Modified QRM-ML Detection by Stage Reduction in MIMO Systems

Modified QRM-ML Detection by Stage Reduction in MIMO Systems
Other Titles
다중 안테나 시스템에서 단계감소 기법을 적용한 수정된 QRM-최대우도 검출기법
Multiple-input-multiple-output (MIMO); Maximum Likelihood; QRM-ML detection; Complexity Reductions
Issue Date
한국지식정보기술학회 (KKTIS)
한국지식정보기술학회 논문지, v. 10, NO 1, Page. 79-87
In this paper, modified QRM-ML detection algorithm is proposed to reduce computational complexity of the conventional QRM-ML detection algorithm in MIMO systems. We consider a stage reduction algorithm to QRM-ML detection algorithm and arrange all steps of each stage and computational complexity, which is calculated the number of multiplications per each step. The proposed detection algorithm has lower complexity than full candidates of QRM-ML detection algorithm. It also has no saturation on BER performance and better performance in high SNR than QRM-ML detection algorithm of lower candidates, which has a similar complexity to proposed algorithm. We also set a new arbitrary parameter which can adjust the number of reduced stages, and it can be selected by considering a trade-off relationship between BER performance and computational complexity. A stage reduction algorithm and each detection algorithm are presented in a row and compared in terms of BER performance and computational complexity by numerical results and experimentations. In the process of experimentations, the cross points of conventional QRM-ML detection algorithm and modified QRM-ML detection algorithm in BER performance graphs are also analyzed in diverse situations and compared in terms of efficiency of proposed algorithm according to the number of antennas and modulation order. 본 논문에서 다중 안테나(MIMO) 시스템의 QRM-최 대우도(QRM-ML) 복잡도를 줄이기 위해, 수정된 QRM-최대우도 검출기법을 제안되었다. QRM-ML 검 출 기법에 단계감소 알고리즘을 적용하여, 단계를 재 배열하였으며 곱하기의 수로 구한 복잡도를 정리하였 다. 제안된 검출기법은 최대 후보군을 지닌 QRM-ML 검출기법에 비해 적은 복잡도를 지니며, 성능이 포화 되지 않으며, 비슷한 복잡도를 갖는 적은 후보군을 지 닌 QRM-ML 검출기법에 비해 높은 SNR(Signal-to- Noise ratio) 에서 더 좋은 성능을 갖는다. 단계 감소 되는 단의 수를 임의의 변수로 설정하여, 오류 성능과 복잡도의 상호관계를 고려하여 조절이 가능하다. 첫 단계에서 메트릭을 검출하며, 마지막 단계에서는 더 적은 후보군을 고려하여 추정하게 된다. 단계감소기법 과 각각의 검출 기법을 다루며, 실험결과를 통해 BER(Bit Error rate)과 복잡도 측면에서 검출기법을 비 교한다. 또한 실험과정에서 BER 성능 그래프상의 기 존 QRM-ML 검출기법과 수정된 QRM-ML 검출기법의 교차발생지점을 다양한 환경에서 분석하며, 안테나 수 와 변조기법차수에 따른 효율성을 비교한다.
Appears in Collections:
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.