266 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author전형탁-
dc.date.accessioned2018-04-03T06:55:52Z-
dc.date.available2018-04-03T06:55:52Z-
dc.date.issued2014-08-
dc.identifier.citationCarbon, 2014, 75, P.209 - 216en_US
dc.identifier.issn0008-6223-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0008622314003121?via%3Dihub-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/56929-
dc.description.abstractResistive switching random access memory (RRAM) with oxygen ion drift under electric (E)-field has been intensively studied. However, the findings are insufficient because redox reaction by oxygen ion drift occurs beneath the top electrode, and it is difficult to analyze with a nondestructive method. Therefore, an effective method to circumvent this difficulty is suggested in this study with a Pt/Al 2 O 3 /TiO 2 /Pt device using a single layer graphene (SLG) top electrode. Based on results from spectroscopic analyses, the SLG serves as not only an interface free electrode, but also as a highly effective indicator for proving O - ion drift motion in response to the E-field in RRAM. The origin of asymmetric resistive switching is due to a redox reaction at the interface by oxygen ion drift. The endurance and operation-current distribution are significantly improved with increased thickness of the Al 2 O 3 insertion layer, which provides carrier tunneling barrier height. The resistance ratio of the high resistance state (HRS) to the low resistance state (LRS) is greater than one order of magnitude in a log scale within 1800 cycles. This result demonstrates that control of a localized charge tunneling barrier is a key factor for reliable resistive switching of the scaled-down RRAM.en_US
dc.description.sponsorshipThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2011-0015436). It was also supported by the Basic Science Program (NRF-2012R1A1A1005014) through the National Research Foundation (NRF) of MEST, Republic of Korea.en_US
dc.language.isoenen_US
dc.publisherAmerican Carbon Committeeen_US
dc.titleDetection of oxygen ion drift in Pt/Al2O3/TiO2/Pt RRAM using interface-free single-layer graphene electrodesen_US
dc.title.alternativeAl2O3en_US
dc.typeArticleen_US
dc.relation.volume75-
dc.identifier.doi10.1016/j.carbon.2014.03.055-
dc.relation.page209-216-
dc.relation.journalCARBON-
dc.contributor.googleauthorJeon, Heeyoung-
dc.contributor.googleauthorPark, Jingyu-
dc.contributor.googleauthorJang, Woochool-
dc.contributor.googleauthorKim, Hyunjung-
dc.contributor.googleauthorAhn, Seungbae-
dc.contributor.googleauthorJeon, Ki-Joon-
dc.contributor.googleauthorSeo, Hyungtak-
dc.contributor.googleauthorJeon, Hyeongtag-
dc.relation.code2014026858-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MATERIALS SCIENCE AND ENGINEERING-
dc.identifier.pidhjeon-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE