157 0

Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries

Title
Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries
Author
김동원
Keywords
doped graphene; ultrathin coating; coated separator; lithium dendrite; lithium metal battery
Issue Date
2015-10
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 7, NO 42, Page. 23700-23707
Abstract
The enhanced stability of lithium metal is vital to the development of high energy density lithium batteries due to its higher specific capacity and low redox potential. Herein, we demonstrate that nitrogen and sulfur codoped graphene (NSG) nanosheets coated on a polyethylene separator stabilized the lithium electrode in lithium metal batteries by effectively suppressing dendrite growth and maintaining a uniform ionic flux on the metal surface. The ultrathin layer of NSG nanosheets also improved the dimensional stability of the polymer separator at elevated temperatures. In addition, the enhanced interfacial interaction between the NSG-coated separator and lithium metal via electrostatic attraction released the surface tension of lithium metal and suppressed the initiation of dendrite growth on lithium metal. As a result, the electrochemical performance of a lithium metal cell composed of a LiNi0.8Co0.15Al0.05O2 positive electrode with an NSG-coated separator was remarkably improved as compared to the cell with an uncoated polyethylene separator.
URI
http://pubs.acs.org/doi/abs/10.1021/acsami.5b07730http://hdl.handle.net/20.500.11754/28018
ISSN
1944-8244
DOI
10.1021/acsami.5b07730
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CHEMICAL ENGINEERING(화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE