Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles

Title
Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles
Authors
박진성
Keywords
THIN-FILM TRANSISTORS; SOURCE/DRAIN ELECTRODE; INK; FABRICATION; OXIDATION; OPTOELECTRONICS; SUBSTRATE; FEATURES; FUTURE; LAYER
Issue Date
2015-03
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v. 7, NO 9, Page. 3997-4004
Abstract
Recently, various functional devices based on printing technologies have been of paramount interest, owing to their characteristic processing advantages along with excellent device performance. In particular, printable metallic electrodes have drawn attention in a variety of optoelectronic applications; however, research into printable metallic nanoparticles has been limited mainly to the case of an environmentally stable Ag phase. Despite its earth-abundance and highly conductive nature, the Cu phase, to date, has not been exploited as an ambient atmosphere-processable, printable material due to its critical oxidation problem in air. In this study, we demonstrate a facile route for generating highly conductive, flexible Cu electrodes in air by introducing the well-optimized photonic sintering at a time frame of 10(-3) s, at which the photon energy, rather than conventional thermal energy, is instantly provided. It is elucidated here how the surface oxide-free, printed Cu particulate films undergo chemical structural/microstructural evolution depending on the instantly irradiated photon energy, and a successful demonstration is provided of large-area, flexible, printed Cu conductors on various substrates, including polyimide (PI), polyethersulfone (PES), polyethylene terephthalate (PET), and paper. The applicability of the resulting printed Cu electrodes is evaluated via implementation into both flexible capacitor devices and indium-galliumzinc oxide (IGZO) flexible thin-film transistors.
URI
http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C4NR06816E#!divAbstracthttp://hdl.handle.net/20.500.11754/22937
ISSN
2040-3364; 2040-3372
DOI
http://dx.doi.org/10.1039/c4nr06816e
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ETC
Files in This Item:
Ambient atmosphere-processable, printable Cu electrodes for flexible device applications.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE