214 0

Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries

Title
Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries
Author
백운규
Keywords
RECHARGEABLE LITHIUM BATTERIES; SENSITIZED SOLAR-CELLS; TIO2 NANOFIBERS; PHOTOCATALYTIC ACTIVITY; LOW-TEMPERATURE; SURFACE-AREAS; TEMPLATE-FREE; THIN-FILM; ANATASE; HOLLOW
Issue Date
2017-03
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v. 5, no. 15, page. 6958-6965
Abstract
Porous transition metal oxides are widely used in energy storage applications owing to their unique physicochemical properties. However, the development of simple synthetic routes using cheap precursors without sacrificial templates still remains challenging. Herein we report a synthesis of hierarchical porous TiNb2O7 nanotubes via dual nozzle electrospinning as a high power anode material for LIBs. The porosity and dimensions of the nanotubes were controlled by varying the molar concentration ratio of Ti/Nb metal precursors to acetic acid and adjusting the degree of formation of Ti/Nb hydroxides in electrospun fibers. The TiNb2O7 nanotubes have a diameter of similar to 300 nm with tunable wall thickness and a surface area in the range of 52-151 m(2) g(-1). Moreover, the nanotubes have a hierarchical porous structure consisting of micropores below 2 nm and mesopores in the range of 560 nm in their walls that are connected to the macroscale inner hole with a diameter of 150 nm. The unique structure of the nanotubes enables a high discharge capacity of similar to 294 mA h g(-1), a stable cycle performance of 86% capacity retention over 700 cycles, and a superior rate capability of similar to 230 mA h g(-1) at high 50C, which is the highest retention ever reported to the best of our knowledge. Our strategy demonstrates a facile synthesis of hierarchical porous TiNb2O7 nanotubes without templates and their potential as a high power anode material for LIBs.
URI
https://pubs.rsc.org/en/content/articlelanding/2017/TA/C7TA00597K#!divAbstracthttps://repository.hanyang.ac.kr/handle/20.500.11754/113311
ISSN
2050-7488; 2050-7496
DOI
10.1039/c7ta00597k
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE