56 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author정두석-
dc.date.accessioned2018-03-19T04:48:50Z-
dc.date.available2018-03-19T04:48:50Z-
dc.date.issued2014-09-
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS, SEP 10 2014, 24(34), p5316-p5339, 24p.en_US
dc.identifier.issn1616-301X-
dc.identifier.issn1616-3028-
dc.identifier.urihttp://onlinelibrary.wiley.com/doi/10.1002/adfm.201303520/abstract;jsessionid=F12C59490EE9940B3F77CE23320E8AD1.f03t02-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/48856-
dc.description.abstractIssues in the circuitry, integration, and material properties of the two-dimensional (2D) and three-dimensional (3D) crossbar array (CBA)-type resistance switching memories are described. Two important quantitative guidelines for the memory integration are provided with respect to the required numbers of signal wires and sneak current paths. The advantage of 3D CBAs over 2D CBAs (i.e., the decrease in effect memory cell size) can be exploited only under certain limited conditions due to the increased area and layout complexity of the periphery circuits. The sneak current problem can be mitigated by the adoption of different voltage application schemes and various selection devices. These have critical correlations, however, and depend on the involved types of resistance switching memory. The problem is quantitatively dealt with using the generalized equation for the overall resistance of the parasitic current paths. Atomic layer deposition is discussed in detail as the most feasible fabrication process of 3D CBAs because it can provide the device with the necessary conformality and atomic-level accuracy in thickness control. Other subsidiary issues related to the line resistance, maximum available current, and fabrication technologies are also reviewed. Finally, a summary and outlook on various other applications of 3D CBAs are provided.en_US
dc.description.sponsorshipThis study was supported by the Global Research Laboratory Program (2012040157) through the National Research Foundation (NRF) of Korea.en_US
dc.language.isoenen_US
dc.publisherWILEY-V C H VERLAG GMBHen_US
dc.subjectresistance switchingen_US
dc.subjectthree‐dimensional crossbar arraysen_US
dc.subjectmemory devicesen_US
dc.subjectselection devicesen_US
dc.subjectthree‐dimensional fabricationen_US
dc.titleA Review of Three-Dimensional Resistive Switching Cross-Bar Array Memories from the Integration and Materials Property Points of Viewen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/adfm.201303520-
dc.relation.journalADVANCED FUNCTIONAL MATERIALS-
dc.contributor.googleauthorHwang, Cheol Seong-
dc.contributor.googleauthorSeok, Jun Yeong-
dc.contributor.googleauthorSong, Seul Ji-
dc.contributor.googleauthorYoon, Jung Ho-
dc.contributor.googleauthorYoon, Kyung Jean-
dc.contributor.googleauthorPark, Tae Hyung-
dc.contributor.googleauthorKwon, Dae Eun-
dc.contributor.googleauthorLim, Hyungkwang-
dc.contributor.googleauthorKim, Gun Hwan-
dc.contributor.googleauthorJeong, Doo Seok-
dc.relation.code2014024249-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MATERIALS SCIENCE AND ENGINEERING-
dc.identifier.piddooseokj-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE