206 0

Oxygen Ion Drift-Induced Complementary Resistive Switching in Homo TiOx/TiOy/TiOx and Hetero TiOx/TiON/TiOx Triple Multilayer Frameworks

Title
Oxygen Ion Drift-Induced Complementary Resistive Switching in Homo TiOx/TiOy/TiOx and Hetero TiOx/TiON/TiOx Triple Multilayer Frameworks
Other Titles
TiOy
Author
홍진표
Keywords
resistive switching; memory devices; oxygen ion movement
Issue Date
2012-02
Publisher
Wiley
Citation
Advanced Functional Materials, Feb 2012, 22(4), P.709-716, 8P.
Abstract
Developing a means by which to compete with commonly used Si-based memory devices represents an important challenge for the realization of future three-dimensionally stacked crossbar-array memory devices with multifunctionality. Therefore, oxide-based resistance switching memory (ReRAM), with its associated phenomena of oxygen ion drifts under a bias, is becoming increasingly important for use in nanoscalable crossbar arrays with an ideal memory cell size due to its simple metalinsulatormetal structure and low switching current of 10100 mu A. However, in a crossbar array geometry, one single memory element defined by the cross-point of word and bit lines is highly susceptible to unintended leakage current due to parasitic paths around neighboring cells when no selective devices such as diodes or transistors are used. Therefore, the effective complementary resistive switching (CRS) features in all Ti-oxide-based triple layered homo Pt/TiOx/TiOy/TiOx/Pt and hetero Pt/TiOx/TiON/TiOx/Pt geometries as alternative resistive switching matrices are reported. The possible resistive switching nature of the novel triple matrices is also discussed together with their electrical and structural properties. The ability to eliminate both an external resistor for efficient CRS operation and a metallic Pt middle electrode for further cost-effective scalability will accelerate progress toward the realization of cross-bar ReRAM in this framework.
URI
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201102362/abstract?systemMessage=Wiley+Online+Library+is+migrating+to+a+new+platform+powered+by+Atypon%2C+the+leading+provider+of+scholarly+publishing+platforms.+The+new+Wiley+Online+Library+will+be+migrated+over+the+weekend+of+March+17+and+18.You+should+not+experience+any+issues+or+loss+of+access+during+this+time.+For+more+information%2C+please+visit+our+migration+page%3A++http%3A%2F%2Fwww.wileyactual.com%2FWOLMigration%2F
ISSN
1616-301X
DOI
10.1002/adfm.201102362
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > PHYSICS(물리학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE