340 0

Biothermal sensing of a torsional artificial muscle

Title
Biothermal sensing of a torsional artificial muscle
Author
김선정
Keywords
CARBON NANOTUBE YARNS; SENSITIVE HYDROGELS; ENZYME THERMISTOR; DESIGN
Issue Date
2016-01
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v. 8, NO 6, Page. 3248-3253
Abstract
Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 degrees C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.
URI
http://pubs.rsc.org/en/Content/ArticleLanding/2016/NR/C5NR07195J#!divAbstracthttp://hdl.handle.net/20.500.11754/30410
ISSN
2040-3364; 2040-3372
DOI
10.1039/c5nr07195j
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE