50 5

Application of instance-based entropy fuzzy support vector machine in peer-to-peer lending investment decision

Title
Application of instance-based entropy fuzzy support vector machine in peer-to-peer lending investment decision
Author
송재욱
Keywords
Entropy; support vector machines; financial management; decision support systems; peer-to-peer lending
Issue Date
2019-01
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE ACCESS , v.7 , Page. 16925-16939
Abstract
Loan status prediction is an effective tool for investment decisions in peer-to-peer (P2P) lending market. In P2P lending market, most borrowers fulfill the repayment plan; however, some of them fail to pay back their loans. Therefore, an imbalanced classification method can be utilized to discriminate such default borrowers. In this context, the aim of this paper is to propose an investment decision model in P2P lending market which consists of fully paid loans classified via the instance-based entropy fuzzy support vector machine (IEFSVM). IEFSVM is a modified version of the existing entropy fuzzy support vector machine (EFSVM) in terms of an instance-based scheme. IEFSVM can reflect the pattern of nearest neighbors entropy with respect to the change of its size instead of fixing it in unified neighborhood size. Therefore, IEFSVM allows the class change of nearest neighbors in the determination of fuzzy membership. Applying the model to the lending club dataset, we determine loans that are predicted to be fully paid. Then, we also provide a multiple regression model to generate an investment portfolio based on non-default loans that are predicted to yield high returns. Throughout the experiment, the empirical results reveal that IEFSVM outperforms not only EFSVM but also the six other state-of-the-art classifiers including the cost-sensitive adaptive boosting, cost-sensitive random forest, EasyEnsemble, random undersampling boosting, weighted extreme learning machine, and cost-sensitive extreme gradient boosting in terms of loan status classification. Also, the investment performance of the multiple regression model using IEFSVM is higher and more robust than that of two other benchmarks. In this regard, we conclude that the proposed investment model is a decent and practical approach to support decisions in the P2P lending market.
URI
https://ieeexplore.ieee.org/document/8629867http://repository.hanyang.ac.kr/handle/20.500.11754/108941
ISSN
2169-3536
DOI
10.1109/ACCESS.2019.2896474
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > INDUSTRIAL ENGINEERING(산업공학과) > Articles
Files in This Item:
Application of Instance-Based Entropy Fuzzy Support Vector Machine in Peer-To-Peer Lending Investment Decision.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE