Co3O4 Nanocrystals on Crab Shell-derived Carbon Nanofibers (Co3O4@CSCNs) for High-performance Supercapacitors

Title
Co3O4 Nanocrystals on Crab Shell-derived Carbon Nanofibers (Co3O4@CSCNs) for High-performance Supercapacitors
Author
유원철
Keywords
Biomass; N-doped carbon; Carbon nanofiber; Metal oxide nanocrystal; Supercapacitor
Issue Date
2018-03
Publisher
WILEY-V C H VERLAG GMBH
Citation
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, v. 39, No. 3, Page. 327-334
Abstract
Waste crab shell (CS) is implemented to prepare highly N-doped and CS-derived hierarchical porous carbon nanofibers (CSCNs) capable of high-performance supercapacitors combining with Co3O4 nanocrystals. The fiber nature of the exoskeleton of CSs is transformed to N-containing organic nanofibers, which are carbonized and subsequently activated by hot CO2 treatment to control the specific surface area (SSA) and pore size distribution (PSD). The interwoven bundles of CSCNs present intrinsic macroporosity whereas mesopores (˂10 nm) are generated at the interspace between CSCNs. The CO2-activated CSCNs show an ultra-high SSA of 2430 m(2)/g, combining with N-doping levels of 2.1 wt %. In addition, highly N-doped hierarchical CSCNs are utilized as supercapacitors hybridized with Co3O4 nanocrystals (Co3O4@CSCN). The Co3O4@CSCN exhibits superior capacitances of 508 F/g at 1 A/g, outstand rate capacitances and 374 F/g (74%) even at 50 A/g, and excellent long-term cycling stability of 470 F/g (95%) at 2 A/g over 10 000 cycles. Such excellent electrochemical performance is attributed to the synergic effect of redox sites and electric double layer capacitance of highly porous CSCNs, augmented electric conductivity and wettability due to N-doping, enhanced charge transfer caused by small crystal sizes and large interfaces of CSCNs, and easy electrolyte diffusion due to the genuine hierarchy of CSCN.
URI
https://onlinelibrary.wiley.com/doi/full/10.1002/bkcs.11389http://repository.hanyang.ac.kr/handle/20.500.11754/105425
ISSN
1229-5949
DOI
10.1002/bkcs.11389
Appears in Collections:
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E](과학기술융합대학) > CHEMICAL AND MOLECULAR ENGINEERING(화학분자공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE