42 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author정두석-
dc.date.accessioned2018-03-20T06:43:31Z-
dc.date.available2018-03-20T06:43:31Z-
dc.date.issued2014-05-
dc.identifier.citationAPPLIED SURFACE SCIENCE, 권: 301, 페이지: 451-455en_US
dc.identifier.issn0169-4332-
dc.identifier.issn1873-5584-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0169433214004024?via%3Dihub-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/49673-
dc.description.abstractHfO2 films were deposited by atomic layer deposition (ALD) using Hf[(C2H5)(CH3)N](4) and H2O2 at a temperature range of 175-325 degrees C. The growth per cycle of the HfO2 films decreased with increasing temperature up to 280 degrees C and then abruptly increased above 325 degrees C as a result of the thermal decomposition of the precursor. Although the HfO2 films grown with H2O2 exhibited slightly higher carbon contents than those grown with H2O, the leakage properties of the HfO2 films grown with H2O2 were superior to those of the HfO2 films grown with H2O. This is because the HfO2 films grown with H2O2 were fully oxidized as a result of the strong oxidation potential of H2O2. The use of the ALD process with H2O2 also revealed the conformal growth of HfO2 films on a SiO2 hole structure with an aspect ratio of similar to 15. This demonstrates that using the ALD process with H2O2 shows great promise for growing robust HfO2 films. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSen_US
dc.subjectAtomic layer depositionen_US
dc.subjectHfO2en_US
dc.subjectH2O2en_US
dc.titleAtomic layer deposition of HfO2 thin films using H2O2 as oxidanten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apsusc.2014.02.098-
dc.relation.journalAPPLIED SURFACE SCIENCE-
dc.contributor.googleauthorChoi, Min-Jung-
dc.contributor.googleauthorPark, Hyung-Ho-
dc.contributor.googleauthorJeong, Doo Seok-
dc.contributor.googleauthorKim, Jeong Hwan-
dc.contributor.googleauthorKim, Jin-Sang-
dc.contributor.googleauthorKim, Seong Keun-
dc.relation.code2014025359-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MATERIALS SCIENCE AND ENGINEERING-
dc.identifier.piddooseokj-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE