634 0

Engineering cell adhesive properties on the hydrogel surface for stem cell spheroid-based therapy

Title
Engineering cell adhesive properties on the hydrogel surface for stem cell spheroid-based therapy
Other Titles
줄기세포 스페로이드 기반 치료를 위한 하이드로젤 표면 세포 접착성 제어
Author
김세정
Alternative Author(s)
김세정
Advisor(s)
신흥수
Issue Date
2021. 8
Publisher
한양대학교
Degree
Doctor
Abstract
줄기세포 스페로이드는 3차원 줄기세포 응집체로서 향상된 세포 생존능, 성장인자 분비, 체내의 환경과 유사한 세포 외 기질 분포 등의 장점으로 인해 재생의학 분야에서 다양하게 활용되어왔다. 스페로이드를 성공적으로 배양하기 위해 단백질 흡착이 저해된 배양 기판을 활용하거나 배양 기판 표면의 구조 변형을 통해 세포 간의 상호작용은 극대화시키고 세포와 배양 기판 사이의 상호작용은 최소화 시켜 세포 간의 접합을 유도했다. 그러나 낮은 스페로이드 제작 효율과 스페로이드를 체내에 이식하는 방법에 대한 연구의 부재로 스페로이드가 널리 활용되기는 어려웠다. 본 연구에서는 세포의 접착을 저해할 수 있는 하이드로젤 재료를 통해 스페로이드의 배양 효율을 높이고, 배양된 스페로이드를 보다 효과적으로 생체 내에 전달할 수 있는 방법을 개발하는데 성공했다. 하이드로젤 표면에 소프트 리소그래피를 통해 불규칙적인 거칠기를 도입하는 방법을 개발했으며, 이 하이드로젤 표면에 줄기세포를 분주했을 때 하이드로젤의 단백질 흡착 저해 특성으로 인해 자발적으로 스페로이드가 형성되었다. 또한 표면의 거칠기로 인해 스페로이드의 크기를 일정하게 조절할 수 있었으며, 시중에 판매되고 있는 스페로이드 배양 기판과 비교했을 때 2배 스페로이드 제작 효율이 2배 이상 증가했다. 뿐만 아니라 하이드로젤 표면의 세포 접착을 조절해 표면에서 배양된 스페로이드가 하이드로젤 일부와 접착할 수 있게 했으며, 하이드로젤의 팽창을 통해 원하는 시점에 분리해낼 수 있었다. 이를 이용해 창상과 같은 넓은 면적의 상처에 스페로이드를 안정적으로 도포하는 방법을 개발했으며, 동물 실험을 통해 스페로이드를 직접 주입하는 방법에 비해 표면에 도포하는 방법이 창상에서 콜라겐 형성과 혈관 형성을 촉진해 상처의 재생을 도와준다는 결과를 확인했다. 마지막으로 스페로이드를 표면에 도포할 때 스페로이드의 간격이 미칠 수 있는 영향을 확인하기 위해, 스페로이드를 하이드로젤 내부에 일정한 간격으로 봉입해 세포 간의 상호작용을 확인하고자 했다. 그 결과 크기가 약 100 μm인 스페로이드가 약 200 μm 간격으로 존재할 때 세포의 이동이나 스페로이드 간의 상호작용이 극대화된다는 것을 확인했다. 결론적으로, 하이드로젤의 표면 구조 제어 및 화학적 개질을 통해 줄기세포 스페로이드의 배양 효율을 높일 수 있었고 효과적으로 환부에 전달할 수 있었다. 이는 줄기세포 스페로이드의 활용도를 극적으로 높일 수 있는 플랫폼 기술로서 기능성 하이드로젤의 가능성을 보여준다. |Stem cell spheroids have been widely utilized for various applications in regenerative medicine field since the spheroids showed enhanced viability, growth factor secretion, and extracellular matrix (ECM) secretion than two-dimensionally cultured cells. Accordingly, diverse spheroid culture techniques have been developed by using physical forces such as gravitational or centrifugal forces, protein-repellant biomaterials, and micro-structured surfaces. Those methods maximize cell-cell cohesion and induce spontaneous cellular assembly while minimizing cellular interactions with culture substrate. However, there have been several drawbacks in those methods. First, the low productivity of conventional spheroid culture methods may inhibit the therapeutic potential of spheroids on various tissue engineering approaches. Second, lack of spheroid delivery method to enhance therapeutic effect of the spheroids which were previously delivered to in vivo only using injection. Third, lack of studies about the interactions between spheroids under in vitro and in vivo conditions. Therefore, hydrogels with an embossed surface (HES) were developed as an all-in-one platform that can enable the rapid formation and culture of a large quantity of size-controllable stem cell spheroids. The embossed structure on the hydrogel was adjustable according to the grit designation of the sandpaper. Human adipose-derived stem cells (hADSCs) were rapidly assembled into spheroids on the hydrogel, with their size distribution precisely controlled from 95 ± 6 μm to 181 ± 15 μm depending on surface roughness. In addition, HES-based spheroids showed significantly greater vascular endothelial growth factor (VEGF) secretion, which can promote angiogenesis and cell migration, than spheroids grown on a commercially available low-attachment culture plate. Exploiting those advantages, the HES-based spheroids were used for 3D bioprinting, and the spheroids within the 3D-printed construct showed improved retention and VEGF secretion compared to the same 3D structure containing single cell suspension. Moreover, I developed lotus seedpod-inspired hydrogel (LoSH) containing microwells for culture and delivery of stem cell spheroids. hADSCs inside the square microwells (200 or 400 µm in width with various depths) spontaneously formed spheroids with high viability (94.08 ± 1.56%), and fibronectins conjugated to the hydrogel successfully gripped the spheroids, similar to the funiculus gripping seeds in the lotus seedpod. The spheroids slightly bound to the LoSH surface at 37 °C were detached by the expansion of LoSH at lower temperature of 4 °C. After spheroid formation, LoSH was placed on the target substrate upside-down, expanded at 4 °C for 10 min, and removed from the target. As a result, the spheroids within the microwell were successfully transferred to the target substrate with high transfer efficiency (93.78 ± 2.30%). A delivery of spheroids from LoSH to full-thickness murine skin wound with chimney model showed significant enhancement of the number of SMA-positive vessels at day 21 compared to the group received the same number of spheroids by injection. Finally, I investigated the effect of the distance between spheroids on stem cell spheroids migration on fusion. hADSC spheroids were cultured in the square microwells with various distance between them (100, 200, and 400 µm) on temperature-responsive hydrogels. The spheroids cultured on the hydrogels successfully transferred to the matrigel with the efficiency of more than 90% followed by encapsulation in the matrigel matrix. During sandwich culture of the spheroids in the matrigel, different trends were monitored depending on the distance between spheroids. As the distance between spheroids narrowed, more fusion was occurred. Interestingly, the spheroids showed the well-balanced spheroid migration and fusion when the distance between the spheroids was 200 µm forming cellular bridge structure after 72 hr. Furthermore, I was able to encapsulate endothelial co-cultured spheroids in the matrigel and found that endothelial cell sprouting was controlled by cellular bridge structure. Collectively, I proposed the efficient spheroid culture and delivery platform using micropatterned temperature-responsive hydrogel to enhance spheroid productivity and to investigate the inter-spheroid communications depending on the distance between the spheroids. Those system suggest new type of spheroids culture and delivery method and give basic information of how spheroids communicate each other in in vivo like environment.
URI
http://hanyang.dcollection.net/common/orgView/200000491744https://repository.hanyang.ac.kr/handle/20.500.11754/164012
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIOENGINEERING(생명공학과) > Theses (Ph.D.)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE