Changes in background electroencephalography and regional cerebral glucose metabolism in focal epilepsy patients after I-month administration of levetiracetam

Title
Changes in background electroencephalography and regional cerebral glucose metabolism in focal epilepsy patients after I-month administration of levetiracetam
Authors
이종민이종민
Keywords
power spectral change; background EEG; FDG-PET; responsiveness
Issue Date
2015-01
Publisher
DOVE MEDICAL PRESS LTD
Citation
NEUROPSYCHIATRIC DISEASE AND TREATMENT, v. 11, Page. 215-223
Abstract
The antiseizure efficacy and safety of levetiracetam (LEV) is well documented; however, few clinical studies have investigated the predictability of patient responsiveness to LEV, especially when the drug is first administered. The aim of this study was to ascertain the utility of clinical, electrophysiological, and neuroimaging parameters for assessing the early response to LEV treatment in focal epilepsy patients. Twelve confirmed focal epilepsy patients were included who had never taken LEV before. At baseline and 1 month after LEV administration, all subjects underwent 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and electroencephalography (EEG), and completed the Quality of Life in Epilepsy questionnaire (QOLIE-31). Participants were divided by drug response: good versus poor. The good response group (seven subjects) was defined by a >50% decrease in seizure frequency compared to baseline (3 months before LEV intake). The other five participants with a. 50% decrease in seizure frequency were placed into the poor response group. We compared the differential changes in brain glucose metabolism on FDG-PET, power spectrum on the EEG, and QOLIE-31 results between the two groups after a 1-month LEV trial. In the good response group, it was possible to identify brain regions with increased glucose metabolism, including the bilateral caudate nuclei and both frontal and left parietal regions (uncorrected P<0.005). In the poor response group, FDG-PET did not reveal any areas with significantly increased glucose metabolism. In the good response group, spectral EEG analysis revealed decreased delta power (1-3 Hz, P<0.05) in the parietal region and increased beta1 power (13-19 Hz, P<0.05) in the frontal region, whereas no significant changes were observed in the poor response group. There were no significant changes on the QOLIE-31 in either group after a 1-month LEV trial. Our results suggest that LEV-induced glucose metabolism and EEG spectral changes may be indicative of initial drug responsiveness as early as 1 month following treatment initiation. These parameters may be useful prognostic markers of antiseizure effects caused by LEV medication or may indicate an epiphenomenon of LEV-induced changes in glucose metabolism and EEG frequency. Further studies with larger sample sizes are warranted.
URI
http://hdl.handle.net/20.500.11754/21492https://www.dovepress.com/changes-in-background-electroencephalography-and-regional-cerebral-glu-peer-reviewed-article-NDT
ISSN
1178-2021
DOI
http://dx.doi.org/10.2147/NDT.S76482
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
Changes in background electroencephalography and regional cerebral glucose metabolism.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE