58 0

Hidden layer 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구

Title
Hidden layer 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구
Other Titles
A Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms
Author
이한승
Keywords
압축강도; 배합 인자; 딥 러닝; 히든 레이어; compressive strength; mixture factor; deep learning; hidden layer
Issue Date
2018-05
Publisher
한국건축시공학회
Citation
한국건축시공학회 학술발표대회 논문집, v. 18, No. 1, Page. 130-131
Abstract
The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were learned using the Deep Learning Algorithm to derive an estimated function model. The purpose of this study is to investigate the effect of the number of hidden layers on the prediction performance in the process of estimating the compressive strength for an arbitrary combination.
URI
http://kiss.kstudy.com/thesis/thesis-view.asp?key=3610653http://repository.hanyang.ac.kr/handle/20.500.11754/99065
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > ARCHITECTURE(건축학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE