314 0

The effect of diverse metal oxides in graphene composites on the adsorption isotherm of gaseous benzene

Title
The effect of diverse metal oxides in graphene composites on the adsorption isotherm of gaseous benzene
Author
한태희
Keywords
Benzene; Sorption; Graphene oxide; Retrograde; Langmuir
Issue Date
2019-05
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citation
ENVIRONMENTAL RESEARCH, v. 172, Page. 367-374
Abstract
The effective removal technique is necessary for the real world treatment of a hazardous pollutant (e.g., gaseous benzene). In an effort to develop such technique, the adsorption efficiency of benzene in a nitrogen stream (5 Pa (50 ppm) at 50 mL atm min(-1) flow rate and 298 K) was assessed against 10 different metal oxide/GO composite materials (i.e., 1: graphene oxide Co (GO-Co (OH)(2)), 2: graphene oxide Cu (GO-Cu(OH)(2)), 3: graphene oxide Mn (GO-MnO), 4: graphene oxide Ni (GO-Ni(OH)(2)), 5: graphene oxide Sn (GO-SnO2), 6: reduced graphene oxide Co (rGO-Co(OH)(2)), 7: reduced graphene oxide Cu (rGO-Cu(OH)(2)), 8: reduced graphene oxide Mn (rGO-MnO), 9: reduced graphene oxide Ni (rGO-Ni(OH)(2)), and 10: reduced graphene oxide Sn (rGO-SnO2)) in reference to their pristine forms of graphene oxide (GO) and reduced graphene oxide (rGO). The highest adsorption capacities (at 100% breakthrough) were observed as similar to 23 mg g(-1) for both GO-Ni(OH)(2) and rGO-SnO2, followed by GO (similar to 19.1 mg g(-1)) and GO-Co(OH)(2) (similar to 18.8 mg g(-1)). Therefore, the GO-Ni(OH)(2) and rGO-SnO2 composites exhibited considerably high capacities to treat streams containing > 5 Pa of benzene. However, the lowest adsorption capacity was found for GO-MnO (0.05 mg g(-1)). Alternately, if expressed in terms of the 10% break-through volume (BTV), the five aforementioned materials showed values of 0.50, 0.46, 0.40, 0.44, and 0.39 L g(-1), respectively. The experimental data of target sorbents were fitted to linearized Langmuir, Freundlich, Elovich, and Dubinin-Radushkevich isotherm models. Accordingly, the non-linear Langmuir isotherm model revealed the presence of two or more distinct sorption profiles for several of the tested sorbents. Most of the sorbents showed type-III isotherm profiles where the sorption capacity proportional to the loaded volume.
URI
https://www.sciencedirect.com/science/article/pii/S0013935119300532?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/111895
ISSN
0013-9351; 1096-0953
DOI
10.1016/j.envres.2019.01.050
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ORGANIC AND NANO ENGINEERING(유기나노공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE