293 0

Measurement of Enzyme Kinetics Using a Continuous-Flow Microfluidic System

Title
Measurement of Enzyme Kinetics Using a Continuous-Flow Microfluidic System
Author
성기훈
Issue Date
2003-07
Publisher
AMER CHEMICAL SOC
Citation
ANALYTICAL CHEMISTRY, v. 75, issue. 13, page. 3161-3167
Abstract
This paper describes a microanalytical method for determining enzyme kinetics using a continuous-flow microfluidic system. The analysis is carried out by immobilizing the enzyme on microbeads, packing the microbeads into a chip-based microreactor (volume similar to 1.0 nL), and flowing the substrate over the packed bed. Data were analyzed using the Lilly-Hornby equation and compared to values obtained from conventional measurements based on the Michaelis-Menten equation. The two different enzyme-catalyzed reactions studied were chosen so that the substrate would be nonfluorescent and the product fluorescent. The first reaction involved the horseradish peroxidase-catalyzed reaction between hydrogen peroxide and N-acetyl-3,7-dihydroxyphenoxazine (amplex red) to yield fluorescent resorufin, and the second the beta-galactosidase-catalyzed reaction of nonfluorescent resorufin-beta-D-galactopyranoside to yield D-galactose and fluorescent resorufin. In both cases. the microfluidics-based method yielded the same result obtained from the standard Michaelis-Menten treatment. The continuous-flow method required similar to10 muL of substrate solution and 10(9) enzyme molecules. This approach provides a new means for rapid determination of enzyme kinetics in microfluidic systems, which may be useful for clinical diagnostics, and drug discovery and screening.
URI
https://pubs.acs.org/doi/10.1021/ac034155bhttps://repository.hanyang.ac.kr/handle/20.500.11754/156124
ISSN
0003-2700
DOI
10.1021/ac034155b
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > BIONANO ENGINEERING(생명나노공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE