216 0

Polyamino Acid Layer-by-Layer (LbL) Constructed Silica-Supported Mesoporous Titania Nanocarriers for Stimuli-Responsive Delivery of microRNA 708 and Paclitaxel for Combined Chemotherapy

Title
Polyamino Acid Layer-by-Layer (LbL) Constructed Silica-Supported Mesoporous Titania Nanocarriers for Stimuli-Responsive Delivery of microRNA 708 and Paclitaxel for Combined Chemotherapy
Author
최한곤
Keywords
c-FLIP inhibition; chemotherapy; mesoporous titania nanoparticles; microRNA 708; paclitaxel
Issue Date
2018-07
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 10, No. 29, Page. 24392-24405
Abstract
Cellular Fas-associated protein with death domain-like interleukin-1 beta-converting enzyme-inhibitory protein (c-FLIP), often strongly expressed in numerous cancers, plays a pivotal role in thwarting apoptosis and inducing chemotherapy resistance in cancer. An integrated approach combining chemotherapy with suppression of c-FLIP levels could prove paramount in the treatment of cancers with c-FLIP overexpression. In this study, we utilized a polymeric layer-by-layer (LbL) assembly of silica-supported mesoporous titania nanoparticles (MTNst) to co-deliver paclitaxel (PTX) and microRNA 708 (miR708) for simultaneous chemotherapy and c-FLIP suppression in colorectal carcinoma. The resulting LbL miR708/PTX-MTNst showed dose-dependent cytotoxicity in HCT-116 and DLD-1 colorectal carcinoma cell lines, which was remarkably superior to that of free PTX or LbL PTX-MTNst. LbL miR708/PTX-MTNst strongly inhibited c-FLIP expression and resulted in increased expression of proapoptotic proteins. In DLD-1 xenograft tumor-bearing mice, the nanoparticles accumulated in the tumor, resulting in remarkable tumor regression, with the PTX and miR708-loaded nanoparticles showing significantly greater inhibitory effects than the free PTX or PTX-loaded nanoparticles. Immunohistochemical analyses of the tumors further confirmed the remarkable apoptotic and antiproliferative effects of the nanoparticles, whereas organ histology reinforced the biocompatibility of the system. Therefore, the LbL miR708/PTX-MTNst system, owing to its ability to deliver both chemotherapeutic drug and inhibitory miRNA to the tumor site, shows great potential to treat colorectal carcinoma in clinical settings.
URI
https://pubs.acs.org/doi/abs/10.1021/acsami.8b06642https://repository.hanyang.ac.kr/handle/20.500.11754/105607
ISSN
1944-8244
DOI
10.1021/acsami.8b06642
Appears in Collections:
COLLEGE OF PHARMACY[E](약학대학) > PHARMACY(약학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE