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ABSTRACT

Background and rationale. Non-alcoholic hepatic steatosis refers to the accumulation of triglycerides in
the liver in the absence of alcohol consumption. Granulocyte colony-stimulating factor (G-CSF) has been
reported to be an effective treatment for a variety of liver diseases. We examined the possible therapeu-
tic effects of G-CSF on non-alcoholic hepatic steatosis in rats. Material and methods. Thirty-week-old
Otsuka Long Evans Tokushima Fatty (OLETF) rats received water containing 30% sucrose for 8 weeks to pro-
mote the development of non-alcoholic hepatic steatosis. After development of the model, the rats were
injected with G-CSF (100 µg/kg/day) or saline for 5 days. Four weeks after this treatment, serum levels of
glucose, total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransfera-
se (AST) and free fatty acids (FFA) were measured. Histology was examined by hematoxylin and eosin (H-E)
and periodic acid Schiff (PAS) staining, and levels of expression of hepatic lipogenic enzymes were deter-
mined by RT-PCR. Results. The G-CSF-treated rats displayed significantly fewer lipid droplets than the
saline-treated rats (P < 0.01), and their levels of sterol regulatory element-binding protein (SREBP)-1c,
fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) mRNAs were also lower (P < 0.01), as were
their liver weight and serum levels of TG and FFA (P < 0.05). Conclusion. Our results indicate that G-CSF
ameliorated non-alcoholic hepatic steatosis in the OLETF rat, and this therapeutic effect involved a reduc-
tion of SREBP-1c expression. Therefore, G-CSF deserves further study as a potential treatment for
non-alcoholic hepatic steatosis.
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INTRODUCTION

Non-alcoholic hepatic steatosis refers to the
accumulation of triglycerides in the liver in
the absence of alcohol consumption.1 It is an early
stage of non-alcoholic fatty liver disease (NAFLD).2

NAFLD is a major health problem affecting about
20 percent of the general population,3,4 and hepatic
steatosis has been reported in 48.7% of morbidly
obese patients.5 Non-alcoholic hepatic steatosis is

frequently associated with obesity and insulin re-
sistance.6,7 When accompanied by other metabolic
disorders, it can progress to severe NAFLD, non-
alcoholic steatohepatitis, fibrosis, and ultimately
cirrhosis.8-10 Steatosis has been considered the
“first hit” in a “two-hit hypothesis” for the develo-
pment of NAFLD.11 At present there is no effective
treatment for non-alcoholic hepatic steatosis. Lifes-
tyle changes, similar to those recommended for obesity,
are the best therapeutic option,12 but they are hard
to achieve. Therefore effective drug treatments are
needed.

Granulocyte colony-stimulating factor (G-CSF) is
widely used to mobilize hematopoietic stem cells,13,14

and has been reported to be an effective treatment
for a variety liver diseases. For example, one study
demonstrated that G-CSF ameliorated acute hepatic
failure by enhancing the homing of transplanted
bone marrow mononuclear cells to the liver.15
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Another study showed that G-CSF protected liver
tissue from collagen deposition in carbon tetra-
chloride (CCl4)-induced liver fibrosis in mice.16

However the therapeutic effect of G-CSF on non-al-
coholic hepatic steatosis, the first step in NAFLD, is
unknown, although the authors have previously
studied the effect of G-CSF on diabetic cardiomyopathy
in rats.17

We therefore have investigated the effect of
G-CSF administration on non-alcoholic hepatic stea-
tosis and on the mRNAs encoding hepatic lipogenic
enzymes sterol regulatory element-binding protein-
1c (SREBP-1c), fatty acid synthase (FAS), and
acetyl-CoA carboxylase (ACC).

MATERIAL AND METHODS

Animals

This study was performed in compliance with the
ARRIVE guidelines on animal research,18 and
the Hanyang University Institutional Animal Care
and Use Committee approved all protocols. We used
male Otsuka Long Evans Tokushima Fatty (OLETF)
rats and control Long-Evans Tokushima Otsuka
(LETO) rats, supplied by the Tokushima Research
Institute, Otsuka Pharmaceutical (Tokushima,
Japan). We used the OLETF rats as an animal mo-
del of non-alcoholic hepatic steatosis. OLETF rats
are well-established animal models of obesity,19 type 2
diabetes mellitus,20 and NAFLD21,22 as well as hepa-
tic steatosis.23,24 The animals were maintained in the
Hanyang University Medical School Animal Experi-
ment Center and were kept in a specific pathogen-
free facility at controlled temperature (23 ± 2 oC)
and humidity (55 ± 5%) with a 12-h artificial
light and dark cycle.

Animal model and
experimental protocol

Starting at 30 weeks of age, all the OLETF rats
received water containing 30% sucrose for 8 weeks
to facilitate the development of non-alcoholic hepatic
steatosis. After steatosis had been induced, the rats
received no more sucrose water. The LETO rats, as
normal controls, received water without sucrose.
The development of non-alcoholic hepatic steatosis
was confirmed by hematoxylin and eosin (H-E) and
periodic acid Schiff (PAS) staining. At 38 weeks the
OLETF rats were randomly divided into a G-CSF-
treated group (G-CSF 100 µg/kg/day intraperitoneally
for 5 days; Leucostim, Dong-A Pharmaceutical,

Korea, n = 5) and a saline-treated group (n = 4).
The LETO rats (n = 4) were injected only with sa-
line. Four weeks after the treatment, blood was co-
llected for biochemical analysis, and the animals
were killed under anesthesia. Immediately after
death, the abdomens were opened and the livers
were quickly removed for histopathological exami-
nation.

Biochemical analysis

Blood samples were taken from the tail vein after 8 h
of fasting. Serums were obtained by centrifugation,
and stored at -70 oC. Serum glucose, total cholesterol
(TC), triglyceride (TG), alanine aminotransferase
(ALT), aspartate aminotrans (AST) and free fatty
acids (FFA) were measured with an Olympus AU400
auto analyzer (Olympus GmbH, Germany).25

Histological examination

To examine liver morphology, 4% paraformalde-
hyde-fixed paraffin-embedded liver sections of 3 µm
thickness were stained with H-E and PAS. De-
grees of hepatic steatosis were estimated by oil red
O staining of frozen 3 µm sections.26 Three areas
of digitized images of the oil red O-stained liver
sections were selected at random from the indivi-
dual sections and analyzed with Image-Pro Plus
software (Media Cybernetics, MD, USA). Steatosis
was calculated as a percentage of the ratio of the
area of oil red O stained lipid droplets to total tis-
sue area.23,24

Quantitative real-time
polymerase chain reaction (PCR)

Total RNA was extracted from 20 mg samples of
liver tissue using Qiazol reagent (Qiagen, Valencia,
CA) following the manufacturer’s instructions. RNA
concentrations were measured with a Nanodrop
ND-2000 spectrophotometer (Thermo Fisher Scienti-
fic Inc., DE, USA), and purity was determined by
measuring ratios of A260 and A280, which ranged
from 1.8 to 2.0.

For the real-time PCR, 3 µg RNA samples were
reverse-transcribed with Moloney murine leukemia
virus reverse transcriptase (Invitrogen Co., CA,
USA). The mRNA expression was quantified using
real-time PCR (Roche, Basel, Switzerland) with the
LightCycler® FastStart DNA Master SYBR Green I
kit (Roche Diagnostics, IN, USA).
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The primers used were:

• SREBP-1c:
° 81 bp, sense: 5’-GCT ACC GTT CCT CTA TCA

ATG ACA A-3’.
° Anti-sense: 5’-CAG ATT TAT TCA GCT TTG

CCT CAG T-3’.

• FAS:
° 99 bp, sense: 5’-TCC ACA GCT CTT ACA GTG

AGA ATC A-3’.
° Anti-sense: 5’-CTT CTC CAG GGT GGG GAC

CAG-3’.

• ACC:
° 97 bp, sense: 5’-AGA GTG AGT GCT CTC

AAT TCT GTC C-3’.
° Anti-sense: 5’-GTC CTT CTT CTT TCC CGA

TAA TGT C-3’.

• GAPDH:
° 96 bp, sense: 5’-CCT TCT CTT GTG ACA AAG

TGG ACA T-3’.
° Anti-sense: 5’-CGT GGG TAG AGT CAT ACT

GGA ACA T-3’.

We performed PCR using the following steps: in-
cubation for 10 min at 95 °C followed by 45 cycles of

10 s at 95 °C, 10 s at 60 °C, and 8 s at 72 °C and a fi-
nal dissociation curve step at 65 °C for 15 s. The
crossing point (Cp) of each PCR was automatically
determined by the LightCycler® program. PCR reac-
tions for all samples were each run in duplicate. The
measured transcript levels were normalized against
those of GAPDH.

Statistical analysis

All data were analyzed with SPSS statistics 17.0
software. The results are presented as means ± SD,
while the oil red O staining using image analysis
system are presented as means ± SE. Compari-
sons between groups were made using one-way
analysis of variance (ANOVA) followed by the
post-hoc LSD test. Side-to-side comparisons within
the same group were made with Student’s t test for
paired data. Values of P < 0.05 were considered
statistically significant.

RESULTS

Histology

The development of non-alcoholic hepatic steatosis
was confirmed by H-E and PAS staining. All histolo-
gical data were evaluated by a separate blinded inves-

Figure 1. Histological changes in liver tissue seen by staining with hematoxylin and eosin (H-E) and periodic acid Schiff (PAS)
(magnification x200). Liver of normal control rat (a), G-CSF treated OLETF rat (b) and saline-treated OLETF rat (c). A. Stained
with H-E. B. Stained with PAS.

A

B

a b c

a b c
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tigator. Fibrosis, collagen deposition and inflamma-
tory cell infiltration did not evident, whereas lipid va-
cuoles and mild ballooning in the hepatocytes were
observed (data not shown). Four weeks after treat-
ment, numerous cytoplasmic lipid vacuoles and mild
ballooning were evident in the hepatocytes of the sali-
ne-treated group. In contrast, no fat accumulation
could be seen in the livers of the G-CSF-treated
group, which were no different from those of the nor-
mal control group (Figure 1). The area of lipid dro-
plets as indicated by oil red O staining was much
lower in the G-CSF-treated group than in the sali-
ne-treated group (4.62 ± 0.38% vs. 12.80 ± 3.23%,

P < 0.01) and not significantly different from that in
the normal control group (3.65 ± 0.94%) (Figure 2).

Expression of hepatic lipogenic genes

Levels of SREBP-1c, FAS, and ACC mRNA in the
liver were measured by real-time PCR. The level of
SREBP-1c mRNA was significantly lower in the
G-CSF-treated group than in the saline-treated
group (6.69 ± 1.28 vs. 32.06 ± 12.77, P < 0.01), and
was equal to that in the normal control group (1.00
± 0.20) (Figure 3A). The level of FAS mRNA in the
G-CSF-treated group was also significantly lower

Figure 2. Histological changes in liver tissue seen by oil red O
staining (magnification x 200). In oil red O-stained sections, red
vesicles indicate lipid droplets. A. Liver of normal control rat (a),
G-CSF treated OLETF rat (b) and saline-treated OLETF rat (c).
B. Quantitative analysis of images of oil red O-stained liver sections.
The mean percent area occupied by oil red O-stained lipid droplets
was calculated for 3 randomly selected fields of each liver section.
All data are expressed as means ± SD. bP < 0.01 vs. saline treated
OLETF rats. d P < 0.01 vs. normal control rats.

Figure 3. Levels of mRNA in liver tissue after treatment as determined by real-time polymerase chain reaction (PCR) analysis.
A-C. Sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase mRNA levels,
respectively. Mean values were obtained from the livers of four separate animals. PCR reactions were performed in duplicate.
The transcript levels were normalized by comparison with GAPDH expression. All data are expressed as means ± SD. bP < 0.01
vs. saline treated OLETF rats. dP < 0.01 vs. normal control rats.
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than in the saline-treated group (1.33 ± 0.66 vs.
8.02 ± 3.20, P < 0.01), and was equal to that in the
normal control group (1.00 ± 0.09) (Figure 3B).
Furthermore, the level of ACC mRNA was signifi-
cantly lower in the G-CSF-treated group than in the
saline-treated group (1.77 ± 0.18 vs. 10.93 ± 1.46, P
< 0.01), and was equal to that in the normal con-
trol group (1.00 ± 0.23) (Figure 3C).

Metabolic parameters

At the end of the experiment, liver weight relative
to body weight was lower in the G-CSF-treated
group than in the saline-treated group (3.28 ±
0.11% vs. 3.65 ± 0.42%, P < 0.05) but still higher
than in the normal control group (2.48 ± 0.05%,
P < 0.01). Levels of circulating TG and FFA were
lower in the G-CSF-treated group than in the sali-
ne-treated group (61.00 ± 23.71 mg/dL vs. 163.00 ±
36.49 mg/dL, P < 0.01 and 437.80 ± 78.67 µEq/L
vs. 652.75 ± 215.05 µEq/L, P < 0.05, respectively).
Circulating glucose and TC were similar in the
G-CSF-treated and saline-treated groups, but appeared
higher than in the normal control group. Body
weight and circulating ALT and AST were similar
in the three groups (Table 1).

DISCUSSION

In this study we showed that G-CSF ameliorates
non-alcoholic hepatic steatosis in the OLETF rat,
and reduces expression of the hepatic lipogenic ge-
nes SREBP-1c, FAS, and ACC in the liver.

Histologically, we observed that G-CSF clearly de-
creased lipid droplets and ballooning in hepatocytes
(Figure 1); the administration of G-CSF decreased
by about three fold the area of lipid droplets in the
liver sections stained with oil red O (Figure 2), which
is a well-established method of assessing the extent

of steatosis.23,27 Also, liver weight relative to body
weight was reduced by G-CSF without any change
in body weight (Table 1).

Recently, several possible mechanisms of the ge-
neral effect of G-CSF on various liver diseases have
been suggested. Enhanced bone marrow cell homing
towards damaged liver cells may induce trans-diffe-
rentiation or a paracrine effect, contributing to the
regeneration of the damaged liver.15 In addition,
G-CSF may act directly on the liver cells
through G-CSF receptors.28 In this study, we only
determined the effect of G-CSF on non-alcoholic
hepatic steatosis, which was found to be associated
with down-regulation of SREBP-1c, FAS, and ACC.
Further study is required to confirm the mechanis-
ms underlying the effect of G-CSF on the liver.

Zhiyong Guo, et al. demonstrated that adminis-
tration of diazoxide for 22 weeks reduced fat depo-
sition in the liver,29 and several groups have shown
that long-term exercise training has a beneficial
effect on non-alcoholic hepatic steatosis.30,31 Our fin-
dings suggest that G-CSF is effective with only a
short-term treatment. In previous studies, the bene-
ficial effects of treatment for non-alcoholic hepatic
steatosis were due to weight reduction,21,29 whereas
in our hands G-CSF ameliorated steatosis without
weight reduction. Clinical studies of G-CSF have
shown that it does not have any severe side effects,
though it may cause transient bone pain.32

According to previous studies, hepatic lipogenesis
is responsible for the development of hepatic steato-
sis. Hepatic lipogenesis is caused by an imbalance
between input (uptake and synthesis) and output
(oxidation and degradation) of FFA.12,33 In our stu-
dy, G-CSF reduced circulating FFA down to the le-
vel in the normal control group (Table 1).

SREBP-1c plays an important role in hepatic lipo-
genesis,33,34 and increased expression of SREBP-1c
accelerates hepatic lipogenesis by activating lipogenic

Table 1. Levels of metabolic parameters in the three groups.

Study Normal OLETF + G-CSF OLETF + Saline

Body weight (g) 559.25 ± ± 13.93 517.80 ± 34.91 534.38 ± 86.04
Liver weight (percentage of body weight) 2.48 ± 0.05 3.28 ± 0.11 a, d 3.65 ± 0.42 d

Glucose (mg/dL) 219.50 ± 11.45 410.80 ± 75.47 d 387.00 ± 59.31 d

Triglyceride (mg/dL) 47.50 ± 5.57 61.00 ± 23.71 b 163.00 ± 36.49 d

Total Ccholesterol (mg/dL) 104.25 ± 5.25 158.40 ± 13.69 c 159.75 ± 47.84 c

Alanine aminotransferase (U/L) 36.25 ± 5.32 60.00 ± 10.03 58.25 ± 32.29
Aspartate aminotransferase (U/L) 94.50 ± 10.02 79.50 ± 51.33 123.00 ± 37.98
Free fatty acid (µEq/L) 458.75 ± 112.43 437.80 ± 78.67 a 652.75 ± 215.05

All data are expressed as means ± SD. aP < 0.05, bP < 0.01 vs. saline treated OLETF rats. cP < 0.05, dP < 0.01 vs. normal control rats.
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enzymes such as FAS, acetyl-CoA carboxylase
(ACC), and stearoyl-CoA desaturase (SCD) (Figure
3).6,34,35 Also over-expression of SREBP-1c leads to
the development of hepatic steatosis in mice,36 and
SREBP-1c synergistically regulates expression of li-
pogenic genes such as FAS, ACC and SCD.35,37 Many
genes are associated with hepatic steatosis, and
SREBP-1c, FAS, and ACC are comparatively known
as a key regulator of hepatic steatosis.35,38 In the
present study, we showed that G-CSF decreased the
mRNA levels of SREBP-1c, FAS, and ACC mRNAs
(Figures 3).

In other studies, hepatic fat accumulation closely
correlated with the oxidative stress.39,40 Oxidative
stress results from an imbalance between oxidant
and antioxidant that leads to oxidative damage
in the liver.41 Thus, this study had limitations in
that the fatty acid oxidation in the liver and the he-
patic mitochondrial enzymes were not analyzed. It is
necessary to evaluate the changes in oxidative
stress in future studies to clarify the mechanism by
which G-CSF ameliorates hepatic steatosis.

Taken together our findings suggest that G-CSF
reduces hepatic lipogenesis by inhibiting SREBP-1c
production, which in turn reduces the accumula-
tion of lipogenic enzymes such as FAS and ACC
(Figure 4).

A reduction in circulating TG and FFA reduces
the input of fatty acid to hepatocytes. SREBPs are
well known as enhancers of FFA biosynthesis and
FFA uptake.42 We showed that administration of
G-CSF reduced the expression of SREBP-1c and
circulating TG and FFA (Figure 3A and Table 1).
Our analysis indicates that G-CSF reduces expression
of SREBP-1c, resulting in less circulating TG and
FFA. Further study is required to establish whether
SREBP-1c is the main target of G-CSF, and to
examine the expression of lipogenic enzymes other
than FAS and ACC.

In summary, we have demonstrated that G-CSF
ameliorates non-alcoholic hepatic steatosis in the
OLETF rat model, and reduces the expression of
SREBP-1c, which plays a key role in the development
of hepatic steatosis.33 We speculate that the reduction
of SREBP-1c expression by G-CSF is related to the
improvement of the non-alcoholic hepatic steatosis.
Despite the fact that the underlying mechanism is not
known, our findings indicate that administration of
G-CSF dramatically ameliorates non-alcoholic hepa-
tic steatosis. To our knowledge, this is first report of
the effect of G-CSF on non-alcoholic hepatic steatosis.
In addition, we present evidence that the beneficial
effect of G-CSF is associated with down-regulation of
SREBP-1c. Therefore, our findings suggest that G-
CSF is a novel approach to the treatment of non-alco-
holic hepatic steatosis.

ABBREVIATIONS

• NAFLD: non-alcoholic fatty liver disease.
• G-CSF: granulocyte colony-stimulating factor.
• SREBP: sterol regulatory element-binding

protein.
• FAS: fatty acid synthase.
• ACC: acetyl-CoA carboxylase.
• OLETF: Otsuka Long Evans Tokushima Fatty.
• LETO: Long-Evans Tokushima Otsuka.
• H-E: hematoxylin and eosin.
• PAS: periodic acid Schiff.
• TC: total cholesterol.
• TG: triglyceride.
• ALT: alanine aminotransferase.
• AST: aspartate aminotrans.
• FFA: free fatty acids.
• PCR: polymerase chain reaction.
• SCD: stearoyl-CoA desaturase.
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