383 0

Polyglycerolated nanocarriers with increased ligand multivalency for enhanced in vivo therapeutic efficacy of paclitaxel

Title
Polyglycerolated nanocarriers with increased ligand multivalency for enhanced in vivo therapeutic efficacy of paclitaxel
Author
김진웅
Keywords
Linear polyglycerol; Tumor targeting; Ligand multivalency; Nanoemulsions; Paclitaxel
Issue Date
2017-11
Publisher
ELSEVIER SCI LTD
Citation
BIOMATERIALS, v. 145, page. 223-232
Abstract
Despite the excellent biocompatibility and antifouling effect of poly(ethylene glycol) (PEG), the high steric hindrance, limited chemical functionality, and low ligand multivalency of PEGylated nanocarriers often lead to inefficient cell targeting and intracellular trafficking. Hence, a new structure of hydrophilic corona allowing a higher ligand density without loss of excellent biocompatibility is highly desirable. Here we introduce tumor-targeted polyglycerolated (PGylated) nanocarriers that dramatically enhance the in vivo therapeutic efficacy of incorporated paclitaxel simply by increasing the surface density of hydrophobic tumor-targeting ligands. Linear polyglycerol-poly (e-caprolactone) block copolymer (PG-b-PCL) is used to prepare PGylated lipiodol nanoemulsions, where PG serves as a corona conjugated with a large number of folic acid (FA) for efficient tumor targeting. Unlike FA-PEGylated nanoemulsions, FA-PGylated nanoemulsions can display a larger number of FA without structural destabilization. This property enables excellent anti-cancer activities and effective tumor regression in a cervical cancer xenograft murine model at a cumulative drug dose of similar to 5 mg kg(-1), which is about four fold smaller than that of commercial Taxol formulation. This study highlights the importance of surface chemistry of nanocarriers that enable multivalent ligand functionalization and high tolerance to the conjugation of hydrophobic ligands, which make PG as a very effective hydrophilic corona for in vivo drug delivery. (C) 2017 Elsevier Ltd. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0142961217305616?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/116308
ISSN
0142-9612; 1878-5905
DOI
10.1016/j.biomaterials.2017.08.042
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIONANOTECHNOLOGY(바이오나노학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE