46 0

Solution-processed indium-free ZnO/SnO2 bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities

Title
Solution-processed indium-free ZnO/SnO2 bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities
Author
장재영
Keywords
DOPED ZNO; FABRICATION; TRANSPARENT; ULTRAVIOLET; ACTIVATION
Issue Date
2016-12
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v. 4, NO 47, Page. 11298-11304
Abstract
The realization of high performance solution-processable metal oxide thin-film transistors (TFTs) with low annealing temperatures remains a challenge in the field of flexible and/or transparent electronics. Indium-based metal oxides are one of the most widely used materials as channel layers of metal oxide TFTs. However, the need for developing indium-free metal oxide materials has become urgent because of the high cost and limited supply of indium. Herein, we report high-performance solution-processed indium-free metal oxide TFTs prepared with low annealing temperatures by introducing ZnO/SnO2 bilayer heterostructures. After photo- and thermal annealing, ZnO/SnO2 bilayers form a unique nanostructure composed of three zones: Zn-only, Zn-Sn-mixed, and Sn-rich zones. The resulting ZnO/SnO2 TFTs exhibit outstanding mobility values as high as 15.4 cm(2) V-1 s(-1) with a low annealing temperature of 300 degrees C. These values are the highest yet measured among indium-free and solution processed metal oxide TFTs prepared under similar annealing conditions. The ZnO/SnO2 TFTs also show remarkable outstanding operational stabilities under various external bias stresses. Their high performances and excellent stabilities can be attributed to the combinational effects of the highly conductive ultrathin Sn-rich channel and balanced carrier concentrations in the Zn-Sn-mixed region. We believe that our work provides a facile route to prepare inexpensive solution-processed electronic devices with earth-abundant materials such as backplane circuits for large-area and flexible displays.
URI
https://pubs.rsc.org/en/content/articlehtml/2016/tc/c6tc03977dhttp://repository.hanyang.ac.kr/handle/20.500.11754/101782
ISSN
2050-7526; 2050-7534
DOI
10.1039/c6tc03977d
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE