user or content is introduced into the CF system. In this situation, CF cannot generate useful
recommendation for the new user or content item due to the lack of their rating information.

Researchers have suggested many recommendation methods using the content-metadata [7–11]
that are typically provided in the form of textual descriptions of content features. Such recommendation
methods usually construct each user’s profile or predictor using metadata from all content the user
rates and then estimate the rating score of content using the user’s profile or predictor. Those methods
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are often incorporated into CF by first filling in all possible parts of the user-content rating matrix with
their estimates and then applying conventional CF using a less sparse matrix. However, these methods
are not particularly effective in practice because it is hard to construct a useful profile or predictor for
many users, especially when we consider the large number of users and the relatively small number of
content items that each user rates.

In this paper, we suggest a novel method of applying content-metadata to well-known item-based
CF methods, which effectively employs content-metadata for calculating inter-similarities among
content items and building a content link network. Based on this method, we propose several
content-metadata-based approaches for boosting conventional CF. Our approach significantly mitigates
the inadequacy of commonly used CF methods and also provides effective recommendations in a
large-scale and evolving environment where a large number of users and content items newly join
and the user-content rating matrix gradually becomes less sparse. Particularly, our approach makes
satisfactory recommendations even with a sparse user-content rating matrix because content-metadata
is used to complement conventional CF methods by calculating content similarities using its metadata,
even without user-content ratings. Furthermore, as user-content ratings are accumulated, our
approach consistently shows much better performance (relative to other existing methods) regarding
both coverage and precision.

This paper is organized as follows. The second section outlines related works and the background
to our approach and the third section describes selected content-metadata-based boosting approaches
for CF. The fourth section presents several experiments using a benchmark dataset in comparison with
conventional methods. The fifth section provides discussions about our proposed approaches and the
final section gives conclusions and guidance for our future work.

2. Background

2.1. Related Works

Typical CF methods predict rating scores of target contents for an active user based on preferences
(generally expressed by rating scores) of similar users (or contents). User-based CF finds other users
(neighbors) who have similar preferences to an active user and then predicts the active user’s preference
based on his/her neighbors’ preferences [12,13]. Item-based CF identifies rated content similar to
target content and predicts the rating score of the target content by using rating scores of similar
content [13,14]. To identify the set of content items similar to the target content, item-based CF estimates
inter-similarities among content items based on users’ ratings of each item.

The recommendation performance of traditional CF methods can be more enhanced by utilizing
trust networks of diverse users. Trust-based recommendation systems such as MoleTrust [15] and
TrustWalker [16] use trust network information to enhance the performance of traditional CF [17–19].
The idea of trust-based recommendation systems is not to search for similar users from a rating
score matrix (as conventional user-based CF does), but to search for trustable users by exploiting
trust propagation [20] over the trust network. The content appreciated by these trustable users is
recommended to an active user. Implementation of trust-based recommendation systems has revealed
that a well-constructed trust network that may be quite useful to improve precision can cause another
problem; the precision decreases drastically if the distance of trust propagation is increased above a
certain limit to enhance coverage.

Meanwhile, in order to more enhance recommendation performance of traditional CF methods, a
number of methods exploiting content-metadata have been proposed. Content-boosted CF [21–23]
suggests a framework for combining content-metadata and collaboration. Using content-metadata,
this approach constructs a content-based naïve Bayesian predictor (CBNB) that boosts a sparse rating
score matrix into a dense matrix. Such a content-based predictor helps overcome some drawbacks of
traditional CF by constructing a machine learning model using content-metadata. However, there
remain several problems that render this approach inadequate. First, it is challenging to learn effective



Symmetry 2019, 11, 561 3 of 18

content-based predictors for every active user; thus, this strategy may often be inapplicable in practice.
Second, in a large-scale and evolving recommendation environment, the content-based predictor has
to be relearned for each user and is then used frequently to reboost the rating score matrix, which may
lead to severe inefficiencies due to heavy computational overhead.

Content-metadata can be utilized in various ways. For example, Seo et al. [10] used
content-metadata to construct a k-partite graph on the basis of content-attributes such as content-actor,
content-director, content-genres, and so on. This method performs random walk propagation on the
k-partite graph for an active user and then discovers the hidden distribution of the user’s content
preference. A large-scale recommendation environment often suffers from low performance because
a limited number of content-attributes are used in nature and available in practice. Mittal et al. [11]
employed historical ratings along with user metadata, such as age, gender, occupation, and ethnicity,
to alleviate the cold-start problem. Different from conventional user-based CF, this approach redefines
the neighborhood based on user metadata so that more robust recommendations can be obtained.
However, the premise of this method is based on the existence of sufficient metadata for all users and
is thus impractical in a real environment; consequently, performance improvement is imperceptible in
many cases.

Finally, unlike traditional CF methods, model-based recommendation methods employed rating
scores to build a model using machine learning or data mining techniques. The well-known matrix
factorization techniques [24–28] are among the best model-based recommendation methods. They
predict the unobserved rating scores by decomposing the user-content matrix into the product of
two lower dimensionality rectangular matrices. To maximize the enhancement of performance, some
of them use Collaborative Topic Model (CTM) [24], Probabilistic Matrix Factorization (PMF) [25],
or Bayesian Probabilistic Matrix Factorization (BPMF) [26] models, and others use a novel BPMF
model fused with trust network information (called social relations) and content-metadata (called item
contents) (BPMFSRIC) [27]. The main drawback of those model-based recommendation methods is
high computational overhead that makes it impractical to relearn the model frequently, although an
incremental recommendation method is tried with implicit feedback for fast matrix factorization [29].

2.2. Using Content-Metadata for CF

Content-metadata, textual information that describes content features, has been used widely in
many information retrieval and extraction applications [21,30–32]. In our work, our key intuition is
that this content-metadata can be used effectively in a different way from existing methods to enhance
performance. Because content-metadata involves general information and key features of content, it can
be utilized to extract mutual relationships between the content. By applying the mutual relationships
effectively into existing CF methods, significant performance improvement can be achieved, especially
under a sparse rating environment.

In this subsection, we introduce two content representations constructed from content-metadata.
They are utilized in our recommendation methods that will be given in the next section.

2.2.1. Content-Metadata TF-IDF Vector

Content-metadata is given as a set of sentences (term sequence) describing content features. After
crawling content-metadata that is easily accessible on the web, we converted this content-metadata to
a TF-IDF (term frequency-inverse document frequency) vector whose component represents a TF-IDF
score for each term using general information retrieval techniques.

As shown in Figure 1, the content-metadata TF-IDF vector mvc of content item c corresponds to a
sequence of the weight value (TF-IDF score) Wc, termi of termi in content item c. TermFrequencyc(termi)

refers to the appearance frequency of term i in content item c, |C| is the total number of content items,
and |Ctermi | is the number of content items that contain termi in a collection.
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Figure 1. Content-metadata and its TF-IDF vector.

2.2.2. Content Link Network

We also built a content link network by extracting associative relationships between content items
using tree pattern expression (TPE)-based text mining process [33–35]. In this process, the content
link network was constructed by connecting content items whose metadata contains the same TPE
semantic patterns and significant terms. For example, if two content items share similar metadata
descriptions, containing many common terms and semantic structures, such as in “The Matrix” movie
series, these content items would be connected with each other in TPE-based text mining process.
Figure 2 describes a detailed pseudocode to construct the content link network using TPEMatcher [34],
a TPE-based pattern matching and mining tool.
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Figure 2. A pseudocode to construct a content link network using TPEMatcher.

In Figure 2, in order to link the contents Ci and C j, two descriptions, Desi and Des j, involved in the
content-metadata of Ci and C j, respectively, are matched by TPEMatcher to identify semantic similarities
between them. TPEMatcher first parses Desi and Des j using an NLP (natural language processing)
full parser. Then, parse trees of Desi are matched to parse trees of Des j by a tree pattern matching
algorithm [33,34]. If Desi and Des j are semantically similar, they may share similar grammatical
patterns and terms, which are effectively extracted by matching the parse trees of Desi and Des j in
TPEMatcher. Therefore, if Desi and Des j are matched by TPEMatcher, Ci and C j are linked. Finally,
by conducting the pattern matching for all content pairs, a content link network is constructed.

In the content link network, each content item is represented as a vertex and a connection between
two associated content items is represented as an edge. For example, as shown in Figure 3, we can
build a content link network and then find neighborhood content items (C3, C5, C78, C122, C123, C221)
of a content item C1, which are used to predict the rating score of C1 in Section 3.4.
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3. Metadata-Based Boosting Approaches

3.1. Motivation

While many well-known CF systems use a user-content rating matrix and/or trust network, our
approach exploits content-metadata effectively to provide more robust recommendation services.
Specifically, in our recommendation method, content-metadata was used to improve the process of
finding neighborhood content for a target content item in the context of item-based CF. Figure 4a
illustrates a typical problem that may occur in conventional CF methods; if sufficient rating scores
in the recommendation system do not exist, it is difficult to predict accurate rating scores for some
target contents. In order to overcome this problem, we exploited content-metadata with existing
user-content rating scores and trust networks to more accurately predict rating scores of the target
contents. Figure 4b describes our approach that boosts traditional CF methods effectively.
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As shown in Figure 4b, after building up two forms of content representation (TF-IDF vector
and content link network) as mentioned in Section 2.2, they are complementarily coupled with
traditional CF methods (using the existing user-content rating scores and trust network) for maximizing
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recommendation performance. Thus, we can expect to mitigate main problems caused by a lack of
the accumulated rating scores, such as an inaccurate prediction of rating scores and a decrease of the
number of predictable rating scores.

In this section, we developed several boosting approaches by incorporating the two
content-metadata-based representations into conventional CF methods in different ways as follows:
(i) Content and metadata-based CF (CMCF); (ii) the combined harmonic approach (CHA); (iii) the
priority-based harmonic approach (PHA); (iv) content link network-based CF (CNCF); (v) MoleTrust
combined with CNCF (MTCN); (vi) MoleTrust combined with CNCF and CMCF (MTCC);
(vii) generalized MTCC (GMTCC); (viii) CNCF combined with CHA (CNCHA); and (ix) CNCF
combined with PHA (CNPHA). These approaches combine content-metadata with traditional
item-based CF (termed content-based CF, CBCF) and/or a trust network-based CF (MoleTrust).
Figure 5 depicts our approaches, other existing CF methods, and their intersecting relationships.
The detailed methods of our boosting approaches are described in Sections 3.2–3.10.
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3.2. Content and Metadata-Based CF

CMCF uses content-metadata to complement the process of calculating inter-similarities between
content items in traditional CBCF. More concretely, if the number of co-raters for two content items i
and j is less than a threshold τ, then the content similarity (RSi, j) (based on user-content ratings) is
combined with the similarity (MSi, j), based on content-metadata. RSi, j is represented by the correlation
coefficient [36] between two co-rating scores of content items i and j, as shown in Figure 6, and MSi, j
is represented in the same way as RSi, j except for using TF-IDF vectors of the two content items,
as shown in Figure 7.
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MSi, j and RSi, j are combined in Equation (1), where n is the number of co-raters for content items
i and j and where τ is a threshold value that is the maximum number of co-raters that allows RSi, j to
be combined with MSi, j. From Equation (1), if n is lower than τ, then RSi, j is combined with MSi, j to a
degree equal to the difference between threshold τ and n.

w∗i, j =

 n ∗ RSi, j+(τ−n) ∗ MSi, j
τ , n < τ,

RSi, j , otherwise
(1)

Based on the above similarity w∗i, j between content items i and j, the rating score ra,i
(CMCF) for active

user a and content item i is predicted as in Equation (2), where N is a set of content items rated by
active user a and where ra, j is the rating score of active user a for content item j.

ra,i
(CMCF) =

1∑
j∈N w∗i, j

∑
j∈N s.t. W∗i, j>0

w∗i, j ra, j (2)

From Equation (1) and Equation (2), if n is zero, then CMCF reduces to metadata-based CF (MBCF)
and if n ≥ τ, then it reduces to CBCF.

3.3. Combined Harmonic Approach

CHA combines the well-known MoleTrust algorithm with our CMCF in a complementary fashion.
The MoleTrust rating score ra,i

(MT) is given in Equation (3), where Ui is a set of users who rated content
item i and Linkedd(a, u ) returns whether active user a and user u are linked to each other (True = 1 or
False = 0) within the depth d in trust network.
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ra,i
(MT) = ra +

∑
u∈Ui

Linkedd(a, u ) ∗ (ru,i − ru)∑
u∈Ui

Linkedd( a, u )
(3)

The CHA rating score ra,i
(CHA) is calculated as in Equation (4), where n1 =

∑
u∈Ui

Linkedd( a, u ), n2 is

the number of content items used to calculate ra,i
(CMCF), and α is a correction factor that compensates

for the scale difference between n1 and n2. In this way, CHA can apply the two rating scores of CMCF
and MoleTrust more reliably.

ra,i
(CHA) =

α·n1·ra,i
(MT) + n2·ra,i

(CMCF)

α·n1 + n2
(4)

3.4. Priority-Based Harmonic Approach

PHA combines three rating scores by giving priorities in the order of CBCF first, MoleTrust second,
and MBCF last. Equation (5) describes how to combine three rating scores, where ra,i

(CB) is the rating
score predicted by CBCF, ra,i

(MT) is the rating score by MoleTrust, ra,i
(MB) is the rating score by MBCF,

n1 is the number of content items used to calculate ra,i
(CB), and n2 is the number (= n1 in Equation (4))

of the active user’s friends used to calculate ra,i
(MT). The threshold value τ1 is the maximum value of n1

that allows ra,i
(CB) to be combined with ra,i

(MT) and ra,i
(MB) and the threshold value τ2 is the maximum

value of n2 that allows ra,i
(MT) to be combined with ra,i

(MB).

ra,i
(PHA) =


1
τ1

(
n1ra,i

(CB) + (τ1 − n1)
n2ra,i

(MT)+(τ2−n2)ra,i
(MB)

τ2

)
, n1 < τ1 and n2 < τ2,

n1ra,i
(CB)+(τ1−n1)ra,i

(MT)

τ1
, n1 < τ1 and n2 ≥ τ2,

ra,i
(CB), otherwise

(5)

3.5. Content Link Network-Based CF

CNCF predicts the rating score using a number of content items linked to the target content by
the breadth-first search of the content link network. As shown in Figure 8, if the searching depth is set
to 1 in the content link network for a target content item i, then the linked content items (3, 78, 123, 221)
are found from the list of content items rated by an active user. By increasing the searching depth,
CNCF can recommend more target content items because it uses more (indirectly) linked content items,
possibly at the expense of accuracy.
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After finding the linked content items in the content link network, the CNCF rating score ra,i
(CNCF)

is calculated as in Equation (6), where N is a set of content items rated by an active user a and
Linkedd(i, j) returns whether content items i and j are linked to each other (True = 1 or False = 0)
within depth d in the content link network.

ra,i
(CNCF) =

∑
j∈N Linkedd(i , j ) ∗ ra, j∑

j∈N Linkedd( i, j )
(6)

3.6. Combining MoleTrust with CNCF

MTCN combines the rating score of MoleTrust with CNCF. The MTCN rating score ra,i
(MTCN) is

calculated as in Equation (7), where ra,i
(MT) is the rating score predicted by MoleTrust, n1 is the number

of the active user’s friends used to calculate ra,i
(MT), and n2 (= the denominator

∑
j∈N

Linkedd( i, j ) of

Equation (6)) is the number of content items (used to calculate ra,i
(CNCF)) rated by an active user and

linked to the target content in the content link network.

ra,i
(MTCN) =

n1ra,i
(MT) + n2 ra,i

(CNCF)

n1 + n2
(7)

3.7. Combining MoleTrust with CNCF and CMCF

MTCC combines the rating score of MoleTrust with CNCF or CMCF. Equation (8) describes how
to combine the MoleTrust rating score ra,i

(MT) with the CNCF rating score ra,i
(CNCF) or the CMCF rating

score ra,i
(CMCF). In Equation (8), n1 is the number of the active user’s friends used to calculate ra,i

(MT)

and n2 is the number of content items that are used to calculate ra,i
(CNCF) or ra,i

(CMCF). More specifically,
if there exists some (active user’s) rated content linked to the target content in the content link network
of CNCF, n2 is the total number of those content items and the binary value b is set to 1. Otherwise,
n2 is the number of content items used to calculate ra,i

(CMCF) and b is set to 0. Accordingly, MTCC tries
to combine MoleTrust with CNCF first and if this process fails, MTCC combines MoleTrust with CMCF.

ra,i
(MTCC) =

n1ra,i
(MT) + n2

(
bra,i

(CNCF) + (1− b)ra,i
(CMCF)

)
n1 + n2

(8)

3.8. Generalized MTCC

GMTCC is a more generalized version of MTCC. Equation (9) describes an intermediate rating
score ra,i

(GCM) by combining the CNCF rating score ra,i
(CNCF) and the CMCF rating score ra,i

(CMCF).
In Equation (9), n is the number (= n2 in Equation (7)) of the (active user’s) rated content items linked to
the target content in the content link network of CNCF and τ0 is a threshold value that is the maximum
value of n that allows ra,i

(CNCF) to be combined with ra,i
(CMCF).

ra,i
(GCM) =

 nra,i
(CNCF)+(τ0−n)ra,i

(CMCF)

τ0
, n < τ0,

ra,i
(CNCF), otherwise

(9)

GMTCC combines the rating score of MoleTrust with the above ra,i
(GCM) and its rating score ra,i

(GMTCC)

is calculated as in Equation (10), where n1 is the number of the active user’s friends used to calculate
ra,i

(MT) and n2 is the number of content items used to calculate ra,i
(GCM).

ra,i
(GMTCC) =

n1ra,i
(MT) + n2ra,i

(GCM)

n1 + n2
(10)
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3.9. Combining CNCF with CHA

CNCHA combines the rating score of CNCF with CHA (in Section 3.3), and its rating score
ra,i

(CNCHA) is calculated as in Equation (11), where n is the number (= n2 in Equation (7)) of content
items used to calculate ra,i

(CNCF) and where τ0 is a threshold value that is the maximum value of n
that allows ra,i

(CNCF) to be combined with ra,i
(CHA).

ra,i
(CNCHA) =

 n ra,i
(CNCF)+(τ0−n)ra,i

(CHA)

τ0
, n < τ0,

ra,i
(CNCF), otherwise

(11)

3.10. Combining CNCF with PHA

CNPHA combines the rating score of CNCF with PHA (in Section 3.4) and its rating score
ra,i

(CNPHA) is calculated as in Equation (12), where n is the number (= n2 in Equation (7)) of content
items used to calculate ra,i

(CNCF) and where τ0 is a threshold value that is the maximum value of n
that allows ra,i

(CNCF) to be combined with ra,i
(PHA).

ra,i
(CNPHA) =

 n ra,i
(CNCF)+(τ0−n)ra,i

(PHA)

τ0
, n < τ0,

ra,i
(CNCF), otherwise

(12)

4. Experiment

4.1. Experimental Configuration

We collected a large amount of user-movie ratings (in the form of a Likert scale, 1–5) and users’
trust network information from Epinions.com and we additionally crawled movie metadata from the
web. The collected dataset consisted of 91,735 users, 611,741 trust links between users, 26,527 movie
content items along with their metadata, and 170,797 user-content ratings. We also assembled a content
link network by extracting 39,959 content-to-content relationships by the text mining process described
in Section 2.2.2. The user-content rating matrix was very sparse (the mean number of ratings for each
content item was close to 5) and its total sparsity was approximately 99%.

In order to evaluate the performance of all the recommendation methods, our experiments were
conducted by 5-fold cross validation. Specifically, we used 80% of all the user-content rating scores as a
training dataset and the remaining 20% as a test dataset. For each of the real user-content rating scores in
the test dataset, we predicted their rating scores by the recommendation methods. Finally, we measured
the overall recommendation performance of each method from all the predicted rating scores and
the real user-content rating scores. To provide performance measures in our experiment, we used
the precision (in terms of the normalized inverse root mean squared error), the coverage (the ratio
of predictable rating scores), and the F-measure (the harmonic mean of precision and coverage) [37]
as detailed in Section 4.1.1–4.1.3. By implementing our proposed methods and also all the existing
methods, we evaluated our content-metadata-based approaches in comparison with three existing CF
methods (conventional content-based CF (CBCF), MoleTrust with depth 2, and content-boosted CF
(CBNB)) and three model-based recommendation methods (PMF, BPMF, and BPMFSRIC).

Meanwhile, our experiments were designed in two ways. In the first method, we randomly
selected 80% of all user-content ratings and used them to predict the remaining 20%. In the second
method, we measured the performance by gradually increasing the portion size of user-content ratings
from 20% to 80% to predict the remaining 20%. In our approaches, we set parameters as τ = 50, α = 20,
d = 2, τ0 = 30, τ1 = 20, and τ2 = 50 by finding (sub)optimal values through local-searching of the space
of those parameters with multiple random retrials.
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4.1.1. Precision

Representing precision, the root mean squared error (RMSE) between the real rating score and the
predicted score is defined in Equation (13), where ri is the predicted rating score, ri

∗ is the real rating
score, and N is the total number of real rating scores that are predictable.

RMSE =

√∑N
i=1(ri − ri∗)

2

N
(13)

After computing the RMSE, we converted the RMSE to precision by Equation (14), in which MaxError
represents the maximum error range of the rating score (the Likert scale, 1–5, is used for the rating;
thus, MaxError is 4).

Precision = 1−
RMSE

MaxError
(14)

4.1.2. Coverage

Generally, CF often fails to be successful because the coverage is substantially degraded by the
sparsity of the rating score dataset. Therefore, it is necessary to measure the coverage of the CF method
to characterize the practical usefulness of the recommendation service. Coverage means how much
the portion of content items can be a target of recommendation on average. In Equation (15), coverage
is obtained by dividing the number of predictable rating scores by the number of all possible rating
scores (M is the number of all users).

Coverage =

∑M
a =1 the number of predictable content items for user a

M × the number of content items
(15)

4.1.3. F-Measure

To evaluate the overall performance of the CF methods, we used the F-measure, that is, the harmonic
mean of precision and coverage as shown in Equation (16). This measure, which represents a single
metric of the effectiveness of the CF method, is bound by 0 and 1.

F−Measure =
2 × Precision × Coverage

Precision + Coverage
(16)

4.2. Experimental Results

4.2.1. Overall Performance

Figure 9 shows the precision performances of our recommendation methods and the existing
methods. In this figure, our methods show overall better precision than existing methods (particularly
CBNB and CBCF). Specifically, MoleTrust shows the best precision, 0.7460 among the existing methods,
but our method, MTCN, outperforms all the existing methods with the highest precision, 0.7541.
Moreover, the experimental results indicate that exploiting neighbor users’ preference information
(of trust network) along with user-content rating scores can improve the precision effectively. A more
notable fact is that combining content-metadata with a trust network complementarily can contribute
considerably to boosting the precision of recommendation.
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recommended by conventional methods. 
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The coverage performances of the recommendation methods are shown in Figure 10. Most of our
methods show dramatically improved coverage performance when compared to the existing methods.
Especially, CHA, MTCC, GMTCC, CNCHA, and CNPHA show excellent coverage performance over
0.8, which is a notable result when considering the coverage performance, about 0.7 of MoleTrust and
CBNB. Specifically, MTCC and CNCHA show the best coverage performance, 0.8954. It indicates that
our methods increased the number of predictable user-content ratings considerably by combining
content-metadata and trust network. It is because content-metadata provides additional information
effectively to compute the rating scores of target contents, regardless of the amount of accumulated
user-content ratings in the recommendation system. On the other hand, CBCF and CNCF show the
worst coverage performances (0.4568 and 0.3796, respectively), even though they use content-metadata.
These results imply that using content-metadata complementarily along with other information such
as a trust network can contribute significantly to predicting more user-content ratings than using
content-metadata only.
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Finally, F-measure performances are shown in Figure 11. Our methods significantly improve
recommendation performance (except for CNCF) because their F-measure (and also coverage) is better
than that of other existing methods without any prominent degradation of precision. When compared
to MoleTrust, which has the best performance among the existing methods, our best methods, MTCC
and CNCHA, improve recommendation performance by 17.17%. More specifically, MTCC, GMTCC,
CNCHA, and CHA all show very good performance over 0.8, that is, over 43% higher than CBCF,
and even CMCF shows much better performance than its most comparable method, CBNB, which
also uses content-metadata without any trust network information. These results indicate that our
methods can make effective use of content-metadata to improve the recommendation effectiveness by
recommending much more useful content items that cannot be recommended by conventional methods.
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From the detailed analysis of the experimental dataset, we explain these results as follows:
(i) Conventional CBCF methods cannot effectively recommend many content items that have few ratings
because such content items’ similarities may be insignificant and (ii) our approach can recommend
such content items well by complementing the conventional CBCF method with content-metadata
effectively, as explained in detail in Section 5.

4.2.2. Performance over Size of Rating Data

In this experiment, we measure the performance incrementally by gradually increasing the
(randomly selected) portion size of the complete set of user-content rating scores. We configured the
experiment with accumulation ratios of user-content rating scores as 20%, 40%, 60%, and 80% (from
high sparsity to relatively low sparsity).

As shown in Figure 12, all recommendation methods show a gradual increase in precision as the size
of the user-content rating set increases. Relative to the existing methods, our content-metadata-based
boosting approaches show almost the same or a slightly higher level of precision on average. In terms
of coverage and F-measure, our methods all outperform the existing methods for all the sizes of
user-content rating data. Specifically, MTCC and CNCHA show the highest performance and CHA also
shows much higher performance than the existing methods for all the sizes of rating data. Particularly,
the outperformance of our methods is more highlighted when the rating data is very sparse.
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Therefore, it is easily confirmed that the performances of conventional methods are largely
influenced by the amount of accumulated user-content rating scores, while our proposed approaches are
much less vulnerable to the sparsity of user-content ratings. In other words, our content-metadata-based
approaches can enable a recommendation system to predict rating scores for much more content
items effectively under a sparse rating environment. The main reason for such results is that our
approach makes efficient use of content-metadata available online to supplement sparse rating data.
When considering challenges in the effective prediction of the rating score in the initial phase of
recommendation service due to the lack of user-content ratings, these experimental results confirm the
strong practical potential of our approach in many recommendation services.

4.2.3. Comparison with Model-Based Recommendation Methods

Finally, we compared our selected approaches with several model-based recommendation methods
(PMF, BPMF, and BPMFSRIC) that are known to show the best precision in many recommendation tasks.
Overall, as shown in Table 1, our approaches are not worse than those methods even when they all
use both trust network information and content-metadata. Especially, MTCC shows the best precision
for all the sizes of rating data. It shows a consistently better performance even when compared to
BPMFSRIC, which boosts the performance of the Bayesian probabilistic matrix factorization method
by combining trust network and content-metadata. Moreover, GMTCC and CNCHA also show
comparable performance with the model-based methods. More specifically, GMTCC and CNCHA
show 0.7327 and 0.7315 precisions, respectively, on average, which are all not worse than the average
precisions of PMF, BPMFSR, and BPMFSRIC (0.6776, 0.7162, and 0.7315, respectively).

Table 1. Precision of our approach in comparison with model-based methods.

Methods
Size of Rating Data

20% 40% 60% 80%

PMF 0.6756 0.6730 0.6766 0.6851
BPMF 0.6927 0.7103 0.7264 0.7355

BPMFSRIC 0.7149 0.7311 0.7381 0.7420
MTCC 0.7214 0.7322 0.7384 0.7441

GMTCC 0.7191 0.7318 0.7379 0.7420
CNCHA 0.7182 0.7294 0.7363 0.7421

Those model-based methods use a pre-computed model to quickly recommend content
items and thus the model is learnt usually in a batch and offline manner. They can predict all
unobserved rating scores, which means their coverage rises up to 1.0 but the prediction of many
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unobserved ratings could be poor. In our experiment, all the predictions of unobserved ratings
are excluded when calculating precision due to the lack of real rating scores. Importantly, their
model-building process is computationally very expensive, with highly intensive memory usage,
which can make real-time and online recommendation difficult in practice. From that perspective, it is
meaningful that our memory-based approach is competitive with the ones of the best model-based
recommendation methods.

5. Discussion

In the baseline CF CBCF, the content-to-content similarity is calculated based on users’ co-rating
scores for two content items and thus is likely to be insignificant when the number of co-raters is
small, which results in inaccurate prediction of rating scores. To increase significance, CMCF uses not
only co-rating scores but also content-metadata whose similarity is weighted more highly as fewer
co-raters exist (as in Equation (1)) when calculating the content-to-content similarity. Overall, CMCF
shows satisfactory performance, similar to MoleTrust, and is apparently much less vulnerable to the
sparsity of rating data than MoleTrust. On the other hand, CNCF uses a content link network that is
constructed by connecting similar content items using text mining techniques for content-metadata
and this framework shows satisfactory precision but not satisfactory coverage at all because content
items are connected in a relatively limited way based on the semantic similarities of content.

To increase the strength and mitigate the limitations of each recommendation method, our
successful combinations are based on two basic principles that (i) the more precise method (a method
with higher precision in our experiment) is used in higher priority and/or (ii) the more reliable
prediction is preferably applied to calculate target rating scores. We assume that the reliability of the
prediction is proportional to the number of content rating scores referenced to calculate the rating
score of target content because satisfactory statistical reliability requires a sufficient amount of data.
As an example, the target rating scores of MTCN and GMTCC are reliability-weighted averages
of MoleTrust and CNCF predictions and MoleTrust and GCM predictions, respectively, to support
principle (ii). As another example, MTCC combines MoleTrust with the more precise CNCF method
first and then (if this method fails) the less precise CMCF to support principle (i). Other examples,
namely, CNCHA, CNPHA, and GCM (in Section 3.8) use a more precise method in terms of priority;
only if the prediction is not reliable enough, weighted averaging is performed with the less precise
prediction to support both principles (i) and (ii). As a special example that follows principle (ii) but
not principle (i), PHA combines three basic methods in different priorities from their precision-based
ones, and its performance enhancement is trivial. Similar to PHA and its variation CNPHA, other
combinations (that do not follow the above principles) do not show as strong a performance as expected
and thus are not presented in this paper.

To make traditional CF more successful, our approach uses content-metadata information for
calculating content-to-content similarity or constructing content link network, while MoleTrust
incorporates a user’s trust network information apart from user-content rating scores. By using two
kinds of information in a suitable combination with rating scores, the performance can be improved
considerably, which means that each piece of information can complement rating scores accurately;
more importantly, two kinds of information can complement each other successfully in our approach.

Although our methods show high precision and coverage performances especially in a very sparse
rating environment, they still cannot predict some user-content rating scores. It may be caused by a
basic characteristic of memory-based recommendation methods, such as conventional CF methods
whose predictions are based on the relationship information of users (or contents). This limitation will
be further addressed and overcome in our future studies.

6. Conclusions

In this paper, we proposed a content-metadata-based approach for boosting CF which might suffer
from deficiencies such as sparsity and cold-start problems in real recommendation systems. To mitigate



Symmetry 2019, 11, 561 16 of 18

such deficiencies, our proposed approach effectively uses content-metadata for complementing
conventional CF methods and also combines content-metadata with trust network information.
The experimental results indicate that our approach can provide a recommendation service with
high-level performance even under the environment of sparse user-content ratings by using pre-crawled
content-metadata in a supplementary way. More specifically, relative to existing methods, our approach
recommends much more content by relaxing the insufficiency problem of the rating dataset, which
considerably improves the recommendation performance, especially in terms of coverage. Furthermore,
by effectively combining content-metadata with trust network information, a large amount of additional
content can be recommended accurately; thus, our approach outperforms existing methods significantly
and consistently irrespective of the size of the rating dataset in terms of the F-measure. These results are
quite promising when considering that our approach showed significant improvement in comparison
with one of the best conventional methods (MoleTrust, using a very large users’ trust network) and
even CMCF performed at least as well as MoleTrust despite not using any trust network information.
We expect that our metadata-based approach can be effectively applied for a variety of CF services
with/without trust network to enhance the recommendation performance.

In the near future, we anticipate performing additional in-depth experiments by developing
multiple different approaches (with more sophisticated parameter settings) using other existing CF
methods, such as TrustWalker. Moreover, we will conduct comprehensive studies to further improve
our recommendation methods using state-of-the-art machine-learning techniques including deep
learning models.
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