208 0

Bifunctional Covalent Organic Framework-Derived Electrocatalysts with Modulated p-Band Centers for Rechargeable Zn–Air Batteries

Title
Bifunctional Covalent Organic Framework-Derived Electrocatalysts with Modulated p-Band Centers for Rechargeable Zn–Air Batteries
Author
이상욱
Keywords
bifunctional electrocatalysts; covalent organic frameworks; oxygen evolution reaction; oxygen reduction reaction; Zn–air batteries
Issue Date
2021-06
Publisher
John Wiley & Sons Ltd.
Citation
Advanced Functional Materials, v. 31.0, NO. 25, article no. 2101727, Page. 1-10
Abstract
Fine control over the physicochemical structures of carbon electrocatalysts is important for improving the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable Zn–air batteries. Covalent organic frameworks (COFs) are considered good candidate carbon materials because their structures can be precisely controlled. However, it remains a challenge to impart bifunctional electrocatalytic activities for both the ORR and OER to COFs. Herein, a pyridine-linked triazine covalent organic framework (PTCOF) with well-defined active sites and pores is readily prepared under mild conditions, and its electronic structure is modulated by incorporating Co nanoparticles (CoNP-PTCOF) to induce bifunctional electrocatalytic activities for the ORR and OER. The CoNP-PTCOF exhibits lower overpotentials for both ORR and OER with outstanding stability. Computational simulations find that the p-band center of CoNP-PTCOF down-shifted by charge transfer, compared to pristine PTCOF, facilitate the adsorption and desorption of oxygen intermediates on the pyridinic carbon active sites during the reactions. The Zn–air battery assembled with bifunctional CoNP-PTCOF exhibits a small voltage gap of 0.83 V and superior durability for 720 cycles as compared with a battery containing commercial Pt/C and RuO2. This strategy for modulating COF electrocatalytic activities can be extended for designing diverse carbon electrocatalysts. © 2021 Wiley-VCH GmbH
URI
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202101727https://repository.hanyang.ac.kr/handle/20.500.11754/177495
ISSN
1616-301X
DOI
10.1002/adfm.202101727
Appears in Collections:
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E](과학기술융합대학) > CHEMICAL AND MOLECULAR ENGINEERING(화학분자공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE