On Fibonacci functions with Fibonacci numbers

Title
On Fibonacci functions with Fibonacci numbers
Author
김희식
Keywords
Fibonacci function; f-even (f-odd) function; Golden ratio
Issue Date
2012-07
Publisher
Springer
Citation
Advances in Difference Equations ico_openaccess, 2012권, 1호, 1-7
Abstract
In this paper we consider Fibonacci functions on the real numbers R, i.e., functions f:R→R such that for all x∈R, f(x+2)=f(x+1)+f(x). We develop the notion of Fibonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Fibonacci function then limx→∞f(x+1)f(x)=1+5√2.
URI
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-126http://hdl.handle.net/20.500.11754/38036
ISSN
1687-1839; 1687-1847
DOI
10.1186/1687-1847-2012-126
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > MATHEMATICS(수학과) > Articles
Files in This Item:
On Fibonacci functions with Fibonacci numbers.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE