376 0

Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation

Title
Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation
Author
유봉영
Keywords
Silicon-silicon oxide-indium tin oxide; heterojunction; Nickel chloride activation; Spray deposition; Active nickel-based catalyst; LAYERED DOUBLE HYDROXIDE; THIN-FILMS; SILICON PHOTOANODES; SI PHOTOANODE; SOLAR-CELLS; EVOLUTION; PERFORMANCE; OXYGEN; PHOTOELECTRODES; MORPHOLOGY
Issue Date
2017-05
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
ELECTROCHIMICA ACTA, v. 237, Page. 37-43
Abstract
Solar-driven water splitting with silicon photoelectrodes exhibiting high solar-to-fuel conversion efficiency is a promising way for producing hydrogen fuel in the future. In this study, a heterojunction photoanode was fabricated by the deposition of a thin indium tin oxide (ITO) layer on n-type silicon/native SiOx. A NiCl2-containing precursor was sprayed on the top of the photoanode, affording a NiO-Cl-OH catalyst; this NiO-Cl-OH catalyst was then activated to form an amorphous and porous NiOOH (a-NiOOH) catalyst, which exhibited enhanced performance. The fabricated Si/SiOx/ITO/a-NiOOH photoanode exhibited a low photocurrent onset potential of similar to 0.98 V vs. RHE, a high saturation photocurrent density of 36.98 mA/cm(2), a photocurrent density of 27.4 mA/cm(2) at the standard oxidation potential of water, and a photovoltage as high as 545 mV under a solar illumination of 100 mW/cm(2). The photocurrent marginally decreased after 30 h. These results suggested that such heterojunctions can replace homogeneous p-n junctions formed from Si doping for high photovoltage generation. In addition, porous a-NiOOH can improve the electrocatalytic performance of Si-based photoanodes. (C) 2017 Elsevier Ltd. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0013468617306291https://repository.hanyang.ac.kr/handle/20.500.11754/72057
ISSN
0013-4686; 1873-3859
DOI
10.1016/j.electacta.2017.03.146
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE