
Specifying a WS-ECA Working Framework for Ubiquitous Web Services in 
Object-Process Methodology 

 
Haining Lee1, Jaeil Park1*Corresponding author, Peom Park1, Dongmin Shin2

1 Industrial & Information System Engineering, Ajou University, 
San 5, Woncheon-dong, Yeongtong-gu, Suwon, 443-749, Korea 

2 Department of Information and Industrial Engineering, Hanyang University,  
Ansan. 1217, Kyunggi-do, Korea 

leehaining@ajou.ac.kr, jipark@ajou.ac.kr, ppark@ajou.ac.kr, dmshin@hanyang.ac.kr 
 

 
Abstract 

 
The Web Services-Event-Condition-Action (WS-

ECA) framework is designed to enable the 
heterogeneous communication devices in Ubiquitous 
Computing Environments to achieve inter-operability 
via event-driven coordination. Object-Process 
Methodology (OPM) is an integrated modeling method 
that unifies the function, structure and behavior of a 
system. This paper presents specifying a WS-ECA 
framework for ubiquitous web services in OPM. In 
addition, we propose a dynamic conflict detection and 
resolution method in which dynamic conflicts are 
detected by examining the post-conditions of services 
being triggered and are resolved by acquiring user 
priority, service priority, and user’s service preference. 
 
1. Introduction 

 
Ubiquitous computing is a post-desktop model of 

human-computer interaction in which information 
processing has been enhanced by making computing 
access everywhere throughout a dynamic set of small 
networked devices [1]. Devices with particular 
functions and services in ubiquitous computing 
environments provide their own services by interacting 
with each other via various types of network. 

Web service technologies (WST) are rapidly 
emerging as an effective means for achieving inter-
operability in ubiquitous computing environments 
thanks to their well-defined and widely accepted 
Internet protocol [2]. It has become a de facto standard 
for integrating business applications [3]. The use of 
web service technologies in ubiquitous computing 
environments that requires timely notification of 
services available raises the need of developing the 
most effective coordination method among services. 

Event-Condition-Action (ECA) rules have been 

introduced in database systems to facilitate event-
driven coordination. Ubiquitous web service 
coordination has taken the ECA rule-based approach to 
coordinate various distributed devices in ubiquitous 
computing environments [4]. To define various web 
services and their interactions throughout distributed 
devices, in particular, the Web Services-ECA (WS-
ECA) rule description language is introduced, which 
can abstract a wide variety of reactive behaviors of 
various ubiquitous web services as well as service 
interactions [5]. Therefore, distributed devices 
embedded with ECA rules described in WS-ECA 
language can be triggered by event and provide their 
services [6]. 

The WS-ECA rules registered for ubiquitous web 
services can be requested simultaneously by multiple 
users. At build-time and run-time, some rules may have 
inconsistencies with others, which cause conflicts when 
triggered and executed. The notion of a service 
constraint set, which is a set of not being allowed to 
occur at the same time, is proposed for the dynamic 
conflict detection and resolution method [7]  

The OPM is a useful methodology to graphically 
specify systems in a single unified model that describes 
the static-structural and behavioral-procedural aspects 
of systems [8]. The building blocks of OPM are objects, 
processes, states, and structural and behavioral links 
and are represented in a set of graphical diagram and 
text [9-10]. In this paper, we use OPM to specify a 
WS-ECA framework for ubiquitous web services. In 
addition, we propose a conflict detection method by 
examining the post-conditions of services being 
triggered and a resolution method by acquiring user 
information regarding user priority, service priority, 
and user’s service preference. In Section 2, the WS-
ECA framework for ubiquitous web services is 
presented, and Section 3 briefly introduces OPM. 
Section 4 shows how the WS-ECA framework is 
specified in OPM and proposes a conflict detection and 

51

International Journal of Digital Content Technology and its Applications
Vol. 2 No 1, March 2008



resolution method for ubiquitous service management. 
Section 5 concludes the paper. 
 
2. WS-ECA framework  

 
ECA rules perform actions in response to events 

when stated conditions are satisfied. Likewise, WS-
ECA rules consist of events, conditions and actions: 1) 
events are notification messages from services or users, 
2) conditions are a Boolean expression that must be 
satisfied in order to activate devices, and 3) actions are 
instructions that invoke services or generate events [7]. 

Service devices distributed in ubiquitous computing 
environments provide specific web services or generate 
events via publish/subscribe mechanism of WS-
Eventing and the web service invocation based on 
SOAP messaging [11-12]. Those service devices can 
be specified and managed using an XML-based WS-
ECA rule description. That is, WS-ECA rules enable 
service devices to activate sequentially or concurrently 
via event based interaction.  

To satisfy requirements that are necessary for 
effective coordination among ubiquitous service 
devices, WS-ECA rules are designed such that the WS-
Eventing module collects and delivers event 
notification to devices. Devices interact with each other 
over event notifications. When an ECA rule is 
triggered by an event and its condition is satisfied, the 
corresponding device sends a service request to the 
service managing module which manages conflict 
detecting and resolving, service performing and service 
monitoring. If no conflict is detected, the service 
request will be approved. 

 

 
Figure 1. WS-ECA framework 

 
 
 
 

3. The Object-Process Methodology  
 
The Object-Process Methodology (OPM) 

incorporates the static-structure and behavioral 
procedural aspects of a system into a single unifying 
model. The basic premise of OPM is that objects and 
processes are two types of equally important classes of 
things, which together describe the function, structure 
and behavior of a system in virtually any domain. The 
OPM specifies an object class with states. At any point 
in time, each object is at one state and is moved to 
other state through the occurrence of a process.  

OPM unifies the system lifecycle stages-
specification, design and implementation-within one 
frame of reference, using a single diagramming tool- a 
set of Object-Process Diagrams (OPDs) and a 
corresponding subset of constrained natural language, 
called Object-Process Language (OPL). A set of OPDs 
or its corresponding OPL script completely specifies a 
system [9]. Table 1 shows the main OPM elements, 
symbols and semantics [9] and Figure 2 illustrates how 
OPDs are used to specify the wedding example and 
shows resultant OPL.  

 

Table 1. Main OPM elements, their symbols and 
semantics 

 

Specifying a WS-ECA Working Framework for Ubiquitous Web Services in Object-Process Methodology
Haining Lee, Jaeil Park, Peom Park, Dongmin Shin

52



4.1 ECA Rules   

 

 
ECA rules are used to express control flows for 

ubiquitous web services. These rules specify each 
action (Triggering Process), its triggering event (Event), 
and its guarding condition (Activating Condition).  An 
action is executed when a triggering event occurs, if 
and only if the guarding condition is fulfilled. Figure 4 
is the OPD of an ECA rule. All devices providing 
services are registered in ECA Rules.  

 

Figure 2.  OPDs and OPL script of wedding example 
in OPM 

 
4. Specifying a WS-ECA working 
framework for ubiquitous web services in 
OPM 

 
The WS-ECA working framework for ubiquitous 

web services can be efficiently specified by OPM. 
Figure 3 shows a top-level OPD specifying the WS-
ECA working framework, which presents the 
triggering and conflict detecting processes of ECA 
rules. It shows all the objects and processes which take 
part in this framework: Global Rule Manager, ECA 
Rules, and Activated Services. Global Rule Manager 
keeps conflict and resolution rules and enables Build-
Time Checking, Run-Time Conflict Detecting, and 
Conflict Resolving. 

Figure 4.  OPD of an ECA rule  
 
An ECA Rule is composed of Event, Condition and 

Action. Figure 5 is a blow-up of ECA Rules.  
 

 Event: an event is the incident which triggers a rule. 
It has three types: 1) External events, which are 
generated by devices; 2) Internal events, which are 
generated by the internal system components, and 
3) Time events, which are generated by a timer at 
some specific point or period of time. 

Build-time Conflict Checking and Run-time 
Conflict Detecting processes detect conflicts between 
rules at build-time and run-time respectively according 
to the conflict rules that are kept in Global Rule 
Manager. Build-time Conflict Checking examines if a 
set of rules violates conflict rules when registering 
ECA Rules. Triggering Process is enabled by an event 
generated by User and at the same moment invokes 
Run-Time Conflict Detecting. If the outcome of Run-
Time Conflict Detecting is true, Conflict Resolving 
Process is enabled. Otherwise, Triggered Process is 
activated, which would change the state of Devices 
and/or Environment. 

 Condition: the condition part of an ECA rule is a 
Boolean statement that must be satisfied to activate 
a rule. The condition statement is expressed in 
terms of an XPath expression in which Event 
Variables, Environment Variables and Device 
Variables are used. The environment variables and 
device variables are provided by devices and 
environment. 

 Action: the action part of a ECA rule is the actions 
that must be executed when a triggered rule is 
activated. Actions can be one or combination of the 
following types: 1) Service Invoking, which 
invokes a service, 2) ExEvent Creating, which 
creates external event, 3) IntEvent Creating, which 
creates internal event. 

In WS-ECA framework, all devices are described 
and coordinated by using ECA rules. These rules are 
stored and managed by ECA Rules. Activated Services 
is a set of running services and used for detecting run-
time conflicts. In what follows, the WS-ECA 
framework is further in-zoomed to show sub-processes 
including Run Time Conflict Detecting and Conflict 
Resolving. 

 
Devices and Environment provide their variables to 
ECA Rules such as state variables that are used to 
detect conflicts by Global Rule Manager. 

 

 

53

International Journal of Digital Content Technology and its Applications
Vol. 2 No 1, March 2008



Figure 3.  Top Level OPD of the WS-ECA framework 
 

 
Figure 5. OPD of ECA Rules 

Specifying a WS-ECA Working Framework for Ubiquitous Web Services in Object-Process Methodology
Haining Lee, Jaeil Park, Peom Park, Dongmin Shin

54



4.2 Global Rule Manager  
 
Global Rule Manager has Conflict Rules and 

Resolution Rules. Conflict Rules define potential 
conflicts between different services and are used to 
detect ECA rules’ conflicts at build-time (static 
conflicts). Dynamic conflicts are detected by 
examining the post-conditions of existing and new 
requested services. A service of opening a window 
while an air conditioner is currently working is a 
representative example of static conflicts. The 
following is the corresponding xml: 
 

<Conflict Rules> 
      <Conflict Rule> 
              <conflict name=’air conditioner conflict’> 
                   <A>air conditioner=on</A> 
                   <B>window=open</B> 
              </conflict> 
      </Conflict Rule> 
</Conflict Rules> 

 
Resolution Rules provides a means for expressing 

various ways to resolve dynamic conflicts. User 
priority, service priority, and user’s service preference 
comprise Resolution Rules. The detail of the use of 
Resolution Rules in Global Rule Manager is discussed 
in Section 4.5.  
 
4.3 Activated Services  

 
Activated Services is a set of running services. 

When a service is activated, the service is registered to 
Activated Services. These are used to detect run-time 
conflicts by Run-Time Conflict Detecting. For 
example, when Rock Music Playing Service whose 
service id is 001 is activated at 17:00 and is expected to 
last for 30minutes (1800seconds), the service registers 
its service information to Activated Services. The 
following is the corresponding xml: 

 
<Activated Service Info> 
      <Service name=Rock Music Playing id=001 
time=17:00 period=1800 /> 
</Activated Service Info> 
 
4.4 Run-Time Conflict Detecting  

 
With post-conditions, the effects of Triggering 

Process can be predicted. Device and Environment 
register their states to ECA rules. The states can be 

categorized into pre- and post-state. When an event 
occurs in a situation when condition is true, and there is 
no conflict found, then the triggered action would 
change the pre-state of Device and/or Environment to 
its post-state. These post-states affected by Triggered 
Process are named post-condition. Figure 6 shows the 
post-conditions of triggered process. 

 

 

Device Variable 

Figure 6. Post conditions of triggered process 
 
As shown in Figure 3, Triggering Process invokes 

Run-Time Conflict Detecting, which is a process of 
getting the post-conditions of triggering process from 
ECA Rules and comparing them with the post-
conditions of services running in Activated Services. If 
a conflict is found, Conflict Notification is generated. If 
no conflicts are found, Triggering Process initiates 
Triggered Process that changes the state of Device and 
Environment Variable. Figure 7 is a blow-up of Run-
Time Conflict Detecting of the top level OPD of the 
WS-ECA framework. For example, when Jack enters 
room (Event “Jack enters room” occurs), if there is no 
music playing (Condition “No music is playing” is 
true), process “Rock Music Playing” would be 
triggered (Triggering Process). The rock music service 
is modeled in OPD as shown in Figure 8. 

 

 
Figure 8. Rock music playing service example 

55

International Journal of Digital Content Technology and its Applications
Vol. 2 No 1, March 2008



 
Figure 7. Run-time conflict detecting process 

 
If the rock music playing service is activated, the 
power state of a CD player will be set to “on”, the 
sound intensity will be changed to 40db, and the type 
of music will be set as “rock music”. Before activating, 
this rock music playing service invokes Run-Time 
Conflict Detecting to check if there is a potential 
conflict at run-time. The post-conditions of rock music 
playing (Triggered Process) and their xml are shown in 
Figure 9. 

 
Figure 9. Post-conditions and their xml of rock music 

playing service 
 

<Post conditions> 
      <Post condition service_name=Rock Music Playing             
 service_id=001> 
         <aim user name=Jack id=101 /> 
          <device> 
              <device_sate name=CD player’s power  
  id=010 value=on />  
          </device> 
          <environment> 
                 <environment_variable  
 name=sound_intensity id=020 value=40db/> 
                 < environment_variable name=music_type 
  id=021 value=rock> 
          </environment> 

</Post condition> 
</Post conditions> 

 
If a keep quiet service is already running with the 
following post-condition: 
 

<environment_variable name=sound_intensity id=020 
value=<20db/> 
 

Obviously, the post-condition of the rock music 
playing, “sound intensity=40db” is conflicting with that 
of the keep quite service, “sound intensity<20db”. The 

Specifying a WS-ECA Working Framework for Ubiquitous Web Services in Object-Process Methodology
Haining Lee, Jaeil Park, Peom Park, Dongmin Shin

56



Service-Service conflict is detected. This conflict can 
be resolved, which is discussed next. 

 
4.5 Conflict Resolving 
 

Conflicts occur because of different services 
competing on the same exclusive resources or 
environmental variables. Avoiding potential conflicts is 
the best strategy to resolve them. If potential conflicts 
can not be defined and avoided, however, it relies on 
the conflict resolution rule. 
 
4.5.1 Conflict Avoiding 
 

Our strategy for conflict avoiding is using a “no 
disturb” slip to show the exclusive use of a device or 
environmental variable (temperature, luminance, etc). 
Whenever a service is using a device or an 
environmental variable and does not want to be 
disturbed, it should register a “no disturb” slip to 

Global Rule Manager. When other services try to use 
the device or environmental variable with “no disturb” 
slip, Global Rule Manager would inform that they are 
already in exclusive use and can not be disturbed. This 
slip avoids potential conflicts. If no “no disturb” slip is 
registered for a service, the service can be conflicting 
with other requesting services. To address this conflict, 
a conflict resolving method is needed. 
 
4.5.2 Conflict Resolution Rule 
 

The conflicts between different services can be 
classified into two types: 1) Single User Conflict: 
When conflicting services are provided to the same 
user, this type of conflict is called Single User’s 
Service-Service Conflict and 2) Multi-Users Conflict: 
When conflicting services are provided to different 
users, this conflict is called Multi-Users Conflict. 
These conflicts can be resolved by acquiring user 
priority, service priority, and user’s service preference.  

 

 
Figure 10. Conflict Resolving Process 

 
Single User Conflict Resolving 

 
Single User Conflict can be resolved by executing 

the service with higher priority. If conflicting services 
have the same priority, Global Rule Manager would 

check user’s service preference record. The service 
which is compatible with user’s preference would be 
executed. When there is no user’s preference record, 
Global Rule Manager would let the user decide which 
service to be executed. 

57

International Journal of Digital Content Technology and its Applications
Vol. 2 No 1, March 2008



 
Multi-Users Conflict Resolving 
 
When two services providing to different users are 
conflicting, the service requested by higher user 
priority would be executed. If both users have the same 
priority, the service with higher service priority is 

executed.  Once conflict can not be solved by user 
priority and service priority, the decision will be made 
by the conflict-maker who invokes the conflicting 
service. When there’s no conflict-maker’s service 
preference record, Global Rule Manager resolves the 
conflict according to conflict-maker’s service 
preference or decision. 

 

 
Figure 11. Single User Conflict Resolving  

 
User priority, service’s priority, user’s service 

preference are kept in Conflict Resolution Rule. An 
example of xml description of Conflict Resolution Rule 
is shown below: 

 
<Conflict Resolution Rule> 
     <User priority> 
          <user name=Dad id=101 priority=001 /> 
          <user name=Mom id=102 priority=001 /> 
          <user name=Child id=103 priority=002 /> 
     </User priority> 
     <User’s preference> 
          <user neme=Dad id=101> 
                <environment_variable  name=light id=020 
value=on/> 
          </user> 
     </User’s preference> 
     <Service priority> 

          <service name=sleep id=011  priority=001> 
          <service name=lighting id=012 priority=001> 
          <service name=music id=013 priority=002> 
     </Service priority> 
</Conflict Resolution Rule> 

 
This resolution rule describes that Dad and Mom 

have the same user priority (001) which is higher than 
Child’s priority (002). Dad prefers the light to be on. 
And Sleep Service’s Service Priority is the same with 
Lighting Service, which is higher than the Music 
Service. When Mom’s sleeping, Sleep Service is 
activated. A conflict occurs when Child wants to listen 
to the music and activates Music Service. Global Rule 
Manager checks Conflict Resolution Rule that Mom’s 
priority is higher than Child’s. Then Child’s Music 
Service will be prevented unless Sleep Service stops. 

When Dad comes in at night and tries to turn on the 

Specifying a WS-ECA Working Framework for Ubiquitous Web Services in Object-Process Methodology
Haining Lee, Jaeil Park, Peom Park, Dongmin Shin

58



light, if Mom’s Sleep Service already has a “No 
Disturb” slip, the light would not be turned on and 
potential conflict is avoided. If there is no “No Disturb” 
slip registered, Global Rule Manager checks Dad’s 
User Preference and finds that Dad’s priority can not 

solve the conflict since Dad and Mom have the same 
priority. According to Dad’ service preference, 
Lighting Service would be activated because Dad 
prefers light to be on while Sleeping Service on. 

 

 
Figure 12. Multi-Users Conflict Resolving  

5. Conclusion 
 
In this paper we present specifying a WS-ECA 

framework for ubiquitous web services in Object-
Process Methodology (OPM), which presents that the 
WS-ECA framework can be easily specified and 
understood as a whole in OPM via a set of Object 
Process Diagrams. In addition, we propose a practical 
conflict detection method based on the post-conditions 
of services being triggered and user information. By 
comparing the post-conditions of various services with 
conflict rules, potential conflicts can be detected. To 
resolve conflicts, we rely on user information regarding 
users’ priority, service priority, and user’s preference. 
Also “no disturb” sign strategy is used to avoid 
potential conflicts. 

Our future work will address the resolution rules for 

conflict resolution and focus on its application to the 
health care domain. In addition, we will make an 
attempt to developing auto-code generation from OPDs 
to a practical programming language in order to 
generate WS-ECA rules in xml format.  
 
6. Acknowledgements 
 
This research is supported by the Ubiquitous 
Computing and Network (UCN) Project, the Ministry 
of Information and Communication (MIC) 21st 
Century Frontier R&D Program in Korea 
 
 
 
 
 

59

International Journal of Digital Content Technology and its Applications
Vol. 2 No 1, March 2008



7. References 
 
[1] M. Satyanarayanan, “Pervasive Computing: Vision and 
Challenges”, IEEE Personal Communications, 2001, pp. 10 -
17. 
 
[2] A. Sashima, N. Izumi, and K. Kurumatani, “Location-
Mediated Coordination of Web Services in Ubiquitous 
Computing”, Proceeding of IEEE Int’l Conf. WebServices 
(ICWS’04),  2004, pp. 109-114  
 
[3] S. Vinoski, “ Integration with Web Services”, IEEE 
internet computing, 2003, vol. 7(6), pp.75-77 
 
[4] J. Bailey, A. Poulovassilis, and P. Wood, “An Event-
Condition-Action Language for XML”, Proceedings of the 
11th Int. Conf. on the World Wide Web, 2002. 
 
[5] W. Lee, S. Lee, and K. Lee, “Conflict Detection and 
Resolution Method in WS-ECA Framework”, ICACT 2007 
 
[6] J. Jung, S. Han, J. Park, and K. Lee, “WS-ECA: An ECA 
Rule Description Language for Ubiquitous Services 
Computing”, Edinburgh, UK, 2006 
 
[7] J. Jung, J. Park, S. Han, and K. Lee, ” An ECA-based 
Framework for Fecentralized Coordination”, Information and 
Software Technology (2006), in press 
 
[8] D. Dori, Object-Process Methodology: a holistic System 
paradigm, Springer; New York, 2002  
 
[9] D. Dori, “Object-process Analysis: Maintaining the 
Balance Between System Structure and Behaviour”, Journal 
of Logic and Computation 1995 5(2):227-249. 
 
[10] A. Sturm, D. Dori, and O. Shehory, “Single-Model 
Method for Specifying Multi-Agent. Systems”, AAMAS 
2003. 
 
[11] J. Hanson, “Event-driven services, in: SOA: design an 
event-driven and service-oriented platform with Mule”, 
JavaWorld, 2005. Available from:  
<http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-
soa.html/>. 
 
[12] B. Michelson, “Event-driven architecture overview: 
event-driven SOA is just part of the EDA story”, White paper, 
Patricia Seybold Group, 2006. Available from:  
http://www.psgroup.com/detail.aspx?ID=681/ 
 
Authors’ bio. 
 
Jaeil Park is an Assistant Professor of Industrial and 
Information Systems Engineering at Ajou University. 
He received his Ph.D. in 2005 in Industrial and 
Manufacturing Engineering from the Pennsylvania 
State University, his M.S. in 1997 in Iron and Steel 

Technology and his B.S. in 1995 in Mechanical 
Engineering from Pohang Science and Technology. 
 
Dongmin Shin received the B.S. and the M.S. degrees 
in industrial engineering from Hanyang University, 
Seoul, Korea, in 1994 and Pohang University of 
Science and Technology (POSTECH) in 1996, 
respectively. He earned his Ph.D. degree in The 
Department of Industrial and Manufacturing 
Engineering at the Pennsylvania State University in 
2005.  
 
Peom Park received his Ph.D. degree in IMSE of Iowa 
State University and is a Profess of Industrial & 
Information Systems at Ajou University since 1995. He 
is currently a CEO of Humintec CO., Ltd working on 
Ubiquitous Telemedicine HCI (UCN-Korea) and 
Mobile & RFID POC(MIC-Korea). 
 
Haining Lee received his B.S. degree in Electronics 
from Tsinghua University in China and is currently a 
master student in Industrial & Information Systems at 
Ajou University. 

Specifying a WS-ECA Working Framework for Ubiquitous Web Services in Object-Process Methodology
Haining Lee, Jaeil Park, Peom Park, Dongmin Shin

60




