85 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author차민철-
dc.date.accessioned2018-02-28T00:19:00Z-
dc.date.available2018-02-28T00:19:00Z-
dc.date.issued2015-11-
dc.identifier.citationJOURNAL OF THE KOREAN PHYSICAL SOCIETY, v. 67, No. 9, Page. 1619-1623en_US
dc.identifier.issn0374-4884-
dc.identifier.issn1976-8524-
dc.identifier.urihttps://link.springer.com/article/10.3938/jkps.67.1619-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/40926-
dc.description.abstractWe investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.en_US
dc.description.sponsorshipWe greatly appreciate helpful discussions with Myung-Hoon Chung and Ji-Woo Lee about the MPS representations. This work was supported by the Korea Research Foundation (Grant No. KRF-2010-0012134).en_US
dc.language.isoen_USen_US
dc.publisherKOREAN PHYSICAL SOCen_US
dc.subjectMatrix product statesen_US
dc.subjectQuantum phase transitionen_US
dc.subjectFinite-size scalingen_US
dc.subjectRENORMALIZATION-GROUPen_US
dc.titleMatrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising modelen_US
dc.typeArticleen_US
dc.relation.no9-
dc.relation.volume67-
dc.identifier.doi10.3938/jkps.67.1619-
dc.relation.page1619-1623-
dc.relation.journalJOURNAL OF THE KOREAN PHYSICAL SOCIETY-
dc.contributor.googleauthorPark, Sung-Been-
dc.contributor.googleauthorCha, Min-Chul-
dc.relation.code2015000007-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E]-
dc.sector.departmentDEPARTMENT OF PHOTONICS AND NANOELECTRONICS-
dc.identifier.pidmccha-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE