432 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김태환-
dc.date.accessioned2018-02-02T04:26:03Z-
dc.date.available2018-02-02T04:26:03Z-
dc.date.issued2011-02-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY C, v. 115, NO 5, Page. 2341-2348en_US
dc.identifier.issn1932-7447-
dc.identifier.urihttp://pubs.acs.org/doi/pdf/10.1021/jp110030x-
dc.description.abstractWe report on the nonvolatile memory characteristics of a bistable organic memory (BOM) device with Au nanopartides (NPs) embedded in a conducting poly(N-vinylcarbazole) (PVK) colloids hybrid layer deposited on flexible poly(ethylenete-rephthalate) (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of +/-3 V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as 1 x 10(5). The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above 1.5 x 10(5) cycles, and a high ON/OFF ratio of similar to 10(5) could be achieved consistently even after quite a long retention time of more than 1 x 10(6) s. To clarify the memory mechanism of the hole-mediated bistable organic memory device, the interactions between Au nanoparticles and poly(N-vinylcarbazole) colloids was studied by estimating the density of states and projected density of state calculations using density functional theory. Au atom interactions with a PVK unit decreased the band gap by 2.96 eV with the new induced gap states at 5.11 eV (HOMO, E(0)) and LUMO 4.30 eV and relaxed the HOMO level by 0.5 eV (E(1)). E(1) at similar to 6.2 eV is very close to the pristine HOMO, and thus the trapped hole in E(1) could move to the HOMO of pristine PVK From the experimental data and theoretical calculation, it was revealed that a low-conductivity state resulted from a hole trapping at E(o) and E(1) states and subsequent hole transportation through Fowler-Nordheim tunneling from E(1) state to Au NPs and/or interface trap states leads to a high conductivity state.en_US
dc.description.sponsorshipW.K.C. appreciates the financial support from the KISTFuture Resource Program under Contract 2E21631. This workwas also partially supported by the National Research Foundationof Korea (NRF) grant funded by the Korea government(MEST) (No. 2010-0018877).en_US
dc.language.isoenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectLIGHT-EMITTING-DIODESen_US
dc.subjectELECTRONIC-STRUCTUREen_US
dc.subjectNONVOLATILE MEMORYen_US
dc.subjectTHIN-FILMen_US
dc.subjectMETALLIC NANOPARTICLESen_US
dc.subjectDENSITYen_US
dc.subjectINTERFACESen_US
dc.subjectMECHANISMen_US
dc.subjectBISTABILITYen_US
dc.subjectELEMENTSen_US
dc.titleBistable Organic Memory Device with Gold Nanoparticles Embedded in a Conducting Poly(N-vinylcarbazole) Colloids Hybriden_US
dc.typeArticleen_US
dc.relation.no5-
dc.relation.volume115-
dc.identifier.doi10.1021/jp110030x-
dc.relation.page2341-2348-
dc.relation.journalJOURNAL OF PHYSICAL CHEMISTRY C-
dc.contributor.googleauthorSon, Dong Ick-
dc.contributor.googleauthorPark, Dong Hee-
dc.contributor.googleauthorKim, Jong Bin-
dc.contributor.googleauthorChoi, Ji-Won-
dc.contributor.googleauthorKim, Tae Whan-
dc.contributor.googleauthorAngadi, Basavaraj-
dc.contributor.googleauthorYi, Yeonjin-
dc.contributor.googleauthorChoi, Won Kook-
dc.relation.code2011215273-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ELECTRONIC ENGINEERING-
dc.identifier.pidtwk-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRONIC ENGINEERING(융합전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE