TY - JOUR AU - 윤준용 DA - 2018/07 PY - 2018 UR - https://www.mdpi.com/1996-1073/11/7/1864/htm UR - https://repository.hanyang.ac.kr/handle/20.500.11754/81223 AB - The present paper describes some aspects of the bubble size and concentration of a microbubble pump with respect to flow and pressure conditions. The microbubble pump used in the present study has an open channel impeller of a regenerative pump, which generates micro-sized bubbles with the rotation of the impeller. The bubble characteristics are analyzed by measuring the bubble size and concentration using the experimental apparatus consisting of open-loop facilities; a regenerative pump, a particle counter, electronic flow meters, pressure sensors, flow control valves, a torque meter, and reservoir tanks. To control the intake, and the air flowrate upstream of the pump, a high precision flow control valve is introduced. The bubble characteristics have been analyzed by controlling the intake air flowrate and the pressure difference of the pump while the rotational frequency of the pump impeller was kept constant. All measurement data was stored on the computer through the NI (National Instrument) interface system. The bubble size and concentration are mainly affected by three operating parameters: the intake air flowrate, the pressure difference, and the water flowrate supplied to the pump. It is noted that the operating conditions that can most effectively generate microbubbles in the range of 20 to 30 micrometers are at the pressure of 5 bar and at the air flowrate ratio of 4.0 percent for the present pump. Throughout the experimental measurements, it was found that the pump efficiency changed by less than 1.2 percent, depending on the intake air supply. The performance characteristics of microbubble generation obtained by experimental measurements are analyzed and discussed in detail. PB - MDPI AG KW - microbubble pump KW - bubble generation KW - pump efficiency KW - bubble size KW - concentration KW - particle counter TI - Bubble Size and Bubble Concentration of a Microbubble Pump with Respect to Operating Conditions IS - 7 VL - 11 DO - 10.3390/en11071864 T2 - ENERGIES ER -