Heat and mass transfer characterization of porous copper fiber sintered felt as catalyst support for methanol steam reforming

Title
Heat and mass transfer characterization of porous copper fiber sintered felt as catalyst support for methanol steam reforming
Author
Kwan-San Hui
Keywords
Methanol steam reforming; Catalyst support; Porous copper fiber sintered felt; Heat and mass transfer; Porosity
Issue Date
2015-04
Publisher
ELSEVIER SCI LTD
Citation
FUEL, v. 145, Page. 136-142
Abstract
A novel porous copper fiber sintered felt (PCFSF) as catalyst support is fabricated to construct the methanol steam reforming microreactor for hydrogen production. In this study, the heat and mass transfer properties of PCFSF with different porosities is experimentally investigated. The results show that the PCFSF with different porosities exhibits good uniform heat transfer. The thermal conductivity is decreased with increasing porosity in the porosity range of 70-90%. With lower gas feed rate, no great change of the pressure drop is observed. However, larger pressure drop is produced with the higher gas feed rates. Moreover, we found that the resident time in the PCFSF is gradually decreased with increasing porosity. Much longer resident time is obtained when the lower gas feed rate is selected. The PCFSF with 80% porosity as catalyst support presents better reaction performance because of the enhancement of heat and mass transfer resulting from the unique porous structure. (C) 2014 Elsevier Ltd. All rights reserved.
URI
http://www.sciencedirect.com/science/article/pii/S0016236114012514http://hdl.handle.net/20.500.11754/24165
ISSN
0016-2361; 1873-7153
DOI
10.1016/j.fuel.2014.12.042
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE