284 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author선양국-
dc.date.accessioned2018-03-23T00:21:30Z-
dc.date.available2018-03-23T00:21:30Z-
dc.date.issued2013-09-
dc.identifier.citationEnergy & environmental science, 2013, 6(9), p.2609-2614en_US
dc.identifier.issn1754-5692-
dc.identifier.urihttp://pubs.rsc.org/en/Content/ArticleLanding/2013/EE/c3ee41960f#!divAbstract-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/50907-
dc.description.abstractIn this work we report the synthesis and the characterization of black anatase TiO2. We show that this material displays a nanostructured architecture, with an electro-conducting trivalent Ti. The presence of trivalent Ti in this structure narrows the inherent high band gap energy to a semiconductor level, reaching a value as low as 1.8 eV, resulting in the very high electrical conductivity of 8 × 10?2 S cm?1. These extraordinary electro-conducting physical properties ensure an ultra fast Li+ insertion into and extraction from the host structure of anatase TiO2 making it a unique, high rate electrode, delivering at a 100 C-rate (20 A g?1) a discharge capacity of 127 mA h (g-TiO2)?1 with approximately 86% retention during 100 charge?discharge cycles at 25 °C and approximately 84% retention at ?20 °C.en_US
dc.description.sponsorshipThis research was supported by the Basic Science ResearchProgram through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2011-0024683) and the National Research Foundation of Korea funded by the Korean government (MEST) (NRF-2009-C1AAA001-0093307). This work was also supported by the Human Resources Development program (No.20124010203310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectAnatase titaniaen_US
dc.subjectBand gap energyen_US
dc.subjectCharge-discharge cycleen_US
dc.subjectDischarge capacitiesen_US
dc.subjectHigh electrical conductivityen_US
dc.subjectHost structureen_US
dc.subjectNano-structureden_US
dc.subjectRechargeable lithium batteryen_US
dc.titleBlack anatase titania enabling ultra high cycling rates for rechargeable lithium batteriesen_US
dc.typeArticleen_US
dc.relation.volume6-
dc.identifier.doi10.1039/c3ee41960f-
dc.relation.page2609-2614-
dc.relation.journalENERGY & ENVIRONMENTAL SCIENCE-
dc.contributor.googleauthorMyung, Seung-Taek-
dc.contributor.googleauthorKikuchi, Masaru-
dc.contributor.googleauthorYashiro, Hitoshi-
dc.contributor.googleauthorKim, Sun-Jae-
dc.contributor.googleauthorSun, Yang-Kook-
dc.contributor.googleauthorScrosati, Bruno-
dc.contributor.googleauthorYoon, Chong Seung-
dc.relation.code2013009781-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ENERGY ENGINEERING-
dc.identifier.pidyksun-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE