215 0

Effect of ozone concentration on atomic layer deposited tin oxide

Title
Effect of ozone concentration on atomic layer deposited tin oxide
Author
전형탁
Keywords
THIN-FILM TRANSISTORS; TRANSPARENT CONDUCTING OXIDES; SNO2 FILMS; CVD; PRECURSORS; ELECTRODES; GAS
Issue Date
2018-08
Publisher
A V S AMER INST PHYSICS
Citation
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, v. 36, no. 5, Special no. SI, Article no. 051509
Abstract
Tin dioxide (SnO2) thin films were deposited by atomic layer deposition (ALD) using tetrakis(dimethylamino)tin {[(CH3)(2)N](4)Sn} and various concentrations of ozone (O-3) at 200 degrees C. In order to characterize SnO2 thin films, the growth rate, thin film crystallinity, surface roughness, chemical bonding state, and electrical and optical properties were investigated. The growth rate of SnO2 increased slightly when the O-3 concentration was increased. However, the growth rate was almost saturated above 300 g/m(3) concentration of O-3. Also, the x-ray diffraction patterns of SnO2 thin films become sharper when the O-3 concentration increased. Specifically, the (101) and (211) peaks of SnO2 improved. In addition, the defects of the SnO2 thin films such as oxygen vacancy and hydroxyl group are related to the O-3 concentration that was observed via x-ray photoelectron spectroscopy. As the O-3 concentration is higher than 300 g/m(3), the electrical Hall resistivity and mobility saturated 3.6 x 10(-3) Omega cm and 9.58 cm(2)/V s, respectively. However, the carrier concentration slightly decreased to 3.22 x 10(20) cm(-3). It is assumed that the oxygen vacancies were filled with a high O-3 concentration at ALD reaction. The optical bandgaps were larger than 3.5 eV, and the transmittance of all SnO2 thin films exceeded 90%. The O-3 concentration below 200 g/m(3) in the ALD process of SnO2 thin films is considered to be one of the factors that can affect the crystallinity, chemical bonding, and electrical properties. Published by the AVS.
URI
https://avs.scitation.org/doi/10.1116/1.5027550https://repository.hanyang.ac.kr/handle/20.500.11754/119740
ISSN
0734-2101; 1520-8559
DOI
10.1116/1.5027550
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE