248 176

Full metadata record

DC FieldValueLanguage
dc.contributor.author이진형-
dc.date.accessioned2018-02-22T00:16:39Z-
dc.date.available2018-02-22T00:16:39Z-
dc.date.issued2012-06-
dc.identifier.citationPhysical Review A,Vol.85 No.6A [2012],p062112en_US
dc.identifier.issn1050-2947-
dc.identifier.urihttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.062112-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/39280-
dc.description.abstractWe consider a Bell-like inequality performed using various instances of multiphoton entangled states to demonstrate that losses occurring after the unitary transformations used in the nonlocality test can be counteracted by enhancing the size of such entangled states. In turn, this feature can be used to overcome detection inefficiencies affecting the test itself: a slight increase in the size of such states, pushing them towards a more macroscopic form of entanglement, significantly improves the state robustness against detection inefficiency, thus easing the closing of the detection loophole. Differently, losses before the unitary transformations cause decoherence effects that cannot be compensated using macroscopic entanglement.en_US
dc.language.isoenen_US
dc.publisherAMERICAN PHYSICAL SOCIETYen_US
dc.subjectSTATESen_US
dc.subjectQUANTUMen_US
dc.subjectLIGHTen_US
dc.titleUsing macroscopic entanglement to close the detection loophole in Bell-inequality testsen_US
dc.typeArticleen_US
dc.relation.no6-
dc.relation.volume85-
dc.identifier.doi10.1103/PhysRevA.85.062112-
dc.relation.page1-1-
dc.relation.journalPHYSICAL REVIEW A-
dc.contributor.googleauthorLim, Y-
dc.contributor.googleauthorPaternostro, M-
dc.contributor.googleauthorKang, M-
dc.contributor.googleauthorLee, J-
dc.contributor.googleauthorJeong-
dc.relation.code2012207600-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF PHYSICS-
dc.identifier.pidhyoung-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE