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We show that the theory of operator quantum error correction can be naturally generalized by allowing
constraints not only on states but also on observables. The resulting theory describes the correction of
algebras of observables (and may therefore suitably be called ‘““operator algebra quantum error correc-
tion”). In particular, the approach provides a framework for the correction of hybrid quantum-classical
information and it does not require the state to be entirely in one of the corresponding subspaces or
subsystems. We discuss applications to quantum teleportation and to the study of information flows in

quantum interactions.
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Error correction methods are of crucial importance for
quantum computing and the so far most general frame-
work, called operator quantum error correction (OQEC)
[1,2], encompasses active error correction [3—7] (QEC),
together with the concepts of decoherence-free and noise-
less subspaces and subsystems [8—14]. The OQEC ap-
proach has enabled more efficient correction procedures
in active error correction [15-18], has led to improved
threshold results in fault tolerant quantum computing
[19], and has motivated the development of a structure
theory for passive error correction [20,21] which has re-
cently been used in quantum gravity [22-25].

In this Letter, we introduce a natural generalization of
this theory. To this end, we change the focus from that of
states to that of observables: conservation of a state by a
given noise model implies the conservation of all of its
observables, and is therefore a rather strong requirement.
This can be alleviated by specifically selecting only some
observables to be conserved. In this context it is natural to
consider algebras of observables [26]. Hence our codes
take the form of operator algebras that are closed under
Hermitian conjugation; that is, finite-dimensional
C*-algebras [27]. As a convenience, we shall simply refer
to such operator algebras as “‘algebras’. Correspondingly,
we refer to the new theory as “‘operator algebra quantum
error correction” (OAQEC). We present results that estab-
lish testable conditions for correctability in OAQEC. We
also discuss illustrative examples and consider applications
to quantum teleportation and to information flow in quan-
tum interactions. We shall present the proofs and more
examples in [28].

Noise models in quantum information are described by
channels, which are (in the Schrodinger picture) trace-
preserving (TP) and completely positive (CP) linear maps
& on mixed states, p, which are operators acting on a
Hilbert space FH . If p is a density matrix we can always
write p > E(p) = 3 ,E,pEL, where {E,} is a nonunique
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family of channel elements. The QEC framework ad-
dresses the question of whether a given subspace of states
P, called the code, can be corrected in the sense that
there exists a correction channel R such that R(E(p)) = p
for all states p in the subspace; that is, all p which satisfy
p = PpP. This amounts to asking for a subspace on which
€ has a left inverse that is a physical map. From QEC to
OQEC the scope of error correction is generalized by only
requiring the states of a subsystem to be conserved:
RE(p®T7)=p®7 for all p® 7 in the subspace. As
we will show, this amounts to the correction of special
types of algebras. In general, every algebra ‘A of observ-
ables induces a decomposition of the Hilbert space H into
H = o¢_,(A; ® B;) ® C. Here all operators in the alge-
bra have C in their kernel and act irreducibly on each A,
while acting trivially on the subsystem Bj. This means that
the algebra decomposes as

A =e!_[L(A)®1%] a0, (1)

where L£(A;) denotes the set of all operators on A, 15 is
the identity operator on By, and O is the zero operator on
C. From this perspective, we can view the QEC framework
as focusing on codes L£(A) ® 18 (or subspaces A) with
dimB = 1. Moreover, OQEC considers ‘“‘subsystem co-
des” encoded in algebras of the form L£(A) ® 17 for gen-
eral subsystems A and B. Classical information is captured
by the case in which dimA = 1: commutative algebras.
Thus, in addition to the classical, QEC and OQEC cases,
our new OAQEC approach also provides a framework for
the correction of hybrid quantum-classical information and
memory [29] exposed to external noise. In particular, this
includes cases in which separate (orthogonal) parcels of
quantum information are labeled by classical ““addresses”.

Let us discuss in more detail the motivation for consid-
ering algebras. We begin by recalling that a general ob-
servable is a positive operator-valued measure (POVM)
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X(A), where A C (), the set in which the observable X
takes values. For simplicity we consider observables with a
finite number of outcomes which can be characterized by a
family of positive operators {X,}. In the Heisenberg picture
an observable evolves according to the unital CP map £F
with elements E} instead of E . If for all values of the label
a there exists an operator Y, such that X, = £t(Y,,) then all
the statistical information about X has been conserved by £
since for any initial state p we have, Tr(pX,) =
Ti[pEt(Y,)] = Tr{E(p)Y,], the latter equality following
from the definition of E£T. In this case, to correct for the
errors induced by £ we need a channel R that maps each
X, to one of the operators Y, through Rt(X,) =Y, so
that (R o £)T(X,) = (€T o R1)(X,) = X,. In such a sce-
nario, we will say that X, is correctable for £ and con-
served by R o &. In particular, if X is a standard projective
measurement, and so X2 = X,, for all a, then the projectors
X, linearly span the algebra they generate. Hence, in this
case R o & conserves an entire commutative algebra.
Therefore, focusing on the correctability of sets of observ-
ables which have the structure of an algebra, apart from
allowing a complete characterization, is also sufficient for
the study of all the correctable projective observables.

One result of this Letter will be to show that there always
exists a single channel R correcting all projective observ-
ables correctable in the above sense. In fact, we study a
more general question: If we have some control on the
initial states, which is expected in a quantum computation,
then we can ask for an observable to be conserved only if
the state starts in a certain subspace PJH . That is, P(E1 o
RT)(X)P = PXP. We derive a necessary and sufficient
condition for an entire algebra of operators on PFH to be
simultaneously correctable in that sense. The resulting
theory contains OQEC and QEC in the special cases dis-
cussed above.

We remark that our approach differs from that of the
stabilizer formalism [7] where observables in the
Heisenberg picture are used as a way to characterize a
subspace of states. Our approach is closer in spirit to that
of [30]. The idea that observables naturally characterize
subsystems has also been exploited in [31].

Noiseless subsystems.—First we recall the definition of a
noiseless subsystem and we give an equivalent definition in
terms of the dual channel £T. Consider a decomposition of
a finite-dimensional Hilbert space H as H = (A® B) ®
C. We introduce the projector P onto the subspace A ® B.
By definition, A is a noiseless subsystem for £ if forall p €
L(A) and o € L(B) there exists 7 € L(B) such that
E(p® o) = p® . In terms of the dual channel £, the
subsystem A is noiseless for £ if and only if

PEIXeHP=X0o1 (2)

for all operators X acting on A. This is a consequence of the
noiseless subsystem characterization from [1] as can be
readily verified. In Eq. (2), the projectors P are needed

since the definition of the noiseless subsystem is only
concerned with what happens to states initially in the sub-
space A ® B. In general, an initial component outside this
space may, after evolution, disturb the otherwise noiseless
observables.

Conserved observables.—If PET(X,)P = PX,P for all
a we say that the observable X is conserved by & for states
in PH . More generally, let us say an algebra A is
conserved by & for states in PFH if every element of A
is conserved; that is,

PEY(X)P=PXP V X € A. (3)

Notice that Eq. (3) gives a generalization of noiseless
subsystems. Indeed, any subalgebra A of L(PJ) for
which all elements X € A satisfy Eq. (3) is a direct sum
of noiseless subsystems. This can be seen by first noting
that any algebra A has a decomposition of the form given
in Eq. (1), and then applying Eq. (2). In particular, focusing
on the so-called “‘simple” algebras L(A) ® 12 captures
standard noiseless subsystems as in Eq. (2).

The following theorem provides testable conditions that
characterize when an algebra is conserved on states in a
given subspace by a channel, strictly in terms of the
operation elements for the channel. The result comes as
an adaptation of results from [20]. It is a generalization
because, here, the algebra need not contain the projector P.

Theorem 1.—A subalgebra A of L(PH) is conserved
on states in PH by a channel £ if and only if [E,P, X] = 0
for all elements E, and all X € A.

Heuristically, an algebra supported on a subspace is
conserved by a channel precisely when elements of the
algebra commute with the generators of the noise, re-
stricted to the subspace.

Error correction of observables.—We say that an alge-
bra A is correctable for £ on states in the subspace PJH  if
there exists a channel R such that

PR &I (X)P=PXP V X € A. @)

This notion of correctability is more general than the one
addressed by the framework of OQEC. Indeed, OQEC
focuses on simple algebras, L(A) ® 18, Here, correctabil-
ity is defined for any finite-dimensional algebra. A further
generalization is that we do not require P to belong to the
algebra considered.

We now state the main result of the Letter, which gen-
eralizes the fundamental result for both QEC [4] and
OQEC [1,17]. It provides conditions for testing whether
an algebra is correctable for a given channel in terms of its
operation elements.

Theorem 2.—A subalgebra A of B(PJH ) is correctable
on PH for the channel & if and only if

[PEIE,P,X]=0 VXEA Vb (5)

100502-2



PRL 98, 100502 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 MARCH 2007

We present the complete proof in [28]. Note that the
operators {El E,} play a key role as in other error correc-
tion settings. The necessity of the condition follows di-
rectly from Theorem 1. The sufficiency is obtained by the
explicit construction of the correction channel R. An
important property of the channel R constructed in the
proof is that it corrects any channel whose elements are
linear combinations of the elements E,. Thus, as in the
original theory of error correction, we can in practice
neglect the channel £ and focus instead directly on the
discrete error operators E,,.

It is instructive to consider the special case of classical
OAQEC codes for P = 1. A classical channel has elements
E;; = /Pi;liXjl, where (p;;) forms a stochastic matrix
with transitional probabilities p;; from j to i. Thus,
E:rjEkl = Six/Pi;pali)Xll, and Theorem 2 shows that if
a = (a;) are the diagonal components of a classical (di-
agonal) observable, then « can be corrected if and only if
a; = ay for all k, j such that there is an i with p;; # 0 and
pir # 0. Heuristically, two states cannot be distinguished
from each other after the channel has acted precisely when
there is a nonzero probability of a transition from both
states to a common state.

Does OAQEC offer more powerful error correction pro-
cedures than OQEC? It is easy to see that if an algebra A
is correctable according to this scheme then each simple
sector L(A)® 1% is individually correctable through
OQEC (or QEC when dimB = 1). However, OAQEC co-
des have at least two attractive features: First, all simple
sectors can be corrected simultaneously by the same cor-
rection channel. Second, each simple sector can be cor-
rected even if the initial state is not entirely in the
corresponding subspace. In particular, the initial state
could be in a quantum superposition between various
sectors even though combined sectors may not be correct-
able in the traditional sense.

As an illustrative example, consider a 2-qubit system
exposed to noise inducing a phase flip error Z (a unitary
Pauli operator) with probability p on the first qubit and
probability 1 — p on the second qubit. The channel £ has
elements {,/pZ,, /1 — pZ,}. Let C, be the (subspace) code
with basis [0,) = [00), |1,) = |11) and C, the code with
basis |0, ) = [10), |1,) = [01). Each of C; and C,, or from
the OAQEC perspective the algebras £(C;) and L(C,), is
correctable individually for £. Indeed, those two codes are
stabilizer subspaces for Z;Z, and —Z;Z,, respectively.
However, the combined code C; ® C,, or equivalently
L(C, ®C,) = L(C*), is clearly not correctable for £ be-
cause £ is not a unitary operation. Nevertheless, the hybrid
bit-qubit OAQEC code A = L(C,) ® L(C,) is correctable
for £. This follows from Theorem 2 and the observation
that Z,Z, and 1 generate the algebra A’ = CP, @ CP,
where we have written P; for the projector onto C;. Indeed
A is the set of operators commuting with A’ (its com-
mutant). In this example one can check directly that R =

&Y is a channel that corrects A. As discussed above,
separate (orthogonal) codes that determine the simple
summands of an OAQEC code can all be corrected by
the same correction operation. In addition, the algebra
can be corrected without any restriction on the initial state
of the two separate qubits.

Application: Noisy quantum teleportation.—In the stan-
dard picture for quantum teleportation [32], Alice can send
Bob an entire qubit by sending two classical bits, provided
they share a maximally entangled pair of qubits initially.
Consider a pair of qubits in the maximally entangled state
ly) = % (100) + |11)). We assume that Alice and Bob each
possess one qubit of this pair. Consider also the unitary
Pauli operators {U, = 1, U; = X, U, = Y, U3 = Z}. In the
language of channels, teleportation can be viewed as the
channel £ that has for input the qubit |¢) to be teleported
and for output three qubits: two which represent the bits
Alice needs to send to Bob, and Bob’s qubit: E(|¢)¢]) =
133 lixile U;(14X)UT, where |i) forms an orthonor-
mal basis of the four-dimensional Hilbert space represent-
ing the 2 bits that Alice must send to Bob over a classical
channel. We can readily verify that Bob can indeed fully
correct the channel. The channel elements are of the form
E; o« |i) ® U;, and hence the condition of Theorem 2 is met
since EJE; = (illj)® Ul U; = 8,,U]U; = §;;1. Thus all
operators on the initial qubit can be corrected, and all the
information can be recovered. Note that even though the
operators E; map between two different spaces, the opera-
tors EZLE ; map the initial qubit space to itself. One can
teleport as many qubits as desired in parallel provided that
one starts with one shared entangled pair per qubit to be
teleported.

Consider now the case in which the classical step of the
teleportation process, when Alice transmits bits to Bob, is
implemented over a noisy classical channel. Let {U,},es
be a family of unitary operators in L(J) for some Hilbert
space JH . In the standard teleportation protocol, this is the
family of single qubit Pauli operators. Now suppose that a
noisy stochastic channel is applied on the classical bits |g),
g € S, that Alice must send to Bob with transition proba-
bilities p,,. Then one could ask, what information can be
recovered by Bob once he is in possession of all the data?
The overall channel is given by composing £ with the
classical channel. Thus, the error operators F,;; satisfy
thl x \/@lg><h||l> ® U[ = 5;,1\/[7_gh|g> ® Uh' It follows
that the commutant of the correctable algebra, which is
contained in L(H), has generators F ;MF onl =
NI Y ;[ U, We are only interested in the nonzero
generators; that is, those for which p,, # 0 and pgy # 0.
This condition means that classically, because of the noise,
we can no longer distinguish between the state /) and the
state |A'). Therefore, the commutant of the conserved
algebra has a generator Ug U,, for each pair of classical
states g, h that became indistinguishable under the noisy
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channel. In short, if Bob is not sure whether Alice’s clas-
sical message was g or h, then he can only completely
recover those properties of the quantum states that are
invariant under the transformations U;f U,. In particular,
this implies more general code algebras will be obtained.

Application:  Information flow in interactions.—
Consider the interaction U between a system S and an
apparatus A where the initial state of the apparatus is
known to be p,. Tracing out either over A or S after the
evolution yields, respectively, the channel Eg¢(pg) =
Try[U(ps ® ps)Ut]from S to S or Egx(ps) = Trs[U(ps ®
p4)UT] from S to A.

Using OAQEC we can determine what observables of
the system can be corrected, i.e., recovered, for either of
the two channels. The algebra A g4 preserved by gy, that
represents the information about S which is transferred to
A, can be computed to be the largest algebra of operators
commuting with the range of 5;5. Hence a direct conse-
quence of Theorem 2 is that in an open dynamics defined
by a channel &, full information about a projective observ-
able can escape the system if and only if it commutes with
all the operators in the range of the channel; that is, those
observables whose first moment is correctable for £. This is
a generalization of work in [33]. Furthermore, this method
characterizes those observables which are effectively du-
plicated; in other words, those whose information stayed in
S and also flowed to A. They form the algebra A s N
A ¢4, which is commutative. Those observables have been
nondestructively measured by the system A. This analysis
has implications for the theory of decoherence [34,35]: a
unique commutative algebra of observables emerges natu-
rally as characterizing the information which is shared
between the system and the environment after an interac-
tion. This suggests that the pointer observables should be
defined not just by their property of being stably encoded
in the system but also by the requirement that the informa-
tion they represent is transmitted to the environment. In
this sense there is no basis ambiguity [36] for the inter-
pretation of a unitary interaction as a measurement of the
system by the apparatus.

Outlook.—We have presented a generalization of the
theory of operator quantum error correction that allows
for the correction of an arbitrary algebra of operators. Our
main result gives a characterization of correctable codes in
this scheme. Proofs and more applications will be provided
in [28]. The recent experience with operator quantum error
correction suggests a reinvestigation of codes that have
appeared in the literature for possibly improved efficiency
or other applications enabled by this approach. We also
suggest that the applications to quantum teleportation and
information flow presented here warrant further investiga-
tion. Furthermore, we have here focused on algebras of
operators rather than general operator subspaces. It should
be most interesting to consider the possible conservation of
the statistics of general POVMs.
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