283 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이현규-
dc.date.accessioned2018-03-23T05:25:40Z-
dc.date.available2018-03-23T05:25:40Z-
dc.date.issued2013-09-
dc.identifier.citationPhysical Review D, 2013, 88(6), 062001en_US
dc.identifier.issn1550-7998-
dc.identifier.urihttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.062001-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/51269-
dc.description.abstractCompact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙?25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.en_US
dc.language.isoenen_US
dc.publisherThe American Physical Societyen_US
dc.subjectMASS-DISTRIBUTIONen_US
dc.subjectBLACK-HOLESen_US
dc.subjectTRANSIENTSen_US
dc.subjectINSPIRALSen_US
dc.subjectCOSMOLOGYen_US
dc.subjectPHYSICSen_US
dc.subjectSEARCHen_US
dc.titleParameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector networken_US
dc.typeArticleen_US
dc.relation.no6-
dc.relation.volume88-
dc.identifier.doi10.1103/PhysRevD.88.062001-
dc.relation.page62001-62001-
dc.relation.journalPHYSICAL REVIEW D-
dc.contributor.googleauthorAasi, J.-
dc.contributor.googleauthorAbadie, J.-
dc.contributor.googleauthorAbbott, B. P.-
dc.contributor.googleauthorAbbott, R.-
dc.contributor.googleauthorAbbott, T. D.-
dc.contributor.googleauthorAbernathy, M.-
dc.contributor.googleauthorAccadia, T.-
dc.contributor.googleauthorAcernese, F.-
dc.contributor.googleauthorAdams, C.-
dc.contributor.googleauthorLee, H. K.-
dc.relation.code2013011682-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF PHYSICS-
dc.identifier.pidhyunkyu-
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > PHYSICS(물리학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE