377 0

Review-High-Capacity Li[Ni1-xCox/2Mnx/2]O-2 (x=0.1, 0.05, 0) Cathodes for Next-Generation Li-Ion Battery

Title
Review-High-Capacity Li[Ni1-xCox/2Mnx/2]O-2 (x=0.1, 0.05, 0) Cathodes for Next-Generation Li-Ion Battery
Author
선양국
Keywords
POSITIVE ELECTRODE MATERIALS; SECONDARY LITHIUM CELLS; X-RAY-DIFFRACTION; ELECTROCHEMICAL PROPERTIES; CRYSTAL-STRUCTURE; THERMAL-STABILITY; LINIO2; BEHAVIOR; NICKEL; R(3)OVER-BAR-M
Issue Date
2015-12
Publisher
ELECTROCHEMICAL SOC INC
Citation
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, v. 162, NO 14, Page. 2483-2489
Abstract
LiNiO2 with theoretical capacity of 275 mAh g(-1) is regarded as a promising cathode material for Li-ion batteries, but its potential capacity has not been fully realized due to the severe capacity loss in the first charge/discharge cycle. Via co-precipitation method, we synthesized Li[Ni0.90Co0.05Mn0.05]O-2, Li[Ni0.95Co0.025Mn0.025]O-2, and LiNiO2 which delivered 221, 230, and 240 mAh g(-1) respectively, when cycled from 2.7 to 4.3 V vs. Li-0/Li+ at 0.1 C and retained similar to 70% of the initial capacity after 100 cycles. To date, such high reversible capacities are not yet to be reported from the Ni-rich Li[Ni1-x-yCoxMny]O-2 cathodes. The observed high capacities were attributed to the presence of a rock salt phase from severe cation mixing and excess Li ions in the host structure. It is believed that the rock salt phase stabilized the host structure in the delithiated state while the excess Li allowed the Li ions percolated through the rock salt phase which would be electrochemically inactive otherwise. (C) 2015 The Electrochemical Society. All rights reserved.
URI
http://jes.ecsdl.org/content/162/14/A2483http://hdl.handle.net/20.500.11754/30145
ISSN
0013-4651; 1945-7111
DOI
10.1149/2.0101514jes
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE