Full metadata record

DC FieldValueLanguage
dc.contributor.author황승용-
dc.date.accessioned2017-01-09T04:34:50Z-
dc.date.available2017-01-09T04:34:50Z-
dc.date.issued2015-05-
dc.identifier.citationBIOTECHNOLOGY PROGRESS, v. 31, NO 3, Page. 730-735en_US
dc.identifier.issn8756-7938-
dc.identifier.issn1520-6033-
dc.identifier.other20154004932-
dc.identifier.urihttp://onlinelibrary.wiley.com/doi/10.1002/btpr.2054/abstract-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/24978-
dc.description.abstractPeptide nucleic acid (PNA) is an artificially synthesized polymer. PNA oligomers show greater specificity in binding to complementary DNAs. Using this PNA, fluorescence melting curve analysis (FMCA) for dual detection was established. Genomic DNA of Mycoplasma fermentans and Mycoplasma hyorhinis was used as a template DNA model. By using one PNA probe, M. fermentans and M. hyorhinis could be detected and distinguished simultaneously in a single tube. The developed PNA probe is a dual-labeled probe with fluorescence and quencher dye. The PNA probe perfectly matches the M. fermentans 16s rRNA gene, with a melting temperature of 72 degrees C. On the other hand, the developed PNA probe resulted in a mismatch with the 16s rRNA gene of M. hyorhinis, with a melting temperature of 44-45 degrees C. The melting temperature of M. hyorhinis was 27-28 degrees C lower than that of M. fermentans. Due to PNA's high specificity, this larger melting temperature gap is easy to create. FMCA using PNA offers an alternative method for specific DNA detection. (C) 2015 American Institute of Chemical Engineersen_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A03045008).en_US
dc.language.isoenen_US
dc.publisherWILEY-BLACKWELLen_US
dc.subjectpeptide nucleic aciden_US
dc.subjectfluorescence melting curve analysisen_US
dc.subjectDNA analysis genotypingen_US
dc.titleApplication of Fluorescence Melting Curve Analysis for Dual DNA Detection Using Single Peptide Nucleic Acid Probeen_US
dc.typeArticleen_US
dc.relation.no3-
dc.relation.volume31-
dc.identifier.doi10.1002/btpr.2054-
dc.relation.page730-735-
dc.relation.journalBIOTECHNOLOGY PROGRESS-
dc.contributor.googleauthorAhn, Jeong Jin-
dc.contributor.googleauthorLee, Seung Yong-
dc.contributor.googleauthorHong, Ji Young-
dc.contributor.googleauthorKim, Youngjoo-
dc.contributor.googleauthorKim, Gi Won-
dc.contributor.googleauthorHwang, Seung Yong-
dc.relation.code2015003125-
dc.sector.campusS-
dc.sector.daehakGRADUATE SCHOOL[S]-
dc.sector.departmentDEPARTMENT OF BIONANOTECHNOLOGY-
dc.identifier.pidsyhwang-
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIONANOTECHNOLOGY(바이오나노학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE