297 0

Low-Temperature Fabrication for Condensation-Based SnO₂ Electron Transport Layer for the Perovskite Solar Cells

Title
Low-Temperature Fabrication for Condensation-Based SnO₂ Electron Transport Layer for the Perovskite Solar Cells
Other Titles
페로브스카이트 태양전지용 축합반응 기반 SnO₂ 전자수송층의 저온 제조
Author
이상혁
Alternative Author(s)
Sanghyuk Lee
Advisor(s)
고민재
Issue Date
2023. 2
Publisher
한양대학교
Degree
Master
Abstract
본 연구에서는 Phosphoric acid를 통한 축합반응을 통해 SnO2 나노입자의 전기적 특성 및 광학적 특성을 향상시켜 플렉시블 디바이스에 적합한 페로브스카이트 태양전지 전자수송층 저온 공정을 개발하였다. SnO2 박막의 공극을 최소화하기 위하여 SnO2 나노입자와 SnO2 나노졸을 혼합한 용액을 이용하여 박막을 제조하였으며 ITO의 열화시키지 않는 Phosphoric acid을 통한 탈수축합반응으로 입자간의 화학적 상호작용을 높여 플렉서블 ITO 기판에서도 저온으로 밀도높은 박막을 형성하였다. 축합반응을 통한 SnO2 결정간의 인 브릿지 결합은 SnO2 표면의 친전자성을 증가시켜 전자수송층의 전도대 에너지 레벨을 증가시켰으며, 이는 기존 SnO2 전자수송층과 비교하여 유리소자에서의 개방전압은 1.14V에서 1.16V, 유연소자에서의 개방전압은 1.14V에서 1.17V로의 향상을 보였다. 또한 결정 사이간의 공극을 줄여 기존보다 높은 전자 수송 능력을 보여주었다. 이는 유리소자에서의 필 팩터가 78.74%에서 83.59%, 유연소자에서의 필 팩터가 67.20%에서 73.79%로의 향상을 보여주었다. 결과적으로 유리소자에서는 23.47%, 유연소자에서는 18.97%의 기존보다 높은 전력 변환 효율을 보인다.|The most important role in the electron transport layer (ETL) is to transport the electrons generated in the perovskite layer to the transparent conductive oxide (TCO). To improve this performance, it is necessary to strengthen the interconnection between particles or to manufacture a crystalline electron transport layer with excellent electron transport ability. However, for this enhancement, a high-temperature sintering process is required, and it is difficult to apply to flexible perovskite solar cells (F-PSCs) using flexible polymer substrates with low glass transition temperature (Tg). Therefore, the maximum efficiency of PSCs on glass substrates has increased to 25.7%, but the F-PSCs remain low level. In this research, we report the low-temperature ETL fabrication process through condensation reaction. This low-temperature process can produce dense ETL by strengthening the binding force between crystals through acid without degradation of TCO. This ETL shows improved open-circuit valtage (VOC) and charge transport by upshift the conduction band of SnO2 and reducing pinholes in thin films. In this study, we fabricated thin films using blended SnO2 nanoparticles (NPs), which were prepared by mixing commercial SnO2 NPs with smaller-sized SnO2 nanosols (NSs) to reduce pinholes. The condensation reaction of blended SnO2 NPs with phosphoric acid densified the ETL with phosphorus-linked bridge bonding. The results showed an overall improvement in VOC from 1.14V to 1.16V, short-circuit current density (JSC) from 22.32mA/cm2 to 24.15mA/cm2, and fill factor from 78.74% to 83%. The power conversion efficiency (PCE) showed 23.47%. Also, the F-PSC showed an PCE of 18.97%. These studies demonstrate the feasibility of industrializing low-temperature process high-density metal oxide thin films applicable to flexible devices.
URI
http://hanyang.dcollection.net/common/orgView/200000652837https://repository.hanyang.ac.kr/handle/20.500.11754/179472
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > CHEMICAL ENGINEERING(화학공학과) > Theses (Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE