347 0

Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide

Title
Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide
Author
성기훈
Keywords
Nanozyme; Graphene oxide; Gold nanoparticle; Hydrogen peroxide; Electrochemical detection
Issue Date
2018-11
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v. 274, page. 201-209
Abstract
We fabricated a nafion/graphene oxide-gold nanoparticle (GO-AuNP) hybrid modified indium tin oxide (ITO) electrode and proposed an electrochemical method to detect hydrogen peroxide (H2O2) using 3,3,5,5,-tetramethylbenzidine (TMB) as a redox mediator. The GO-AuNP hybrids were employed as nanozymes, which function as peroxidase mimics and show highly effective catalytic activity. Based on the high catalytic activity, enzyme mimics were entrapped on the ITO electrode to construct an electrochemical H2O2 sensor by coating nafion polymer. During the catalytic reaction, the peroxidase substrate TMB was oxidized to form the TMB oxidation product, which not only produces a blue color detected by absorbance change, but also generates an electrochemical current. As a result, both spectrophotometric and electrochemical methods were used to determine H2O2 concentration. The spectrophotometric detection displayed a linearity for H2O2 concentration from 10 mu M to 5mM (r(2) = 0.989), with an estimated detection limit of 2 mu M. In the electrochemical detection, the TMB peak current had a good linear relationship with H2O2 concentration from 10 nM to 10 mM, with an estimated detection limit of 1.9 nM, which was much lower than that of the spectrophotometric method result.
URI
https://www.sciencedirect.com/science/article/pii/S0925400518314096?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/120542
ISSN
0925-4005
DOI
10.1016/j.snb.2018.07.160
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIONANOTECHNOLOGY(바이오나노학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE