269 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김선정-
dc.date.accessioned2018-03-23T04:05:42Z-
dc.date.available2018-03-23T04:05:42Z-
dc.date.issued2014-04-
dc.identifier.citationARTIFICIAL ORGANS; DEC 2014, 38, 12, p1034-p1039en_US
dc.identifier.issn0160-564X-
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1111/aor.12300-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/51133-
dc.description.abstractResearch into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n=5), strips of polymers (3x20mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 +/- 875U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 +/- 1334U vs. 4318 +/- 691U, P0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes.en_US
dc.language.isoenen_US
dc.publisherWILEY-BLACKWELLen_US
dc.subjectRight ventricleen_US
dc.subjectTissue engineeringen_US
dc.subjectAnimal modelen_US
dc.subjectHeart failure approachesen_US
dc.subjectContractile polymersen_US
dc.titleElectrically Contractile Polymers Augment Right Ventricular Output in the Hearten_US
dc.typeArticleen_US
dc.relation.no12-
dc.relation.volume38-
dc.identifier.doi10.1111/aor.12300-
dc.relation.page1034-1039-
dc.relation.journalARTIFICIAL ORGANS-
dc.contributor.googleauthorRuhparwar, Arjang-
dc.contributor.googleauthorPiontek, Patricia-
dc.contributor.googleauthorUngerer, Matthias-
dc.contributor.googleauthorGhodsizad, Ali-
dc.contributor.googleauthorPartovi, Sasan-
dc.contributor.googleauthorSzabo, Gabor-
dc.contributor.googleauthorFarag, Mina-
dc.contributor.googleauthorKarck, Matthias-
dc.contributor.googleauthorForoughi, Javad-
dc.contributor.googleauthorKim, Seon Jeong-
dc.relation.code2014025599-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF ELECTRICAL AND BIOMEDICAL ENGINEERING-
dc.identifier.pidsjk-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE