19 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author신동의-
dc.date.accessioned2019-08-27T00:32:21Z-
dc.date.available2019-08-27T00:32:21Z-
dc.date.issued2019-04-
dc.identifier.citationALGEBRAS AND REPRESENTATION THEORY, v. 22, NO 2, Page. 345-373en_US
dc.identifier.issn1386-923X-
dc.identifier.issn1572-9079-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs10468-018-9770-z-
dc.identifier.urihttp://repository.hanyang.ac.kr/handle/20.500.11754/109943-
dc.description.abstractIn this paper, we introduce an new combinatorial model, which we call generalized Young walls for classical Lie algebras, and we give two realizations of the crystal B() over classical Lie algebras using generalized Young walls. Also, we construct natural crystal isomorphisms between generalized Young wall realizations and other realizations, for example, monomial realization, polyhedral realization and tableau realization. Moreover, as applications, we obtain a crystal isomorphism between two different polyhedral realizations of B().en_US
dc.description.sponsorshipThe first author's research was supported by NRF Grant # 2015R1C1A2A01053319. The second author's research was supported by NRF Grant #2017R1D1A1B03028399.en_US
dc.language.isoenen_US
dc.publisherSPRINGERen_US
dc.subjectCrystalsen_US
dc.subjectGeneralized Young wallsen_US
dc.subjectTableauxen_US
dc.subjectNakajima monomialsen_US
dc.subjectKashiwara embeddingsen_US
dc.titleGeneralized Young Walls for Classical Lie Algebrasen_US
dc.typeArticleen_US
dc.relation.no2-
dc.relation.volume22-
dc.identifier.doi10.1007/s10468-018-9770-z-
dc.relation.page345-373-
dc.relation.journalALGEBRAS AND REPRESENTATION THEORY-
dc.contributor.googleauthorKim, Jeong-Ah-
dc.contributor.googleauthorShin, Dong-Uy-
dc.relation.code2019038283-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF EDUCATION[S]-
dc.sector.departmentDEPARTMENT OF MATHEMATICS EDUCATION-
dc.identifier.piddushin-
dc.identifier.orcidhttps://orcid.org/0000-0003-1774-2601-
Appears in Collections:
COLLEGE OF EDUCATION[S](사범대학) > MATHEMATICS EDUCATION(수학교육과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE