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An note on Sr-covering approximation spaces ∗

Bin Qin† Xun Ge‡

February 21, 2013

Abstract: In this paper, we prove that a covering approximation space
(U, C) is an Sr-covering approximation space if and only if {N(x) : x ∈ U}
forms a partition of the universe of discourse U . Furthermore, we give some
simple characterizations for Sr-space (U, C) by using only a single covering ap-
proximation operator and by using only elements of covering C. Results of this
paper answer affirmatively an open problem posed by Z.Yun et al. in [16].

Keywords: Universe of discourse; Covering approximation space; Sr-covering
approximation space; Covering lower (upper) approximation operation; Neigh-
borhood; Partition.

1 Introduction

Rough set theory, which was first proposed by Z.Pawlak in [4], is a useful tool
in researches and applications of process control, economics, medical diagno-
sis, biochemistry, environmental science, biology, chemistry, psychology, conflict
analysis and other fields [2, 3, 5, 6, 10, 14, 15, 18, 19]. In the classical rough
set theory, Pawlak approximation spaces are based on partitions of the universe
of discourse U , but this requirement is not satisfied in some situations [20]. In
the past years, Pawlak approximation spaces have been extended to covering
approximation spaces [1, 8, 12, 13, 16, 21].

Definition 1.1 ([21]). Let U , the universe of discourse, be a finite set and C be
a family of nonempty subsets of U .

(1) C is called a covering of U if
⋃{K : K ∈ C} = U . Furthermore, C is

called a partition of U if also K
⋂

K ′ = ∅ for all K, K ′ ∈ C, where K 6= K ′.
(2) The pair (U, C) is called a covering approximation space (resp. a Pawlak

approximation space) if C is a covering (resp. a partition) of U .

∗This work is supported by the National Natural Science Foundation of China
(No.11226085), the Natural Science Foundation of Guangxi Province in China
(2012GXNSFDA276040) and the Science Foundation of Guangxi College of Finance and Eco-
nomics(No.2012ZD001).

†School of Information and Statistics, Guangxi College of Finance and Economics, Nan-
ning, Guangxi 530003, China, binqin100@gmail.com

‡Corresponding Author, School of Mathematical Sciences, Soochow University, Suzhou
215006, China, zhugexun@163.com
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(3)
⋂{K : x ∈ K ∈ C} is called the neighborhood of x and denoted as

NeighborC(x). When there is no confusion, we omit C at the lowercase and
abbreviate NeighborC(x) to N(x).

For a covering approximation spaces (U, C), it is interesting to study the
condition for {N(x) : x ∈ U} to form a partition of universe U . In particular,
it is an important issue in covering approximation spaces theory to characterize
this condition by covering lower (upper) approximation operations [8, 16]. In
order to give a more detailed description for this issue, we present some covering
lower (upper) approximation operations as follows.

Definition 1.2 ([16]). Let (U,C) be a covering approximation space and X ⊆ U .
Put

(1) C2(X) =
⋃{K : K ∈ C ∧K ⊆ X}, C2(X) = U − C2(U −X);

(2) C3(X) = {x ∈ U : N(x) ⊆ X}, C3(X) = {x ∈ U : N(x)
⋂

X 6= ∅};
(3) C4(X) = {x ∈ U : ∃u(u ∈ N(x)∧N(u) ⊆ X)}, C4(X) = {x ∈ U : ∀u(u ∈

N(x) → N(u) ∩X 6= ∅)};
(4) C5(X) = {x ∈ U : ∀u(x ∈ N(u) → N(u) ⊆ X)}, C5(X) =

⋃{N(x) : x ∈
U ∧N(x)

⋂
X 6= ∅};

(5) C6(X) = {x ∈ U : ∀u(x ∈ N(u) → u ∈ X)}, C6(X) =
⋃{N(x) : x ∈ X}.

Then Ci (resp. Ci) is called a covering lower (resp. upper) approximation
operation and Ci(X) (resp. Ci(X)) is called covering lower (resp. upper) ap-
proximation of X. Here, i = 2, 3, 4, 5, 6.

Remark 1.3. In [8], Ci and Ci are denoted by Ci−1 and Ci−1 respectively. Here,
i = 2, 3, 4, 5, 6.

K.Qin et al. gave the following theorem.

Theorem 1.4 ([8]). Let (U, C) be a covering approximation space. Then the
following are equivalent.

(1) {N(x) : x ∈ U} forms a partition of U .
(2) C5(X) = C6(X) for each X ⊆ U .
(3) C5(X) = C4(X) for each X ⊆ U .
(4) C3(X) = C4(X) for each X ⊆ U .
(5) C6(X) = C4(X) for each X ⊆ U .
(6) C3(X) = C6(X) for each X ⊆ U .
(7) C5(X) = C3(X) for each X ⊆ U .

Recently, taking Theorem 1.4 into account, Z. Yun et al. [16] investigated
the following question.

Question 1.5 ([16]). Can we characterize the conditions under which {N(x) :
x ∈ U} forms a partition of U by using only a single covering approximation
operator among C2-C6?

2
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The following results were obtained.

Theorem 1.6 ([16]). Let (U, C) be a covering approximation space. Then the
following are equivalent.

(1) {N(x) : x ∈ U} forms a partition of U .
(2) C3(C3(X)) = C3(X) for each X ⊆ U .
(3) C6(C6(X)) = C6(X) for each X ⊆ U .
(4) C4(X) ⊆ X for each X ⊆ U .

Theorem 1.7 ([16]). Let (U, C) be a covering approximation space.

(1) If C2(C2(X)) = C2(X) for each X ⊆ U , then {N(x) : x ∈ U} forms a
partition of U , not vice versa.

(2) If {N(x) : x ∈ U} forms a partition of U , then C5(C5(X)) = C5(X) for
each X ⊆ U , not vice versa.

As an open problem, the following question is raised in the end of [16].

Question 1.8 ([16]). How to give sufficient and necessary conditions for {N(x) :
x ∈ U} to form a partition of U by using only a single covering approximation
operator Ci (i = 2, 5)?

In this paper, we investigate Question 1.5 and Question 1.8 by Sr-covering
approximation spaces. Here, Sr-covering approximation spaces was introduced
by X.Ge in [1].

Definition 1.9 ([1]). A covering approximation space (U, C) is called an Sr-
space (Sr-space is the abbreviation of Sr-covering approximation space) if x ∈
K ∈ C implies D(x) ⊂ K, where D(x) = U −⋃

(C − Cx).

In this paper, we gives a ”nice” characterization for Sr-space. By this re-
sult, we translate the condition for {N(x) : x ∈ U} to form a partition of the
universe of discourse U into Sr-space (U, C) in Question 1.5 and Question 1.8.
Furthermore, we obtain some simple characterizations for Sr-space (U, C) by
using only a single covering approximation operator and by using only elements
of covering C, which answer Question 1.5 and Question 1.8 and improve some
results obtained in [16].

2 Preliminaries

For a covering approximation space (U, C), we say that {N(x) : x ∈ U} forms
a partition of U if for every pair x, y ∈ U , N(x) = N(y) or N(x)

⋂
N(y) = ∅.

Before our discussion, we give some notations.

Note 2.1. Let (U, C) be a covering approximation space. Throughout this paper,
we use the following notations, where x ∈ U , X ⊆ U and F ⊆ 2U .

(1)
⋂F =

⋂{F : F ∈ F}.
(2)

⋃F =
⋃{F : F ∈ F}.

3
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(3) Cx = {K : x ∈ K ∈ C}.
(4) N(x) =

⋂ Cx.
(5) D(x) = U −⋃

(C − Cx).

Remark 2.2. It is clear that x ∈ N(x) and x ∈ D(x). Note that x ∈ K ∈ C if
and only if K ∈ Cx, we also replace x ∈ K ∈ C by K ∈ Cx in this paper.

The following three lemmas are known.

Lemma 2.3 ([8, 9]). Let (U, C) be a covering approximation space and X, Y ⊆
U . Then the following hold.

(1) Ci(U) = U = Ci(U), Ci(∅) = ∅ = Ci(∅) for i = 2, 3, 4, 5, 6.
(2) Ci(X) ⊆ X ⊆ Ci(X) for i = 2, 3, 5, 6.
(3) X ⊆ Y ⊆ U =⇒ Ci(X) ⊆ Ci(Y ), Ci(X) ⊆ Ci(Y ) for i = 2, 3, 4, 5, 6.
(4) Ci(X

⋂
Y ) = Ci(X)

⋂ Ci(Y ), Ci(X
⋃

Y ) = Ci(X)
⋃ Ci(Y ) for i = 3, 5, 6.

(5) Ci(X) = U − Ci(U −X), Ci(X) = U − Ci(U −X) for i = 2, 3, 4, 5, 6.

Lemma 2.4 ([8]). Let (U, C) be a covering approximation space. Then the
following are equivalent.

(1) {N(x) : x ∈ U} forms a partition of U .
(2) For every pair x, y ∈ U , x ∈ N(y) =⇒ y ∈ N(x).

Lemma 2.5 ([1]). Let (U, C) be a covering approximation space and x, y ∈ U .
Then the following are equivalent.

(1) x ∈ N(y).
(2) Cy ⊆ Cx.
(3) N(x) ⊆ N(y).
(4) D(y) ⊆ D(x).
(5) y ∈ D(x).

Proposition 2.6. Let (U, C) be a covering approximation space. Then the fol-
lowing are equivalent.

(1) (U, C) is an Sr-spaces.
(2) {N(x) : x ∈ U} forms a partition of U .

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-spaces. Let x, y ∈ U and
x ∈ N(y). Then y ∈ D(x) by Lemma 2.5. For each K ∈ Cx, D(x) ⊆ K, we
have y ∈ K. This proves that y ∈ N(x). By Lemma 2.4, {N(x) : x ∈ U} forms
a partition of U .

(2) =⇒ (1): Suppose that {N(x) : x ∈ U} forms a partition of U . Let K ∈ C
and x ∈ K. Then N(x) ⊆ K. If y ∈ D(x), then x ∈ N(y) by Lemma 2.5.
By Lemma 2.4, y ∈ N(x) ⊆ K. This proves that D(x) ⊆ K. So (U, C) is an
Sr-space.

Proposition 2.6 gives a ”nice” characterization for Sr-space, which is help
for us to further comprehend [1, Remark 1.2]).

4
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3 The main results

Theorem 3.1. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) is an Sr-space.
(2) C2({x}) ⊆ K for each x ∈ U and each K ∈ Cx.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let x ∈ U and K ∈ Cx.
Then D(x) ⊆ K. If y ∈ C2({x}) = U −C2(U −{x}), then y 6∈ C2(U −{x}). So,
for each K ′ ∈ C, if K ′ ⊆ U−{x} then y 6∈ K ′. That is, for each K ′ ∈ C, if x 6∈ K ′

then y 6∈ K ′, and hence y 6∈ ⋃
(C − Cx). It follows that y ∈ U − ⋃

(C − Cx) =
D(x) ⊆ K. This proves that C2({x}) ⊆ K.

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx. Then C2({x}) ⊆
K. If y ∈ D(x) = U − ⋃

(C − Cx), then y 6∈ ⋃
(C − Cx). So y 6∈ K for each

K ∈ C − Cx. That is, for each K ∈ C, if x 6∈ K then y 6∈ K. Note that
x 6∈ K if and only if K ⊆ U − {x}. Thus, y 6∈ C2(U − {x}). It follows that
y ∈ U − C2(U − {x}) = C2({x}) ⊆ K. This proves that D(x) ⊆ K. So (U, C) is
an Sr-space.

Let (U, C) be a covering approximation space. It is clear that if C2(C2(X)) =
C2(X) for each X ⊆ U . Then C2(K) = K for each K ∈ C. So the following
corollary improves Theorem 1.7(1), and the proof is quite simple.

Corollary 3.2. Let (U, C) be a covering approximation space. If C2(K) = K
for each K ∈ C, then (U, C) is an Sr-space.

Proof. Let C2(K) = K for each K ∈ C. If x ∈ U and K ∈ Cx, then C2({x}) ⊆
C2(K) = K from Lemma 2.3(3). By Theorem 3.1, (U, C) is an Sr-space.

Remark 3.3. [16, Example 3.9] and Proposition 2.6 show that Corollary 3.2
can not be reversed.

What are sufficient and necessary conditions such that C2(K) = K for each
K ∈ C? The following proposition gives an answer.

Proposition 3.4. Let (U, C) be a covering approximation space. Then C2(K) =
K for each K ∈ C if and only if the following hold.

(1) (U, C) is an Sr-space.
(2) C2(K) =

⋃{C2({x}) : x ∈ K} for each K ∈ C.
Proof. Necessity: Let C2(K) = K for each K ∈ C. By Corollary 3.2, (U, C)
is an Sr-space. Let K ∈ C. By Lemma 2.3(3), C2({x}) ⊆ C2(K) for each
x ∈ K. Thus

⋃{C2({x}) : x ∈ K} ⊆ C2(K). On the other hand, by Lemma
2.3(2), x ∈ C2({x}) for each x ∈ K, so C2(K) = K ⊆ ⋃{C2({x}) : x ∈ K}.
Consequently, C2(K) =

⋃{C2({x}) : x ∈ K}.
Sufficiency: Suppose that (1) and (2) hold. Let K ∈ C. By Theorem 3.1,

C2({x}) ⊆ K for each x ∈ K. Thus, C2(K) =
⋃{C2({x}) : x ∈ K} ⊆ K. On

the other hand, K ⊆ C2(K) by Lemma 2.3(2). So C2(K) = K.
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Similarly, the following proposition is obtained, which gives sufficient and
necessary conditions such that C2(C2(X)) = C2(X) for each X ⊆ U . We omit
its proof.

Proposition 3.5. Let (U, C) be a covering approximation space. Then C2(C2(X))
= C2(X) for each X ⊆ U if and only if the following hold.

(1) (U, C) is an Sr-space.
(2) C2(X) =

⋃{C2({x}) : x ∈ X} for each union X of elements of C.
Lemma 3.6. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) is an Sr-space.
(2) C3({x}) ⊆ K for each x ∈ U and each K ∈ Cx.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let x ∈ U and K ∈
Cx. Then D(x) ⊆ K. If y ∈ C3({x}) = {z ∈ U : N(z)

⋂{x} 6= ∅}, then
N(y)

⋂{x} 6= ∅, so x ∈ N(y). By Lemma 2.5, y ∈ D(x) ⊆ K. This proves that
C3({x}) ⊆ K.

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx. Then C3({x}) ⊆
K. If y ∈ D(x), then x ∈ N(y) from Lemma 2.5, i.e., N(y)

⋂{x} 6= ∅. It follows
that y ∈ {z ∈ U : N(z)

⋂{x} 6= ∅} = C3({x}) ⊆ K. This proves that D(x) ⊆ K.
So (U, C) is an Sr-space.

Theorem 3.7. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) is an Sr-space.
(2) C3(K) = K for each K ∈ C.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let K ∈ C. By Lemma
3.6, C3({x}) ⊆ K for each x ∈ K. By Lemma 2.3(4), C3(K) =

⋃{C3({x}) : x ∈
K} ⊆ K. On the other hand, by Lemma 2.3(3), K ⊆ C3(K). Consequently,
C3(K) = K.

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx. Then C3(K) =
K. By Lemma 2.3(3), C3({x}) ⊆ C3(K) = K. By Lemma 3.6, (U, C) is an
Sr-space.

The following shows that “C4(X) ⊆ X” in Theorem 1.6(4) can not be re-
placed by “C4(X) = X”

Example 3.8. There exists a covering approximation space (U, C) such that
(U, C) is an Sr-space and C4(X) 6= X for some X ⊆ U .

Proof. Let U = {a, b.c} and C = {{a, b}, {c}}. Then (U, C) is a Pawlak ap-
proximation space. It is known that each Pawlak approximation space is an
Sr-space (see [1, Remark 3.4]). Put X = {a, c}. It is not difficult to check that
C4(X) = {c}. So C4(X) 6= X.

However, we have the following.

6
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Theorem 3.9. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) is an Sr-space.
(2) C4(K) = K for each K ∈ C.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let K ∈ C. By Theorem
1.6 and Proposition 2.6, C4(K) ⊆ K. On the other hand, Let x ∈ K. Then
x ∈ N(x) and N(x) ⊆ K. By the definition of C4(K), x ∈ C4(K). This proves
that K ⊆ C4(K). Consequently, C4(K) = K.

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx, then C4(K) ⊆
K. If y ∈ D(x), then x ∈ N(y) from Lemma 2.5. Note that N(x) ⊆ K. So
y ∈ {z ∈ U : ∃u(u ∈ N(z) ∧ N(u) ⊆ K)} = C4(K) ⊆ K. This proves that
D(x) ⊆ K. So (U, C) is an Sr-space.

Lemma 3.10. Let (U, C) be a covering approximation space and X ⊂ U . Then
C5(X) = X if and only if C5(X) = X.

Proof. Necessity: Suppose that C5(X) = X. Let y ∈ C5(X) =
⋃{N(x) : x ∈

U∧N(x)
⋂

X 6= ∅}. Then there is z ∈ U such that y ∈ N(z) and N(z)
⋂

X 6= ∅.
Pick v ∈ N(z)

⋂
X, then v ∈ X = C5(X) = {x ∈ U : ∀u(x ∈ N(u) =⇒ N(u) ⊆

X)}. It follows that N(z) ⊆ X since v ∈ N(z). So y ∈ N(z) ⊆ X. This proves
that C5(X) ⊆ X. By Lemma 2.3(2), X ⊆ C5(X). Consequently, C5(X) = X.

Sufficiency: Suppose that C5(X) = X. By Lemma 2.3(2), C5(X) ⊆ X. It
suffices to prove that X ⊆ C5(X). If X 6⊆ C5(X), then there is y ∈ X such that
y 6∈ C5(X) = {x ∈ U : ∀u(x ∈ N(u) =⇒ N(u) ⊆ X)}. So there is v ∈ U such
that y ∈ N(v) 6⊆ X. Pick z ∈ N(v) such that z 6∈ X. Note that y ∈ N(v)

⋂
X.

So N(v)
⋂

X 6= ∅. Thus z ∈ ⋃{N(x) : x ∈ U ∧N(x)
⋂

X 6= ∅} = C5(X) = X.
This contradicts that z 6∈ X.

Lemma 3.11. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) is an Sr-space.
(2) C5({x}) ⊆ K for each x ∈ U and each K ∈ Cx.

Proof. (1) =⇒ (2). Suppose that (U, C) is an Sr-space. Let x ∈ U and K ∈ Cx,
then D(x) ⊆ K. If y ∈ C5({x}) =

⋃{N(z) : z ∈ U ∧ x ∈ N(z)}, then there
exists z ∈ U such that x ∈ N(z) and y ∈ N(z). By Lemma 2.5, z ∈ D(x) ⊆ K,
hence N(z) ⊆ K. It follows that y ∈ N(z) ⊆ K. This proves that C5({x}) ⊆ K.

(2) =⇒ (1). Suppose that (2) holds. Let x ∈ U and K ∈ Cx, then C5({x}) ⊆
K. If y ∈ D(x), then x ∈ N(y) from Lemma 2.5. So N(y) ⊆ ⋃{N(z) : z ∈
U ∧x ∈ N(z)} = C5({x}) ⊆ K. It follows that y ∈ N(y) ⊆ K. This proves that
D(x) ⊆ K. So (U, C) is an Sr-space.

Theorem 3.12. Let (U, C) be a covering approximation space. Then the fol-
lowing are equivalent.

(1) (U, C) is an Sr-space.
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(2) C5(K) = K for each K ∈ C.
(3) C5(K) = K for each K ∈ C.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let K ∈ C. By Lemma
3.11, C5({x}) ⊆ K for each x ∈ K. By Lemma 2.3(4), C5(K) =

⋃{C5({x}) :
x ∈ K} ⊆ K. On the other hand, by Lemma 2.3(2), K ⊆ C5(K). Consequently,
C5(K) = K.

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx, then C5(K) =
K. By Lemma 2.3(3), C3({x}) ⊆ C5(K) = K. By Lemma 3.11, (U, C) is an
Sr-space.

(2) ⇐⇒ (3): It holds by Lemma 3.10.

Theorem 3.13. Let (U, C) be a covering approximation space. Then the fol-
lowing are equivalent.

(1) (U, C) is an Sr-space.
(2) C6(K) = K for each K ∈ C.

Proof. (1) =⇒ (2): Suppose that (U, C) is an Sr-space. Let K ∈ C. Then
C6(K) ⊆ K by Lemma 2.3(2). It suffices to prove that K ⊆ C6(K). Let x ∈ K,
then D(x) ⊆ K since (U, C) is an Sr-space. For each u ∈ U , if x ∈ N(u), then
u ∈ D(x) by Lemma 2.5. It follows that u ∈ K. So x ∈ {z ∈ U : ∀u(z ∈
N(u) → u ∈ K)} = C6(K). This proves that K ⊆ C6(K).

(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U and K ∈ Cx, then C6(K) =
K. If y ∈ D(x), then x ∈ N(y) from Lemma 2.5. x ∈ K = C6(K) = {x ∈
U : ∀u(x ∈ N(u) → u ∈ K)}, so x ∈ N(u) implies u ∈ K for each u ∈ U . It
follows that y ∈ K since x ∈ N(y). This proves that D(x) ⊆ K. So (U, C) is an
Sr-space.

4 Conclusions

This paper answers an open problem posed by Z.Yun et al. in [16]. We give
some simple characterizations for Sr-space (U, C) by using only a single covering
approximation operator and by using only elements of covering. The main
results are summarized as follows.

Theorem 4.1. Let (U, C) be a covering approximation space. Then the following
are equivalent.

(1) (U, C) ia an Sr-space.
(2) {N(x) : x ∈ U} forms a partition of U .
(3) C2({x}) ⊆ K for each x ∈ U and each K ∈ Cx.
(4) C3(K) = K for each K ∈ C.
(5) C4(K) = K for each K ∈ C.
(6) C5(K) = K for each K ∈ C.
(7) C5(K) = K for each K ∈ C.
(8) C6(K) = K for each K ∈ C.

8
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In the previous sections, covering approximation operators C2-C6 are used
for our discussion. However, there are also other useful covering approximation
operators, which play an important role in research of covering approximation
spaces [7, 11, 17, 20, 21].

Definition 4.2 ([20]). Let (U,C) be a covering approximation space and x ∈ U .
Md(x) = {K : K ∈ Cx ∧ (∀S ∈ Cx ∧ S ⊆ K → K = S)}

is called the minimal description of x.

Definition 4.3 ([20]). Let (U,C) be a covering approximation space and X ⊆ U .
Put

(1) CL(X) =
⋃{K : K ∈ C ∧K ⊆ X};

(2) FH(X) = CL(X)
⋃{Md(x) : x ∈ X − CL(X)};

(3) SH(X) =
⋃{K : K ∈ C ∧K

⋂
X 6= ∅};

(4) TH(X) =
⋃{Md(x) : x ∈ X};

(5) RH(X) = CL(X)
⋃{K : K ∈ C ∧K

⋂
(X − CL(X)) 6= ∅};

(6) IH(X) = CL(X)
⋃{N(x) : x ∈ X − CL(X)}.

CL is called covering lower approximation operation. FH, SH, TH, RH
and IH are called the first, the second, the third, the fourth, and the fifth covering
upper approximation operations, respectively.

Can we characterize the conditions under which (U, C) is an Sr-space by
using only a single covering approximation operator in Definition 4.3? It is an
interesting question and is still worthy to be considered in research of covering
approximation spaces.
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1

Abstract

We characterized the difference of generalized composition operator on the bounded
analytic function space to the Bloch space in the disk. The boundedness and compact-
ness of it were investigated.

1 Introduction

Let D be the unit disk of the complex plane, and S(D) be the set of analytic self-maps of D.
The algebra of all holomorphic functions with domain D will be denoted by H(D).

The Bloch space B consists of all f ∈ H (D) such that

‖f‖B = sup
z∈D

(1− |z|2) |f ′ (z)| <∞,

then ‖·‖B is a complete semi-norm on B, which is Möbius invariant.
The space B becomes a Banach space with the norm

‖f‖ = |f (0)|+ ‖f‖B .

Denote H∞(D) by H∞ ,the space of all bounded analytic functions in the unit disk with
the norm

‖f‖∞ = sup
z∈D
|f(z)|.

Let ϕ be an analytic self-map of D, and g ∈ H(D) , the generalized composition operator
Cgϕ induced by ϕ and g is defined by

(Cgϕf)(z) =

∫ z

0

f ′(ϕ(ξ))g(ξ)dξ,

for z ∈ D and f ∈ H(D).
The definition of the generalized composition was first introduced by S. Li, S. Stević

in [9], and in the paper, the boundedness and compactness of the generalized composition
operator on Zygmund spaces and Bloch type spaces were investigated by them.

In the past few decades, boundedness, compactness, isometries and essential norms of
composition and closely related operators between various spaces of holomorphic functions
have been studied by many authors, see, e.g., [1, 2, 6, 14, 18, 19, 21, 22]. Recently, many
papers focused on studying the mapping properties of the difference of two composition
operators, i.e.,

(Cϕ − Cψ)(f) = f ◦ ϕ− f ◦ ψ.
1The authors were supported in part by the National Natural Science Foundation of China (Grant Nos.

11126165)
2010 Mathematics Subject Classification. Primary: 47B38; Secondary: 30H30, 30H05, 47B33, 47G10.
Key words and phrases.generalized composition operator, Bloch space, compactness, difference..
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G.L.LI: DIFFERENCE OF GENERALIZED COMPOSITION OPERATORS

Differences of composition operators were studies first on hardy space H2(D) (see,e.g[3]).
In [13], MacCluer, Ohno and Zhao, characterized the compactness of the difference of two
composition operators on H∞(D) in terms of the Poincaré distance. A fewer years later,
these results were extended to the setting of H∞(Bn) by Toews [20] . In [23], Z. H. Zhou and
L. Zhang discussed the differences of the products of integral type and composition operators
from H∞ to the Bloch space, more results ,for example, can be seen in [4, 5, 8, 15, 16, 17].

Building on those foundation, this paper continues the research of this part, and discusses
the difference of two generalized composition operators from the bounded analytic function
space to the Bloch space in the disk.

2 Notation and Lemmas

First, we will introduce some notation and state a couple of lemmas.
For a ∈ D, the involution ϕa which interchanges the origin and point a, is defined by

ϕa(z) =
a− z
1− az

.

For z, w in D, the pseudo-hyperbolic distance between z and w is given by

ρ(z, w) = |ϕz(w)| =
∣∣∣∣ z − w1− zw

∣∣∣∣ ,
and the hyperbolic metric is given by

β (z, w) = inf
γ

∫
γ

|dξ|
1− |ξ|2

=
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
,

where γ is any piecewise smooth curve in D from z to w.
The following lemma is well known in [24].

Lemma 1. For all z, w ∈ D, we have

1− ρ2(z, w) =
(1− |z|2)(1− |w|2)

|1− zw|2
.

A little modification of Lemma 1 in [7] shows the following lemma.

Lemma 2. There exists a constant C > 0 such that∣∣∣(1− |z|2
)
f ′(z)−

(
1− |w|2

)
f ′(w)

∣∣∣ ≤ C ‖f‖B · ρ(z, w)

for all z, w ∈ D and f ∈ B.

Lemma 3. Assume that f ∈ H∞(D), then for each n ∈ N , there is a positive constant C
independent of f such that

sup
z∈D

(|1− |z|)n
∣∣∣f (n)(z)∣∣∣ < C||f ||∞.

Remark The Lemma 3 can be concluded from [11].

Throughout the remainder of this paper, we will denote 1−|z|2

1−|ϕ(z)|2 by the ϕ∗ and constants

are denoted by C , they are positive and not necessarily the same in each appearance.
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3 Main theorems

Theorem 1. Let ϕ1, ϕ2 be analytic self-maps of the unit disk and g1, g2 ∈ H(D). Then the
following statements are equivalent.

(i) Cg1ϕ1
− Cg2ϕ2

: H∞ → B is bounded;
(ii)

sup
z∈D
|ϕ∗1(z)| |g1(z)| ρ(ϕ1(z), ϕ2(z)) <∞ (1)

sup
z∈D
|ϕ∗2(z)| |g2(z)| ρ(ϕ1(z), ϕ2(z)) <∞ (2)

and
sup
z∈D
|ϕ∗1(z)g1(z)− ϕ∗2(z)g2(z)| <∞. (3)

Proof. We first prove (ii)⇒ (i). Assume that (1), (2), (3) hold.
As the definition of Cgϕ, obviously,

∣∣(Cg1ϕ1
− Cg2ϕ2

)f(0) = 0
∣∣

By Lemma 2 and Lemma3, for every f ∈ H∞, we have

||Cg1ϕ1
− Cg2ϕ2

||B
= sup

z∈D
(1− |z|2) |f ′(ϕ1(z))g1(z)− f ′(ϕ2(z))g2(z)|

= sup
z∈D

∣∣∣(1− |ϕ1(z)|2)ϕ∗1(z)f ′(ϕ1(z))g1(z)− (1− |ϕ2(z)|2)ϕ∗2(z)f ′(ϕ2(z))g2(z)
∣∣∣

≤ sup
z∈D
|ϕ∗1(z)g1(z)|

∣∣∣(1− |ϕ1(z)|2)f ′(ϕ1(z))− (1− |ϕ2(z)|2)f ′(ϕ2(z))
∣∣∣

+ sup
z∈D

(1− |ϕ2(z)|2) |f ′(ϕ2(z))| |g1(z)ϕ∗1(z))− g2(z)ϕ∗2(z))|

≤ C sup
z∈D
|ϕ∗1(z)g1(z)| ρ(ϕ1(z), ϕ2(z)) ‖f‖B

+ sup
z∈D
|g1(z)ϕ∗1(z))− g2(z)ϕ∗2(z))| ‖f‖B

≤ C ‖f‖∞ .

That is Cg1ϕ1
− Cg2ϕ2

is bounded.
Next we show that (i) implies (ii). We assume Cg1ϕ1

− Cg2ϕ2
: H∞ → B is bounded.

For every ω ∈ D, we take the test function

fϕ1,ω(z) =
ϕ1(ω)− z
1− ϕ1(ω)z

.

We can obtain easily that fϕ1,ω ∈ H∞ and ||fϕ1,ω||∞ ≤ 1.
Therefore, we have

C ≥ ||(Cg1ϕ1
− Cg2ϕ2

)fϕ1,ω||B
= sup

z∈D
(1− |z|2)

∣∣f ′ϕ1,ω(ϕ1(z))g1(z)− f ′ϕ1,ω(ϕ2(z))g2(z)
∣∣

≥ (1− |ω|2)
∣∣f ′ϕ1,ω(ϕ1(ω))g1(ω)− f ′ϕ1,ω(ϕ2(ω))g2(ω)

∣∣
=

∣∣∣∣∣ϕ∗1(ω)g1(ω)− (1− |ϕ1(ω)|2)(1− |ϕ2(ω)|2)

(1− ϕ1(ω)ϕ2(ω))2
ϕ∗2(ω)g2(ω)

∣∣∣∣∣
≥

∣∣|ϕ∗1(ω)g1(ω)| − (1− ρ(ϕ1(ω), ϕ2(ω))2 |ϕ∗2(ω)g2(ω)|
∣∣ .
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This is ∣∣|ϕ∗1(ω)g1(ω)| − (1− ρ(ϕ1(ω), ϕ2(ω))2 |ϕ∗2(ω)g2(ω)|
∣∣ ≤ C. (4)

Similarly,letting the test function fϕ2,ω(z) = ϕ2(ω)−z
1−ϕ2(ω)z

, we can obtain∣∣|ϕ∗2(ω)g2(ω)| − (1− ρ(ϕ1(ω), ϕ2(ω))2 |ϕ∗1(ω)g1(ω)|
∣∣ ≤ C. (5)

We take the test functions as follow:

f(z) = f2ϕ1,ω(z) = (
ϕ1(ω)− z
1− ϕ1(ω)z

)2, g(z) = f2ϕ2,ω(z) = (
ϕ2(ω)− z
1− ϕ2(ω)z

)2. (6)

The following conclusions can be easily concluded

2(1− ρ(ϕ1(ω), ϕ2(ω))2)ρ(ϕ1(ω), ϕ2(ω)) |ϕ∗2(ω)g2(ω)| ≤ C, (7)

2(1− ρ(ϕ1(ω), ϕ2(ω))2)ρ(ϕ1(ω), ϕ2(ω)) |ϕ∗1(ω)g1(ω)| ≤ C. (8)

If ρ(ϕ1(ω), ϕ2(ω)) ≤ 1
2 ,then by (8), we have

|ϕ∗1(z)g1(z)| ρ(ϕ1(z), ϕ2(z)) < C.

If ρ(ϕ1(ω), ϕ2(ω)) > 1
2 ,then by (7), we have

(1− ρ(ϕ1(ω), ϕ2(ω))2) |ϕ∗2(ω)g2(ω)| ≤ C,

then, |ϕ∗1(ω))g1(ω)| ≤ C is followed by (4), so

|ϕ∗1(ω)| |g1(ω)| ρ(ϕ1(ω), ϕ2(ω)) < C.

We can get (1) by use of the arbitrary of ω. Analogously, (2) was also can be obtained.
Finally, in order to prove the condition (3), using Lemma 2 and Lemma 3, we have

C ≥ ||(Cg1ϕ1
− Cg2ϕ2

)fϕ1,ω||B
≥ |g1(ω)ϕ∗1(ω)− g2(ω)ϕ∗2(ω)|

− |g2(ω)ϕ∗2(ω)|

∣∣∣∣∣1− (1− |ϕ1(ω)|2)(1− |ϕ2(ω)|2)

(1− ϕ1(ω)ϕ2(ω))2

∣∣∣∣∣
≥ |g1(ω)ϕ∗1(ω)− g2(ω)ϕ∗2(ω)|
− |g2(ω)ϕ∗2(ω)|

∣∣(1− |ϕ1(ω)|2)f ′ϕ1,ω(ϕ1(ω))− (1− |ϕ2(ω)|2)f ′ϕ1,ω(ϕ2(ω))
∣∣

≥ |g1(ω)ϕ∗1(ω)− g2(ω)ϕ∗2(ω)| − C |g2(ω)ϕ∗2(ω)| ρ(ϕ1(ω), ϕ2(ω)).

Then,
sup
z∈D
|ϕ∗1(z)g1(z)− ϕ∗2(z)g2(z)| <∞.

This is completes the proof of this theorem.

By the studying similarly to the proof of Theorem 3.2 in the paper [7], the following
theorem can be obtained.
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Theorem 2. Let ϕ1, ϕ2 be analytic self-maps of the unit disk and g1, g2 ∈ H(D), Cg1ϕ1
, Cg2ϕ2

:
H∞ → B are bounded but not compact, Then the following statements are equivalent.

(i) Cg1ϕ1
− Cg2ϕ2

: H∞ → B is compact;
(ii) Both (a) and (b) hold:

(a)Γ∗(ϕ1) = Γ∗(ϕ2) 6= ∅, thenΓ∗(ϕ1) ⊂ Γ(ϕ1) ∩ Γ(ϕ2)

(b)For{zn} ∈ Γ(ϕ1) ∩ Γ(ϕ2),

lim
n→∞

|ϕ∗1(zn)| |g1(zn)| ρ(ϕ1(zn), ϕ2(zn)) = 0

lim
n→∞

|ϕ∗2(zn)| |g2(zn)| ρ(ϕ1(zn), ϕ2(zn)) = 0

and
lim
n→∞

|ϕ∗1(zn)g1(zn)− ϕ∗2(zn)g2(zn)| = 0

(iii)
lim
|λ|→1

||(Cg1ϕ1
− Cg2ϕ2

)ϕλ||B = 0

and
lim
|λ|→1

||(Cg1ϕ1
− Cg2ϕ2

)(ϕλ)2||B = 0.

Here, Γ(ϕ1) is the set of sequence {zn} in D such that |ϕ1(zn)| → 1. Γ∗(ϕ1) is the set of
sequence {zn} in D such that |ϕ1(zn)| → 1 and ϕ∗1(zn)g1(zn) does not approach the 0.

Next, the other major theorem will be given

Theorem 3. Let ϕ1, ϕ2 be analytic self-maps of the unit disk and g1, g2 ∈ H(D), Cg1ϕ1
, Cg2ϕ2

:
H∞ → B are bounded, Then the following statements are equivalent.

(i) Cg1ϕ1
− Cg2ϕ2

: H∞ → B is compact;
(ii)

lim
|ϕ1(z)|→1

|ϕ∗1(z)| |g1(z)| ρ(ϕ1(z), ϕ2(z)) = 0

lim
|ϕ2(z)|→1

|ϕ∗2(z)| |g2(z)| ρ(ϕ1(z), ϕ2(z)) = 0

and
lim

|ϕ1(z)|,|ϕ2(z)|→1
|ϕ∗1(z)g1(z)− ϕ∗2(z)g2(z)| = 0.

Proof. We first prove (i) ⇒ (ii).We assume that Cg1ϕ1
− Cg2ϕ2

: H∞ → B is compact, then,
Cg1ϕ1

, Cg2ϕ2
are compact or noncompact.

If they are compact, the following conclusions are obtained obviously by the Theorem 2
in [12],

lim
|ϕ1(z)|→1

|ϕ∗1(z)| |g1(z)| = 0, lim
|ϕ2(z)|→1

|ϕ∗2(z)| |g2(z)| = 0,

then, the (ii) holds by them.
If they are all noncompact, for a sequence {zn}, such that |ϕ1(zn)| → 1, if

|ϕ∗1(zn)| |g1(zn)| → 0,

then,
lim
n→∞

|ϕ∗1(zn)| |g1(zn)| ρ(ϕ1(zn), ϕ2(zn)) = 0;

if
lim
n→∞

|ϕ∗1(zn)| |g1(zn)| 6= 0,
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then {zn} ∈ Γ∗(ϕ1). By Theorem 2,

{zn} ∈ Γ∗(ϕ1) ⊂ Γ(ϕ1) ∩ Γ(ϕ2),

and
lim
n→∞

|ϕ∗1(zn)| |g1(zn)| ρ(ϕ1(zn), ϕ2(zn)) = 0.

Hence,
lim

|ϕ1(z)|→1
|ϕ∗1(z)| |g1(z)| ρ(ϕ1(z), ϕ2(z)) = 0.

According to similarly proof, we can get

lim
|ϕ2(z)|→1

|ϕ∗2(z)| |g2(z)| ρ(ϕ1(z), ϕ2(z)) = 0.

For {zn} such that |ϕ1(zn)| , |ϕ2(zn)| → 1, using Theorem 2, we have

lim
n→∞

|ϕ∗1(zn)g1(zn)− ϕ∗2(zn)g2(zn)| = 0.

Due to the arbitrary of {zn}, we have

lim
|ϕ1(z)|,|ϕ2(z)|→1

|ϕ∗1(z)g1(z)− ϕ∗2(z)g2(z)| = 0.

This is completes the proof of (i)⇒ (ii).
(ii)⇒ (i) If the operators Cg1ϕ1

, Cg2ϕ2
are all noncompact, (i) holds obviously by Theorem

2. If one of the operators Cg1ϕ1
, Cg2ϕ2

is compact, we may also assume that Cg1ϕ1
is compact,

then by the Theorem 2 in [10], we have

lim
|ϕ1(z)|→1

|ϕ∗1(z)| |g1(z)| = 0.

Let {zn} be an arbitrary sequence in D, such that |ϕ2(zn)| → 1 as n→∞.
If |ϕ1(zn)| approach 1, since

lim
|ϕ1(z)|,|ϕ2(z)|→1

|ϕ∗1(z)g1(z)− ϕ∗2(z)g2(z)| = 0,

We obtain
lim
n→∞

|ϕ∗2(zn)| |g2(zn)| = 0.

If |ϕ1(zn)| does not approach 1, then ρ(ϕ1(z), ϕ2(z)) does not approach 0, since,

lim
|ϕ2(z)|→1

|ϕ∗2(z)| |g2(z)| ρ(ϕ1(z), ϕ2(z)) = 0.

We also obtain
lim
n→∞

|ϕ∗2(zn)| |g2(zn)| = 0.

Due to the arbitrary of {zn}, we have

lim
|ϕ2(z)|→1

|ϕ∗2(z)| |g2(z)| = 0.

Therefore, Cg2ϕ2
is a compact operator, therefore, Cg1ϕ1

− Cg2ϕ2
is compact.

This is completes the proof of this theorem.
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1

Abstract

In this paper, we characterize the isometries among the generalized composition
operators on Bloch type spaces in the disk.

1 Introduction

Let D be the unit disk of the complex plane, and S(D) be the set of analytic self-maps of D.
The algebra of all holomorphic functions with domain D will be denoted by H(D).

We recall that the Bloch type space Bα (α > 0) consists of all f ∈ H (D) such that

‖f‖Bα = sup
z∈D

(1− |z|2)α |f ′ (z)| <∞,

then ‖·‖Bα is a complete semi-norm on Bα, which is Möbius invariant.
It is well known that Bα is a Banach space under the norm

‖f‖ = |f (0)|+ ‖f‖Bα .

Let ϕ be an analytic self-map of D, and g ∈ H(D) , the generalized composition operator
Cgϕ induced by ϕ and g is defined by

(Cgϕf)(z) =

∫ z

0

f ′(ϕ(ξ))g(ξ)dξ,

for z ∈ D and f ∈ H(D).
The definition of generalized composition operator was first introduced by S. Li, S. Stević

in [20], and in the paper, the boundedness and compactness of the generalized composition
operator on Zygmund spaces and Bloch type spaces were investigated by them.

If we use the derivative of some function g to instead of g in operator Cgϕ, we can get a new
integral operator Lϕg , which is also called generalized composition operator. Let ϕ ∈ S(D)
and g ∈ H(D), the operator Lϕg induced by ϕ and g is defined by

(Lϕg f)(z) =

∫ z

0

f ′(ϕ(ξ))g′(ξ)dξ,

for z ∈ D and f ∈ H(D).
More results about boundedness, compactness, differences and essential norms of com-

position and closely related operators between various spaces of holomorphic functions have

1The authors were supported in part by the National Natural Science Foundation of China (Grant Nos.
10971153, 10671141)
2010 Mathematics Subject Classification. Primary: 47B38; Secondary: 30H30, 30H05, 47B33, 47G10.
Key words and phrases.generalized composition operator, Bloch type space, isometry.
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been studied by many authors, see, e.g., [12, 18, 19, 21, 25, 27]. Recently, many papers fo-
cused on studying isometries of the composition operators on various spaces of holomorphic
functions.

Let X and Y be two Banach spaces, and recall that a linear isometry is a linear operator
T from X to Y such that ‖Tf‖Y = ‖f‖X for all f ∈ X.

In [3], Banach showed great interet in the form of an isometry on a specific Banach space.
In most cases the isometries of a space of analytic functions on the disk or the ball have the
canonical form of weighted composition operators, which is also true for most symmetric
function spaces. For example, the surjective isometries of Hardy and Bergman spaces are
certain weighted composition operators. See [13, 14, 15].

The description of all isometric composition operators is known for the Hardy space H2

(see [8]). An analogous statement for the Bergman space A2
α with standard radial weights

has recently been obtained in [7], and there is a unified proof for all Hardy spaces and also
for arbitrary Bergman spaces with reasonable radial weights [24]. In [9], Colonna gave a
characterization of the isometric composition operators on the Bloch space in terms of the
factorization of the symbol in H∞, which shows that there is a very large class of isometries
besides the rotations. By contrast, in [26], Zorboska showed that in the case α 6= 1, the
isometries of the composition operators on Bα are the operators whose symbol is a rotation.

Continued the work of isometry, in 2008, Bonet, Lindström and Wolf [4] studied isometric
weighted composition operators on weighted Banach spaces of type H∞. Cohen and Colonna
[6] discussed the spectrum of an isometric composition operators on the Bloch space of the
polydisk. In 2009, Allen and Colonna [1] investigated the isometric composition operators on
the Bloch space in Cn. They [2] also discussed the isometries and spectra of multiplication
operators on the Bloch space in the disk. Isometries of weighted spaces of holomorphic
functions on unbounded domains were discussed by Boyd and Rueda in [5]. In 2010, Li and
Zhou discussed the isometries on products of composition and integral operators on Bloch
type space in [10].more results ,for example, can be seen in [11, 16, 17, 22, 23].

The paper continues the research of it, and discusses the isometries among the generalized
composition operators on Bloch type space in the disk.

2 Notation and Lemmas

First, we will introduce some notations and state a couple of lemmas.
For a ∈ D, the involution ϕa which interchanges the origin and point a, is defined by

ϕa(z) =
a− z
1− az

.

For z, w in D, the pseudohyperbolic distance between z and w is given by

ρ(z, w) = |ϕz(w)| =
∣∣∣∣ z − w1− zw

∣∣∣∣ .
The following lemma is well known [25].

Lemma 1. For all z, w ∈ D, we have

1− ρ2(z, w) =
(1− |z|2)(1− |w|2)

|1− zw|2
.

For ϕ ∈ S(D), the Schwarz-Pick lemma shows that ρ (ϕ(z), ϕ(w)) ≤ ρ(z, w), and if
equality holds for some z 6= w, then ϕ is an automorphism of the disk. It is also well known
that for ϕ ∈ S(D), Cϕ is always bounded on B.

A little modification of Lemma 1 in [4] shows the following lemma.
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Lemma 2. There exists a constant C > 0 such that∣∣∣(1− |z|2
)α

f ′(z)−
(

1− |w|2
)α

f ′(w)
∣∣∣ ≤ C ‖f‖Bα · ρ(z, w)

for all z, w ∈ D and f ∈ Bα.

Throughout the rest of this paper, C will denote a positive constant, the exact value of
which will vary from one appearance to the next.

3 Main theorems

Theorem 1. Let ϕ be analytic self maps of the unit disk and g ∈ H(D) . Then the operator
Cgϕ : Bα → Bβ is an isometry in the semi-norm if and only if the following conditions hold:

(A) sup
z∈D

(1−|z|2)β

(1−|ϕ(z)|2)α
|g(z)| ≤ 1;

(B) For every a ∈ D, there at least exists a sequence {zn} in D, such that lim
n→∞

ρ(ϕ(zn), a) =

0 and lim
n→∞

(1−|zn|2)β

(1−|ϕ(zn)|2)α
|g(zn)| = 1.

Proof. We prove the sufficiency first.
By condition (A), for every f ∈ Bα, we have

||Cgϕf ||Bβ = sup
z∈D

(1− |z|2)β |f ′(ϕ(z))| |g(z)|

= sup
z∈D

(1− |z|2)β

(1− |ϕ(z)|2)α
|g(z)| (1− |ϕ(z)|2)α |f ′(ϕ(z))|

≤ ‖f‖Bα .

Next we show that the property (B) implies ||Cgϕf ||Bβ ≥ ||f ||Bα
Given any f ∈ Bα, then ||f ||Bα = lim

m→∞
(1−|am|2)α|f ′(am)| for some sequence {am} ⊂ D.

For any fixed m, by property (B), there is a sequence {zmk } ⊂ D such that

ρ(ϕ(zmk ), am)→ 0 and
(1− |zmk |

2
)β

(1− |ϕ(zmk )|2)α
|g(zmk )| → 1

as k →∞. By Lemma 2, for all m and k,∣∣(1− |ϕ(zmk )|2)αf ′(ϕ(zmk ))− (1− |am|2)αf ′(am)
∣∣ ≤ C||f ||Bα · ρ(ϕ(zmk ), am).

Hence

(1− |ϕ(zmk )|2)α |f ′(ϕ(zmk ))| ≥ (1− |am|2)α|f ′(am)| − C||f ||Bα · ρ(ϕ(zmk ), am)

Therefore,

||Cgϕf ||Bβ = sup
z∈D

(1− |z|2)β

(1− |ϕ(z)|2)α
|g(z)| (1− |ϕ(z)|2)α |f ′(ϕ(z))|

≥ lim sup
k→∞

(1− |zmk |
2
)β

(1− |ϕ(zmk )|2)α
|g(zmk )| (1− |ϕ(zmk )|2)α |f ′(ϕ(zmk ))|

= (1− |am|2)α|f ′(am)|.

The inequality ||Cgϕf ||Bβ ≥ ||f ||Bα follows by letting m→∞.
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From the above discussions, we have ||Cgϕf ||Bβ = ||f ||Bα , which means that Cgϕ is an

isometry operator in the semi-norm from Bα to Bβ .
Now we turn to the necessity.
For any a ∈ D, we begin by taking test function

fa(z) =

∫ z

0

(1− |a|2)α

(1− āt)2α
dt. (1)

It is clear that f ′a(z) = (1−|a|2)α

(1−āz)2α . Using Lemma 1, we have

(1− |z|2)α|f ′a(z)| = (1− |z|2)α(1− |a|2)α

|1− āz|2α
= (1− ρ2(a, z))α. (2)

So
‖fa‖Bα = sup

z∈D
(1− |z|2)α|f ′a(z)| ≤ 1. (3)

On the other hand, since (1 − |a|2)α|f ′a(a)| = (1−|a|2)2α

(1−|a|2)2α = 1, we have ‖fa‖Bα = 1. By

isometry assumption, for any a ∈ D, we have

1 = ||fϕ(a)||Bα = ||Cgϕfϕ(a)||Bβ

= sup
z∈D

(1− |z|2)β

(1− |ϕ(z)|2)α
|g(z)| (1− |ϕ(z)|2)α

∣∣∣f ′ϕ(a)(ϕ(z))
∣∣∣

≥ (1− |a|2)β

(1− |ϕ(a)|2)α
|g(a)| .

So (A) follows by the arbitrariness of a.
Since ||fa||Bα = ||Cgϕfa||Bβ = 1, there exists a sequence {zm} ⊂ D such that

((1− |zm|2)β
∣∣∣∣d(Cgϕfa)

dz
(zm)

∣∣∣∣ = (1− |zm|2)β |f ′a(ϕ(zm))||g(zm)| → 1 (4)

as m→∞.
It follows from (A) that

(1− |zm|2)β |f ′a(ϕ(zm))||g(zm)|

=
(1− |zm|2)β

(1− |ϕ(zm)|2)α
|g(zm)| (1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| (5)

≤ (1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| . (6)

Combining (4) and (6), it follows that

1 ≤ lim inf
m→∞

(1− |ϕ(zm)|2)α |f ′a(ϕ(zm))|

≤ lim sup
m→∞

(1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| ≤ 1.

The last inequality follows by (2) since ϕ(zm) ∈ D.
Consequently,

lim
m→∞

(1− |ϕ(zm)|2)α|f ′a(ϕ(zm))| = lim
m→∞

(1− ρ2(ϕ(zm), a))α = 1. (7)

That is, lim
m→∞

ρ(ϕ(zm), a) = 0.
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Combining (4), (5) and (7), we know

lim
m→∞

(1− |zm|2)β

(1− |ϕ(zm)|2)α
|g(zm)| = 1.

This completes the proof of this theorem.

Corollary 1. Let U denote unitary transformation in the unit disk, then C1
U : Bα → Bβ is

an isometry in the semi-norm.

�

If we use the derivative of some function g to instead of g in operator Cgϕ, by the above
theorem. we can easily get the following result about the operator Lϕg .

Theorem 2. Let ϕ be analytic self maps of the unit disk and g ∈ H(D) . Then the operator
Cϕg : Bα → Bβ is an isometry in the semi-norm if and only if the following conditions hold:

(C) sup
z∈D

(1−|z|2)β

(1−|ϕ(z)|2)α
|g′(z)| ≤ 1;

(D) For every a ∈ D, there at least exists a sequence {zn} in D, such that lim
n→∞

ρ(ϕ(zn), a) =

0 and lim
n→∞

(1−|zn|2)β

(1−|ϕ(zn)|2)α
|g′(zn)| = 1.

Remark If α = 1, β = 1, then Bα and Bβ will be Bloch space B. There are similar
results on the Bloch space B corresponding to Theorems 1 and 2.
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[18] S. Li, S. Stević, Products of composition and integral type operators from H∞ to the
Bloch space, Complex variables and EllipticEquations, 53 (2008), 463-474.
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[20] S. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch type
spaces, J. Math. Anal. Appl., 338(2008),1282-1295.

[21] M. Lindström and E. Wolf. Essential norm of the difference of weighted composition
operators, Monatsh .Math., 153(2008), 133-143.

[22] A. Matheson, Isometries into function algebras, Houston J. Math., 30 (2004), 219-230 .
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Abstract

In the setting of partially ordered metric spaces, we introduce the notion of generalized
symmetric g-Meir-Keeler type contractions and use the notion to establish the existence
and uniqueness of coupled common fixed points. Our notion extends the notion of gener-
alized symmetric Meir-Keeler contractions given by Berinde et. al. [V. Berinde, and M.
Pacurar, Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions
in ordered metric spaces, Fixed Point Theory and Appl., 2012, 2012:115, doi:10.1186/1687-
1812-2012-115] to a pair of mappings. We also give some applications of our main results.

AMS Subject Classification: 47H10, 46T99, 54H25 .
Key Words : partially ordered metric space, fixed point, generalized symmetric con-

tractions, coupled fixed point.

1 Introduction

Banach [1] in his classical work gave the following contractive theorem:

Theorem 1.1. Let (X, d) be a metric space and T : X → X be a self mapping. If (X, d) is
complete and T is a contraction, that is, there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y),∀x, y ∈ X (1.1)

then, T has a unique fixed point u ∈ X and for any x0 ∈ X, the Picard iteration {Tn(x0)}
converges to u.

This contraction principle proved to be a very powerful tool in nonlinear analysis, and dif-
ferent authors have generalized it in many ways. One can refer to the works noted in references
[2]- [17]. Meir and Keeler [9] generalized the contraction principle due to Banach by considering
a more general contractive condition in their work as follows:

Theorem 1.2. [9] Let (X, d) be a complete metric space and T : X → X be a given mapping.
Suppose that, for any ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(x, y) < ε+ δ(ε)⇒ d(T (x), T (y)) < ε (1.2)

∗Corresponding author
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for all x, y ∈ X. Then T admits a unique fixed point x0 ∈ X and for all x ∈ X, the sequence
{Tn(x)} converges to x0.

By extending the Banach contraction principle to partially ordered sets, Turinici [16] laid
the foundation for a new trend in fixed point theory. Ran and Reurings [17] developed some
applications of Turinici’s theorem to matrix equations. The work of Bhaskar and Lakshmikan-
tham [18] is worth mentioning, as they introduced the new notion of fixed points for mappings
having domain the product space X ×X, which they called coupled fixed points, and thereby
proved some coupled fixed point theorems for mappings satisfying the mixed monotone prop-
erty in partially ordered metric spaces. As an application, they discussed the existence and
uniqueness of a solution for a periodic boundary value problem. Lakshmikantham and Ciric
[19] extended the notion of the mixed monotone property to the mixed g-monotone property
and generalized the results of Bhaskar and Lakshmikantham [18] by establishing the existence
of coupled coincidence points, using a pair of commutative maps.This proved to be a milestone
in the development of fixed point theory with applications to partially ordered sets. Since then
much work has been done in this direction by different authors. For more details the reader
may consult [20]-[31].
Gordji et. al. [32], extended the results of Bhaskar and Lakshmikantham [18], and Samet [33]
by introducing the concept of generalized g-Meir-Keeler type contractions. Abdeljawad et. al.
[34] and Jain et. al. [36] proved some interesting results in partially ordered partial metric
spaces and remarked that the metric space case of their results, proved recently in Gordji et.
al. [32] has gaps. They claimed that some of the results proved by Gordji et. al.[32] cannot be
true if obtained via nonstrongly minihedral cones. On the other hand, Berinde et. al. [35] with
their outstanding new approach introduced the notion of generalized symmetric Meir-Keeler
contractions and complemented the results due to Samet [33]. In this paper, we introduce the
notion of generalized symmetric g-Meir-Keeler type contractions that extends the concept of
generalized symmetric Meir-Keeler contractions given by Berinde et. al. [35] to a pair of map-
pings. Following Abdeljawad et. al. [34], we establish the existence and uniqueness of coupled
common fixed points for mixed g-monotone mappings satisfying generalized symmetric condi-
tions in partially ordered metric spaces. To validate our results we also give some applications.
Before we proceed, we first summarize some basic results and definitions useful in our study.

Definition 1.3. [18] Let (X,≤) be a partially ordered set and F : X ×X → X. The mapping
F is said to have the mixed monotone property if F (x, y) is monotone non-decreasing in x and
monotone non-increasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X,x1 ≤ x2 implies F (x1, y) ≤ F (x2, y)

and
y1, y2 ∈ X, y1 ≤ y2 implies F (x, y1) ≥ F (x, y2)

Definition 1.4. [18] An element (x, y) ∈ X×X, is called a coupled fixed point of the mapping
F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.5. [19] Let (X,≤) be a partially ordered set and F : X×X → X and g : X → X.
We say F has the mixed g-monotone property if F (x, y) is monotone g-nondecreasing in its first
argument and is monotone g-nonincreasing in its second argument; that is, for any x, y ∈ X,
x1, x2 ∈ X, g(x1) ≤ g(x2) implies F (x1, y) ≤ F (x2, y)
and
y1, y2 ∈ X, g(y1) ≤ g(y2) implies F (x, y1) ≥ F (x, y2)

Definition 1.6. [19] An element (x, y) ∈ X ∈ X, is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 1.7. [19] An element (x, y) ∈ X ∈ X, is called a coupled common fixed point of
the mappings F : X ×X → X and g : X → X if x = gx = F (x, y) and y = gy = F (y, x).
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Definition 1.8. [19] Let X be a non-empty set and F : X ×X → X and g : X → X. We say
that F and g are commutative if gF (x, y) = F (gx, gy) for all x, y ∈ X.

Later, Choudhury and Kundu[20] introduced the notion of compatibility in the context of
coupled coincidence point problems and used this notion to improve the results noted in [19].

Definition 1.9. [20] The mappings F : X ×X → X and g : X → X are said to be compatible
if limn→∞ d(g(F (xn, yn), F (gxn, gyn)) = 0 and limn→∞ d(g(F (yn, xn), F (gyn, gxn)) = 0 when-
ever {xn} and {yn} are sequences in X such that limn→∞ F (xn, yn) = limn→∞ gxn = x and
limn→∞ F (yn, xn) = limn→∞ gyn = y for some x, y ∈ X.

Recently, Gordji et. al. [32] replaced the mixed g-monotone property with the mixed strict
g-monotone property and extended the results of Bhaskar and Lakshmikantham [18].

Definition 1.10. [32] Let (X,≤) be a partially ordered set and F : X×X → X and g : X → X.
We say F has the mixed strict g-monotone property if for any x, y ∈ X,
x1, x2 ∈ X, g(x1) < g(x2) implies F (x1, y) < F (x2, y)
and
y1, y2 ∈ X, g(y1) < g(y2) implies F (x, y1) > F (x, y2)

Here if we replace g with identity mapping in Definition 1.10, we get the definition of mixed
strict monotone property of F.

Theorem 1.11. [36] Let (X,≤) be a partially ordered set and suppose there exists a metric
d on X such that (X, d) is a complete metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X such that there exist two elements x0, y0 ∈ X with
x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Suppose that there exists a real number k ∈ [0, 1) such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)] (1.3)

for all x, y, u, v ∈ X with x ≥ u, y ≤ v. Suppose that either
(a) F is continuous
or
(b) X has the following property:
(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n > 0;
(ii) if a non-decreasing sequence {yn} → y, then y ≤ yn for all n > 0;
Then F has a coupled fixed point in X.

We now introduce our notion.

Definition 1.12. Let (X,≤) be a partially ordered set and d be a metric on X. Let F :
X × X → X and g : X → X be two mappings. We say that F is a generalized symmetric
g-Meir-Keeler type contraction if, for any ε > 0, there exists a δ(ε) > 0 such that , for all
x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v) ( or g(x) ≥ g(u) and g(y) ≤ g(v)),

ε ≤ 1

2
[d(g(x), g(u)) + d(g(y), g(v))] < ε+ δ(ε)

implies
1

2
[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] < ε (1.4)

If, in Definition 1.12, we replace g by the identity mapping, we obtain the definition of a
generalized symmetric Meir-Keeler type contraction due to Berinde et. al. [35].

Definition 1.13. [35] Let (X,≤) be a partially ordered set and d be a metric on X. Let
F : X ×X → X be the given mapping. We say that F is a generalized symmetric Meir-Keeler
type contraction if for any ε > 0, there exists a δ(ε) > 0 such that , for all x, y, u, v ∈ X with
x ≤ u and y ≥ v ( or x ≥ u and y ≤ v),
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ε ≤ 1

2
[d(x, u) + d(y, v)] < ε+ δ(ε)

implies
1

2
[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] < ε (1.5)

Proposition 1.14. Let (X, d,≤) be a partially ordered metric space and F : X ×X → X be a
given mapping. If contractive condition (1.3) is satisfied for 0 < k < 1 , then F is a generalized
symmetric Meir-Keeler type contraction.

Proof. Assume that (1.3) is satisfied for 0 < k < 1. For all ε > 0 , it is easy to check that (1.5)
is satisfied with δ(ε) =

(
1
k − 1

)
ε.

Lemma 1.15. Let (X,≤) be a partially ordered set and d be a metric on X. Let F : X ×X →
X and g : X → X be two mappings. If F is a generalized symmetric g-Meir-Keeler type
contraction, then we have

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) < d(g(x), g(u)) + d(g(y), g(v)) (1.6)

for all x, y, u, v ∈ X with g(x) < g(u), g(y) ≥ g(v) (or g(x) ≤ g(u), g(y) > g(v)).

Proof. Without loss of generality, we may assume that g(x) < g(u), g(y) ≥ g(v) where x, y, u, v ∈
X. Then d(g(x), g(u)) + d(g(y), g(v)) > 0. Since F is a generalized symmetric g-Meir- Keeler
type contraction, for ε = ( 1

2 )[d(g(x), g(u)) + d(g(y), g(v))], there exists a δ(ε) > 0 such that ,
for all x0, y0, u0, v0 ∈ X with g(x0) < g(u0) and g(y0) ≥ g(v0),

ε ≤ 1

2
[d(g(x0), g(u0)) + d(g(y0), g(v0))] < ε+ δ(ε)

implies
1

2
[d(F (x0, y0), F (u0, v0)) + d(F (y0, x0), F (v0, u0))] < ε

Then the result follows by choosing x = x0, y = y0, u = u0, v = v0; that is,

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) < d(g(x), g(u)) + d(g(y), g(v))

2 Existence of Coupled Coincidence Points

We now establish our first main result.

Theorem 2.1. Let (X,≤, d) be a partially ordered metric space. Suppose that X has the
following properties:
(i) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . ..
(ii) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..
Let F : X ×X → X and g : X → X be mappings such that F (X ×X) ⊆ g(X) and g(X) is a
complete subspace of (X, d). Also, suppose that
(a) F has the mixed strict g-monotone property;
(b) F is a generalized symmetric g-Meir-Keeler type contraction;
(c) there exists x0, y0 ∈ X such that g(x0) < F (x0, y0) and g(y0) ≥ F (y0, x0)(or g(x0) ≤
F (x0, y0) and g(y0) > F (y0, x0)).
Then, there exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).
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Proof. Without loss of generality, we may assume that there exist x0, y0 ∈ X such that g(x0) <
F (x0, y0) and g(y0) ≥ F (y0, x0). Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X such
that g(x1) = F (x0, y0), g(y1) = F (y0, x0). Again we can choose x2, y2 ∈ X such that g(x2) =
F (x1, y1), g(y2) = F (y1, x1). Continuing this process, we construct sequences {gxn} and {gyn}
such that

g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn),∀n ≥ 0 (2.1)

Using conditions (a), (c) and mathematical induction, it is easy to see that

g(x0) < g(x1) < g(x2) < . . . < g(xn) < g(xn+1) < . . . (2.2)

and
g(yn+1) < g(yn) < . . . < g(y2) < g(y1) < g(y0). (2.3)

Denote by
δn := d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)) (2.4)

Using (2.1) of Lemma 1.15, and condition (b), we have
δn := d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))

= d(F (xn−1, yn−1), F (xn, yn)) + d(F (yn−1, xn−1), F (yn, xn))

< d(g(xn−1), g(xn)) + d(g(yn−1), g(yn)) = δn−1 (2.5)

Thus, the sequence {δn} is a decreasing sequence. Therefore there exists some δ∗ ≥ 0 such that
limn→∞ δn = δ∗.
We claim that δ∗ = 0. Suppose, to the contrary, that δ∗ 6= 0. Then there exists a positive
integer m such that, for any n ≥ m, we have

ε ≤ δn
2

=
1

2
[d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))] < ε+ δ(ε) (2.6)

where ε = δ∗/2 and δ(ε) is chosen by condition (b).
In particular, for n = m, we have

ε ≤ δm
2

=
1

2
[d(g(xm), g(xm+1)) + d(g(ym), g(ym+1))] < ε+ δ(ε) (2.7)

Then, by condition (b), it follows that

1

2
[d(F (xm, ym), F (xm+1, ym+1)) + d(F (ym, xm), F (ym+1, xm+1))] < ε (2.8)

and hence, from (2.1), we have

1

2
[d(g(xm+1), g(xm+2)) + d(g(ym+1), g(ym+2))] < ε (2.9)

a contradiction to (2.6) for n = m+ 1. Thus we must have δ∗ = 0 and hence

lim
n→∞

δn = lim
n→∞

[d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))] = 0 (2.10)

We now prove that {g(xn)} and {g(yn)} are Cauchy sequences. Take an arbitrary ε > 0.
Then, by (2.10), it follows that there exists some k ∈ N such that

1

2
[d(g(xk), g(xk+1)) + d(g(yk), g(yk+1))] < δ(ε) (2.11)

Without loss of generality, assume that k has been chosen so large that δ(ε) ≤ ε and define the
set
∧ := {(g(x), g(y)) : (x, y) ∈ X2, d(g(x), g(xk)) + d(g(y), g(yk)) < 2(ε+ δ(ε)), and

g(x) > g(xk), g(y) ≤ g(yk)} (2.12)
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We claim that (g(x), g(y)) ∈ ∧ implies that

(F (x, y), F (y, x)) ∈ ∧ (2.13)

where x, y ∈ X.
Take (g(x), g(y)) ∈ ∧. Then, using the triangle inequality and (2.11), we have

1

2
[d(g(xk), F (x, y)) + d(g(yk), F (y, x))] ≤ 1

2
[d(g(xk), g(xk+1)) + d(g(xk+1), F (x, y))]

+
1

2
[d(g(yk), g(yk+1)) + d(g(yk+1), F (y, x))]

=
1

2
[d(g(xk), g(xk+1)) + d(g(yk), g(yk+1))]

+
1

2
[d(g(xk+1), F (x, y)) + d(g(yk+1), F (y, x))]

< δ(ε) +
1

2
[d(F (x, y), F (xk, yk)) + d(F (y, x), F (yk, xk))] (2.14)

We distinguish two cases.
First Case: 1

2 [d(g(xk), F (x, y)) + d(g(yk), F (y, x))] ≤ ε. By Lemma 1.15 and Definition of ∧ ,
the inequality (2.14) becomes

1

2
[d(g(xk), F (x, y)) + d(g(yk), F (y, x))] ≤ δ(ε)

+
1

2
[d(F (x, y), F (xk, yk)) + d(F (y, x), F (yk, xk))]

< δ(ε) +
1

2
[d(g(x), g(xk)) + d(g(y), g(yk))]

≤ δ(ε) + ε (2.15)

Second Case: ε < 1
2 [d(g(x), g(xk)) + d(g(y), g(yk))] < δ(ε) + ε. In this case, we have

ε <
1

2
[d(g(x), g(xk)) + d(g(y), g(yk))] < δ(ε) + ε (2.16)

Then, since g(x) > g(xk) and g(y) ≤ g(yk) , by condition (b), we have

1

2
[d(F (x, y), F (xk, yk)) + d(F (y, x), F (yk, xk))] < ε (2.17)

Using (2.17) in (2.14), we get

1

2
[d(g(xk), F (x, y)) + d(g(yk), F (y, x))] < δ(ε) + ε (2.18)

Since F satisfies the mixed strict g -monotone property and (g(x), g(y)) ∈ ∧ , it follows that

F (x, y) > g(xk), F (y, x) > g(yk) (2.19)

Also, F (X ×X) ⊆ g(X). Consequently, we have (F (x, y), F (y, x)) ∈ ∧ ; that is (2.13) holds.
By (2.11), we have (g(xk+1), g(yk+1)) ∈ ∧.Then, using (2.13), we have

(g(xk+1), g(yk+1)) ∈ ∧ ⇒ d(F (xk+1, yk+1), F (yk+1, xk+1)) = (g(xk+2), g(yk+2) ∈ ∧
⇒ d(F (xk+2, yk+2), F (yk+2, xk+2)) = (g(xk+3), g(yk+3) ∈ ∧

⇒ . . .⇒ (g(xn), g(yn)) ∈ ∧ ⇒ . . . (2.20)
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Then, for all n > k, we have (g(xn), g(yn)) ∈ ∧ . This implies that, for all n,m > k, we have

d(g(xn), g(xm)) + d(g(yn), g(ym)) ≤ d(g(xn), g(xk)) + d(g(xk), g(xm))

+ d(g(yn), g(yk)) + d(g(yk), g(ym))

= [d(g(xn), g(xk)) + d(g(yn), g(yk))] + [d(g(xk), g(xm)) + d(g(yk), g(ym))]

≤ 4(ε+ δ(ε)) ≤ 8ε

Therefore, the sequences {g(xn)} and {g(yn)} are Cauchy. Since (g(X), d) is complete, there
exist x, y ∈ X such that

lim
n→∞

d(g(xn), g(x)) = 0, lim
n→∞

d(g(yn), g(y)) = 0 (2.21)

Since the sequences {g(xn)} and {g(yn)} are monotone increasing and monotone decreasing,
respectively, by conditions (i) and (ii), we have

g(xn) < g(x), g(yn) > g(y) (2.22)

for each n ≥ 0. Therefore, by (2.22) and Lemma 1.15, along with condition (b), we obtain

d(g(xn+1), F (x, y)) + d(g(yn+1), F (y, x))

= d(F (xn, yn), F (x, y)) + d(F (yn, xn), F (y, x))

< d(g(xn), g(x)) + d(g(yn), g(y)) (2.23)

Letting n→∞ in (2.23) and using (2.21), we get

d(g(x), F (x, y)) + d(g(y), F (y, x)) ≤ lim
n→∞

[d(g(xn), g(x)) + d(g(yn), g(y))] (2.24)

which yields F (x, y) = g(x), F (y, x) = g(y). This completes the proof.

Corollary 2.2. Let (X,≤, d) be a partially ordered metric space. Suppose that (X, d) is com-
plete and has the following properties:
(i) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . ..
(ii) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..
Let F : X ×X → X be a mapping. Also, suppose that
(d) F has the mixed strict monotone property;
(e) F is a generalized symmetric Meir-Keeler type contraction;
(f) there exists x0, y0 ∈ X such that x0 < F (x0, y0) and y0 ≥ F (y0, x0)(or x0 ≤ F (x0, y0) and
y0 > F (y0, x0)).
Then, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Remark 2.3. If, in Theorem 2.1 condition (c) is replaced by the following condition:
(g) there exist x0, y0 ∈ X such that g(x0) > F (x0, y0) and g(y0) ≤ F (y0, x0) (or g(x0) ≥
F (x0, y0) and g(y0) < F (y0, x0) ),
then we also get the existence of some x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).
And, if in Corollary 2.2, condition (f) is replaced by the following condition:
(h) there exist x0, y0 ∈ X such that x0 > F (x0, y0) and y0 ≤ F (y0, x0)
(or x0 ≥ F (x0, y0) and y0 < F (y0, x0) ),
then we also get the existence of some x, y ∈ X such that x = F (x, y) and y = F (y, x).

Remark 2.4. Corollary 2.2, along with Remark 2.3, improves on the result of Berinde et. al.
([35], Theorem 2) by removing the continuity assumption on the mixed monotone operator F .
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3 Existence and Uniqueness of Coupled Fixed Points

In this section we prove the existence and uniqueness of coupled fixed points. Before we proceed,
we need to consider the following.
For a partially ordered set (X,≤), we endow X ×X with the following order ≤g

(u, v) ≤g (x, y)⇒ g(u) < g(x), g(y) ≤ g(v),∀(x, y), (u, v) ∈ X ×X (3.1)

In this case, we say that (u, v) and (x, y) are g -comparable if either (u, v) ≤g (x, y) or
(x, y) ≤g (u, v) . If g = IX , then we simply say that (u, v) and (x, y) are comparable and denote
this fact by (u, v) ≤ (x, y).

Lemma 3.1. Let F : X ×X → X and g : X → X be compatible maps and suppose there exists
an element (x, y) ∈ X × X such that g(x) = F (x, y) and g(y) = F (y, x). Then gF (x, y) =
F (g(x), g(y)) and gF (y, x) = F (g(y), g(x)).

Proof. Since the pair (F, g) is compatible, it follows that

lim
n→∞

d(gF (xn, yn), F (g(xn), g(yn))) = 0

and
lim
n→∞

d(gF (yn, xn), F (g(yn), g(xn))) = 0

whenever {xn} and {yn} are sequences in X such that limn→∞ F (xn, yn) = limn→∞ g(xn) = a,
limn→∞ F (yn, xn) = limn→∞ g(yn) = b for some a, b ∈ X.
Taking xn = x, yn = y and using the fact that g(x) = F (x, y), g(y) = F (y, x) , it follows
immediately that d(gF (x, y), F (g(x), g(y))) = 0 and d(gF (y, x), F (g(y), g(x))) = 0.
Hence, gF (x, y) = F (g(x), g(y)) and gF (y, x) = F (g(y), g(x)).

Theorem 3.2. In Theorem 2.1, assume, in addition, that, for all non g-comparable points
(x, y), (x∗, y∗) ∈ X × X, there exists a point (a, b) ∈ X × X such that (F (a, b), F (b, a)) is
comparable to both (g(x), g(y)) and (g(x∗), (y∗)) . Also assume that F and g are compatible.
Then,F and g have a unique coupled common fixed point; that is, there exists a point (u, v) ∈
X ×X such that

u = g(u) = F (u, v), v = g(v) = F (v, u) (3.2)

Proof. From Theorem 2.1 it follows that the set of coupled coincidence points of F and g is
non-empty. We shall first show that, if (x, y) and (x∗, y∗) are coupled coincidence points, that
is, if g(x) = F (x, y) , g(y) = F (y, x) and g(x∗) = F (x∗, y∗) , g(y∗) = F (y∗, x∗) , then

g(x) = g(x∗)andg(y) = g(y∗) (3.3)

For this, we distinguish the following two cases.
First Case. (x, y) is g-comparable to (x∗, y∗) with respect to the ordering in X ×X, where

F (x, y) = g(x), F (y, x) = g(y), F (x∗, y∗) = g(x∗), F (y∗, x∗) = g(y∗) (3.4)

Without loss of generality, we may assume that

g(x) = F (x, y) < F (x∗, y∗) = g(x∗), g(y) = F (y, x) ≥ F (y∗, x∗) = g(y∗) (3.5)

Using Lemma 1.15 we have

0 < d(g(x), g(x∗)) + d(g(y∗), g(y)) = d(F (x, y), F (x∗, y∗)) + d(F (y∗, x∗), F (y, x))

< d(g(x), g(x∗)) + d(g(y∗), g(y))

a contradiction. Therefore, we have (g(x), g(y)) = (g(x∗), g(y∗)) . Hence (3.3) holds.
Second Case. (x, y) is not g-comparable to (x∗, y∗).
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By assumption, there exists a point (a, b) ∈ X × X such that (F (a, b), F (b, a)) is comparable
to both (g(x), g(y)) and (g(x∗), g(y∗)). Then we have

g(x) = F (x, y) < F (a, b), F (x∗, y∗) = g(x∗) < F (a, b), (3.6)

and
g(y) = F (y, x) ≥ F (b, a), F (y∗, x∗) = g(y∗) ≥ F (b, a), (3.7)

Further, setting x = x0, y = y0, a = a0, b = b0 and x∗ = x∗0, y
∗ = y∗0 as in the proof of Theorem

2.1, we obtain

g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn),∀n = 0, 1, 2, . . .

g(an+1) = F (an, bn), g(bn+1) = F (bn, an),∀n = 0, 1, 2, . . . (3.8)

g(x∗n+1) = F (x∗n, y
∗
n), g(y∗n+1) = F (y∗n, x

∗
n),∀n = 0, 1, 2, . . .

Since (F (x, y), F (y, x)) = (g(x), g(y)) = (g(x1), g(y1)) is comparable with
(F (a, b), F (b, a)) = (g(a1), g(b1)), we have g(x) < g(a1) and g(y) ≥ g(b1).Using the fact that F
has the mixed strict g -monotone property, g(x) < g(an) and g(bn) < g(y) for all n ≥ 2. Thus,
by Lemma 1.15, we have

0 < d(g(x), g(an+1)) + d(g(y), g(bn+1)) = d(F (x, y), F (an, bn)) + d(F (y, x), F (bn, an))

< d(g(x), g(an)) + d(g(y), g(bn)) (3.9)

Let αn = d(g(x), g(an)) + d(g(y), g(bn)). Then, by (3.9), it follows that {αn} is a decreasing
sequence, and hence converges to some α ≥ 0. We claim that α = 0. Suppose, to the contrary,
that α > 0. Then there exists a positive integer p such that, for n ≥ p, we have

ε ≤ an
2

=
1

2
[d(g(x), g(an)) + d(g(y), g(bn))] < ε+ δ(ε), (3.10)

where ε = α
2 and δ(ε) is chosen by condition (b) of Theorem 2.1. In particular, for n = p,

ε ≤ ap
2

=
1

2
[d(g(x), g(ap)) + d(g(y), g(bp))] < ε+ δ(ε), (3.11)

Then, by condition (b) of Theorem 2.1, we have

1

2
[d(F (x, y), F (ap, bp)) + d(F (y, x), F (bp, ap))] < ε, (3.12)

and hence
1

2
[d(g(x), g(ap+1)) + d(g(y), g(bp+1))] < ε, (3.13)

a contradiction to (3.10) for n = p+ 1. Thus α = 0, and hence

lim
n→∞

αn = lim
n→∞

[d(g(x), g(an)) + d(g(y), g(bn))] = 0 (3.14)

Similarly, it follows that

lim
n→∞

[d(g(x∗), g(an)) + d(g(y∗), g(bn))] = 0 (3.15)

Using the triangle inequality, we get

d(g(x), g(x∗)) + d(g(y), g(y∗)) ≤ d(g(x), g(an)) + d(g(an), g(x∗))

+ d(g(y), g(bn)) + d(g(bn), g(y∗))

= [d(g(x), g(an)) + d(g(y), g(bn))]

+ [d(g(x∗), g(an)) + d(g(y∗), g(bn))]→ 0 (3.16)
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as n→∞.
Hence, it follows that d(g(x), g(x∗)) = 0 and d(g(y), g(y∗)) = 0. Therefore, (3.3) holds immedi-
ately. Thus, in both the cases, we have proved that (3.3) holds.
Now, since g(x) = F (x, y), g(y) = F (y, x) and the pair (F, g) is compatible, by Lemma 3.1, it
follows that

g(g(x)) = gF (x, y) = F (gx, gy) and g(g(y)) = gF (y, x) = F (gy, gx). (3.17)

Denote g(x) = z, g(y) = w. Then by (3.17),

g(z) = F (z, w) and g(w) = F (w, z). (3.18)

Thus (z, w) is a coupled coincidence point.
Then by (3.3) with x∗ = z and y∗ = w , it follows that g(z) = g(x) and g(w) = g(y), that is,

g(z) = z and g(w) = w. (3.19)

By (3.18) and (3.19),
z = g(z) = F (z, w) and w = g(w) = F (w, z). Therefore,(z, w) is a coupled common fixed point
of F and g.
To prove uniqueness, assume that (p, q) is another coupled common fixed point of F and g.
Then by (3.3) we have p = g(p) = g(z) = z and q = g(q) = g(w) = w. This completes the
proof.

Corollary 3.3. Suppose that all the hypotheses of Corollary 2.2 hold, and further, for all
(x, y), (x∗, y∗) ∈ X × X, there exists a point (a, b) ∈ X × X that is comparable to (x, y) and
(x∗, y∗). Then F has a unique coupled fixed point.

4 Results of Integral Type

Inspired by the work of Suzuki [37], we prove the following result, which will be useful in
developing some applications of the main results proved in Section 2.

Theorem 4.1. Let (X, d,≤) be a partially ordered metric space. Let F : X × X → X and
g : X → X be two given mappings. Assume that there exists a function θ : [0,+∞)→ [0,+∞)
satisfying the following conditions:
(I) θ(0) = 0 and θ(t) > 0 for any t > 0;
(II) θ is increasing and right continuous;
(III) for any ε > 0, there exists δ(ε) > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u) and
g(y) ≥ g(v),

ε ≤ θ(1

2
[d(g(x), g(u)) + d(g(y), g(v))]) < ε+ δ(ε)

implies θ(
1

2
[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))]) < ε (4.1)

Then F is a generalized symmetric g-Meir-Keeler type contraction.

Proof. For any ε > 0 it follows from (I) that θ(ε) > 0, and so there exists an α > 0 such that,
for all u, v, u∗, v∗ ∈ X with g(u) ≤ g(u∗) and g(v) ≥ g(v∗),

θ(ε) ≤ θ(1

2
[d(g(u), g(u∗)) + d(g(v), g(∗v))]) < θ(ε) + α

implies θ(
1

2
[d(F (u, v), F (u∗, v∗)) + d(F (v, u), F (v∗, u∗))]) < θ(ε) (4.2)
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By the right continuity of θ , there exists δ > 0 such that θ(ε+ δ) < θ(ε) + α.
For any x, y, u, v ∈ X such that g(x) ≤ g(u), g(y) ≥ g(v) and

ε ≤ 1

2
[d(g(x), g(u)) + d(g(y), g(v))] < ε+ δ. (4.3)

Then, since θ is an increasing function, we get the following:

θ(ε) ≤ θ(1

2
[d(g(x), g(u)) + d(g(y), g(v))]) < θ(ε+ α) < θ(ε) + α. (4.4)

By (4.2), we have

θ(
1

2
[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))]) < θ(ε)

and hence,
1

2
[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))]) < ε.

Therefore, it follows that F is a generalized symmetric g-Meir-Keeler type contraction. This
completes the proof.

The following result is an immediate consequence of Theorems 2.1 and 4.1.

Corollary 4.2. Let (X, d,≤) be a partially ordered metric space. Given F : X × X → X
and g : X → X such that F (X × X) ⊂ g(X), g(X) is a complete subspace and the following
hypotheses hold:
(IV) F has the mixed strict g-monotone property;
(V) for every ε > 0 , there exists δ(ε) > 0 such that

ε ≤
∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0

φ(t)dt < ε+ δ(ε)

implies

∫ (1/2)[d(F (x,y),F (u,v))+d(F (y,x),F (v,u))]

0

φ(t)dt < ε (4.5)

for all gx ≤ gu and gy ≥ gv , where φ : [0,+∞) → [0,+∞) is a locally integrable function
satisfying

∫ s
0
φ(t)dt > 0 for all s > 0;

(VI) there exist x0, y0 ∈ X such that g(x0) < F (x0, y0) and g(y0) ≥ F (y0, x0). Assume that the
hypotheses (i) and (ii) given in Theorem 2.1 hold. Then,F and g have a coupled coincidence
point.

Corollary 4.3. Let (X, d,≤) be a partially ordered metric space. Given F : X × X → X
and g : X → X such that F (X × X) ⊂ g(X), g(X) is a complete subspace and the following
hypotheses hold:
(VII) F has the mixed g-monotone property;
(VIII) for all gx ≤ gu and gy ≤ gv∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0

φ(t)dt ≤ k
∫ (1/2)[d(F (x,y),F (u,v))+d(F (y,x),F (v,u))]

0

φ(t)dt (4.6)

where k ∈ (0, 1) and φ is a locally integrable function from [0,+∞) into itself satisfying∫ s
0
φ(t)dt > 0 for all s > 0;

(IX) there exist x0, y0 ∈ X such that g(x0) < F (x0, y0) and g(y0) ≥ F (y0, x0).
Assume that the hypotheses (i) and (ii) given in Theorem 2.1 hold. Then,F and g have a
coupled coincidence point.

Proof. For each ε > 0 , take δ(ε) = ( 1
k − 1)ε and apply Corollary 4.2.
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5 Applications to Integral Equations

As an application of the results proved in Sections 2 and 3, we study the existence of solutions
for the following system of integral equations:

x(t) =

∫ b

a

(K1(t, s) +K2(t, s))(f(s, x(s)) + g(s, y(s)))ds+ h(t)

y(t) =

∫ b

a

(K1(t, s) +K2(t, s))(f(s, y(s)) + g(s, x(s)))ds+ h(t) (5.1)

where t ∈ I = [a, b].
Let Φ : [0,+∞) → [0,+∞) denote the class of functions φ : [0, ) → [0, ) which satisfies the
following conditions:
(i) φ is increasing;
(ii) for each x ≥ 0, there exists a k ∈ (0, 1) such that φ(x) ≤ (k2 )x
We assume that K1,K2, f, g satisfy the following conditions.

Assumption 5.1. (i) K1(t, s) ≥ 0 and K2(t, s) ≤ 0 for all t, s ∈ [a, b];
(ii) There exist λ, µ > 0 and φ ∈ Φ such that for all x, y ∈ R, x > y,

0 < f(t, x)− f(t, y) ≤ λφ(x− y) (5.2)

and
− µφ(x− y) ≤ g(t, x)− g(t, y) < 0; (5.3)

(iii)

(λ+ µ) sup
t∈I

∫ b

a

(K1(t, s)−K2(t, s))ds ≤ 1; (5.4)

Definition 5.2. An element (α, β) ∈ X ×X with X = C(I,R) is called a coupled lower and
upper solution of the integral equation (5.1) if for all t ∈ I ,

α(t) <

∫ b

a

(K1(t, s)(f(s, α(s)) + g(s, β(s)))ds+

∫ b

a

K2(t, s))(f(s, β(s)) + g(s, α(s)))ds+ h(t)

and

β(t) ≥
∫ b

a

(K1(t, s)(f(s, β(s)) + g(s, α(s)))ds+

∫ b

a

K2(t, s))(f(s, α(s)) + g(s, β(s)))ds+ h(t)

Theorem 5.3. Consider the integral equation (5.1) with K1,K2 ∈ C(I,R), f, g ∈ C(I × R,R)
and h ∈ C(I,R). Suppose that there exists a coupled lower and upper solution (α, β) of (5.1)
with α ≤ β and that Assumption 5.1 is satisfied. Then the integral equation (5.1) has a solution.

Proof. Consider the natural order relation on X = C(I,R) ; that is, for x, y ∈ C(I,R)

x ≤ y ⇒ x(t) ≤ y(t),∀t ∈ I

It is well known that X is a complete metric space with respect to the sup metric

d(x, y) = sup
t∈I
|x(t)− y(t)|, x, y ∈ C(I,R).

Suppose that {un} is a strictly increasing sequence in X that converges to a point u ∈ X. Then
for every t ∈ I, the sequence of real numbers

u1(t) < u2(t) < . . . < un(t) < . . .

converges to u(t). Therefore, for all t ∈ I, n ∈ N, un(t) < u(t). Hence, un < u for all n.
Similarly, it can be verified that, if for all t ∈ I, v(t) is a limit of a strictly decreasing sequence
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vn(t) in X, then v(t) < vn(t) for all n and hence v < vn. Therefore conditions (i) and (ii) of
Corollary 2.1 hold.
Also, X ×X = C(I,R) × C(I,R) is a partially ordered set under the following order relation
in X ×X

(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v)⇒ x(t) ≤ u(t) and y(t) ≥ v(t),∀t ∈ I.

For any x, y ∈ X , max{x(t), y(t)} and min{x(t), y(t)}, for each t ∈ I, are in X and are the
upper and lower bounds of x, y, respectively. Therefore, for every (x, y), (u, v) ∈ X ×X, there
exists a (max{x, u},min{y, v)}) ∈ X ×X that is comparable to (x, y) and (u, v).
Define F : X ×X → X by

F (x, y)(t) =
∫ b
a
K1(t, s)(f(s, x(s)) + g(s, y(s)))ds +

∫ b
a
K2(t, s)(f(s, y(s)) + g(s, x(s)))ds + h(t)

for all t ∈ [a, b]. We now show that F has the mixed strict monotone property. For x1(t) < x2(t)
for all t ∈ [a, b] we have

F (x1, y)(t) − F (x2, y)(t) =

∫ b

a

K1(t, s)(f(s, x1(s)) + g(s, y(s)))ds

+

∫ b

a

K2(t, s)(f(s, y(s)) + g(s, x1(s)))ds+ h(t)

−
∫ b

a

K1(t, s)(f(s, x2(s)) + g(s, y(s)))ds

−
∫ b

a

K2(t, s)(f(s, y(s)) + g(s, x2(s)))ds− h(t)

=

∫ b

a

K1(t, s)(f(s, x1(s))− f(s, x2(s)))ds

+

∫ b

a

K2(t, s)(g(s, x1(s))− g(s, x2(s)))ds < 0

by Assumption 5.1. Hence F (x1, y)(t) < F (x2, y)(t),∀t ∈ I ; that is, F (x1, y) < F (x2, y).
Similarly, if y1 > y2, that is, y1(t) > y2(t), for all t ∈ [a, b], we have

F (x, y1)(t) − F (x, y2)(t) =

∫ b

a

K1(t, s)(f(s, x(s)) + g(s, y1(s)))ds

+

∫ b

a

K2(t, s)(f(s, y1(s)) + g(s, x(s)))ds+ h(t)

−
∫ b

a

K1(t, s)(f(s, x(s)) + g(s, y2(s)))ds

−
∫ b

a

K2(t, s)(f(s, y2(s)) + g(s, x(s)))ds− h(t)

=

∫ b

a

K1(t, s)(g(s, y1(s))− g(s, y2(s)))ds

+

∫ b

a

K2(t, s)(f(s, y1(s))− f(s, y2(s)))ds < 0

by Assumption 5.1. Hence F (x, y1)(t) < F (x, y2)(t),∀t ∈ I ; that is, F (x, y1) < F (x, y2).
Therefore F satisfies mixed strict monotone property.
Next, we verify that F satisfies (1.3). For x ≥ u, y ≤ v, that is, x(t) ≥ u(t), y(t) ≤ v(t) for all
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t ∈ I, we have

F (x, y)(t)− F (u, v)(t) =

∫ b

a

K1(t, s)(f(s, x(s)) + g(s, y1(s)))ds

+

∫ b

a

K2(t, s)(f(s, y(s)) + g(s, x(s)))ds

−
∫ b

a

K1(t, s)(f(s, u(s)) + g(s, v(s)))ds

−
∫ b

a

K2(t, s)(f(s, v(s)) + g(s, u(s)))ds

=

∫ b

a

K1(t, s)(f(s, x(s))− f(s, u(s))− g(s, y(s))− g(s, v(s)))]ds

+

∫ b

a

K2(t, s)[(f(s, y(s))− f(s, v(s)))− g(s, x(s))− g(s, u(s)))ds

=

∫ b

a

K1(t, s)[(f(s, x(s))− f(s, u(s))− (g(s, v(s))− g(s, y(s)))]ds

−
∫ b

a

K2(t, s)[f(s, v(s))− f(s, y(s))− (g(s, x(s))− g(s, u(s))]ds

≤
∫ b

a

K1(t, s)[λφ(x(s)− u(s)) + µφ(v(s)− y(s))]ds

−
∫ b

a

K2(t, s)[λφ(v(s)− y(s)) + µφ(x(s)− u(s))]ds (5.5)

Since the function φ is increasing and x ≥ u and y ≤ v, we have

φ(x(s)− u(s)) ≤ φ(sup
t∈I
|x(t)− u(t)|) = φ(d(x, u))

and
φ(v(s)− y(s)) ≤ φ(sup

t∈I
|v(t)− y(t)|) = φ(d(v, y))

Hence, using (5.5) and the fact that K2(t, s) ≤ 0 , we obtain

|F (x, y)(t)− F (u, v)(t)| ≤
∫ b

a

K1(t, s)[λφ(d(x, u)) + µφ(d(v, y))]ds

−
∫ b

a

K2(t, s)[λφ(d(v, y)) + µφ(d(x, u))]ds (5.6)

Since all of the quantities on the right hand side of (5.5) are non-negative, inequality (5.6) is
satisfied.
Similarly, we can show that

|F (y, x)(t)− F (v, u)(t)| ≤
∫ b

a

K1(t, s)[λφ(d(v, y)) + µφ(d(x, u))]ds

−
∫ b

a

K2(t, s)[λφ(d(x, u)) + µφ(d(v, y))]ds (5.7)

Summing (5.6) and (5.7), dividing by 2 , and then taking the supremum with respect to t we
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get, by using (5.4) that

d(F (x, y) + F (u, v)) + d(F (y, x) + F (v, u))

2

≤ (λ+ φ) sup
t∈I

∫ b

a

(K1(t, s)−K2(t, s))ds.
φ(d(v, y)) + φ(d(x, u))

2

≤ φ(d(v, y)) + φ(d(x, u))

2

Since φ is increasing,

φ(d(x, u)) ≤ φ(d(x, u) + d(v, y)), φ(d(v, y)) ≤ φ(d(x, u) + d(v, y))

and hence

φ(d(v, y)) + φ(d(x, u))

2
≤ φ(d(x, u) + d(v, y)) ≤ (

k

2
)[d(x, u) + d(v, y)]

by the definition of φ. Thus

d(F (x, y) + F (u, v)) + d(F (y, x) + F (v, u))

2
≤ (

k

2
)[d(x, u) + d(v, y)]

which reduces to the symmetric contractive condition (1.3).
Then, by Proposition 1.14, F is a generalized symmetric Meir-Keeler type contraction.
Finally, let (α, β) be a coupled lower and upper solution of the integral equation (5.1), then
we have α(t) < F (α, β)(t) and β(t) ≥ F (β, α)(t) for all t ∈ [a, b] , that is, α < F (α, β) and
β ≥ F (β, α).
Therefore, Corollaries 2.2 and 3.2 yield that F has a unique coupled fixed point (x, y) and hence
the system (5.1) has a unique solution.
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Pointwise Superconvergence Patch Recovery for

the Gradient of the Linear Tetrahedral Element

Jinghong Liu∗and Yinsuo Jia†

We consider the finite element approximation to the solution of a self-adjoint,
second-order elliptic boundary value problem in three dimensions over a fully
uniform mesh of piecewise linear tetrahedral elements. First, the supercloseness
of the gradients between the piecewise linear finite element solution uh and the
linear interpolation uI is derived by using a weak estimate and an estimate of
the discrete derivative Green’s function. We then analyze a superconvergence
patch recovery scheme for the gradient of the finite element solution, showing
that the recovered gradient of uh is superconvergent to the gradient of the true
solution u.

1 Introduction

Superconvergence of the gradient for the finite element approximation is a phe-
nomenon whereby the convergent order of the derivatives of the finite elemen-
t solutions exceeds the optimal global rate. Up to now, superconvergence is
still an active research topic; see, for example, Babus̆ka and Strouboulis [1],
Chen [2], Chen and Huang [3], Lin and Yan [4], Wahlbin [5] and Zhu and Lin
[6] for overviews of this field. Nevertheless, how to obtain the superconver-
gent numerical solution is an issue to researchers. In general, it needs to use
post-processing techniques to get recovered gradients with high order accura-
cy from the finite element solution. Usual post-processing techniques include
Interpolation technique, Projection technique, Average technique, Extrapola-
tion technique, Superconvergence Patch Recovery (SPR) technique introduced
by Zienkiewicz and Zhu [7–9] and Polynomial Patch Recovery (PPR) technique
raised by Zhang and Naga [10]. In previous works, for the linear tetrahedral
element, Chen and Wang [11] obtained the recovered gradient with O(h2) order
accuracy in the average sense of the L2-norm by using SPR. Using the L2-
projection technique, in the average sense of the L2-norm, Chen [12] got the

recovered gradient with O(h1+min(σ, 12 )) order accuracy. Goodsell [13] derived
by using the average technique the pointwise superconvergence estimate of the
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†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
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LIU, JIA: POINTWISE SUPERCONVERGENCE PATCH RECOVERY

recovered gradient with O(h2−ε) order accuracy.
Unlike the results in [11–13], this article will show a pointwise superconver-

gence estimate with O(h2| lnh| 43 ) order accuracy for the recovered gradient by
using SPR. In this article, we shall use the letter C to denote a generic con-
stant which may not be the same in each occurrence and also use the standard
notations for the Sobolev spaces and their norms.

2 Model Problem and Finite Element Space

Suppose Ω ⊂ R3 is a rectangular block with boundary, ∂Ω, consisting of faces
parallel to the x-, y-, and z-axes. We consider the self-adjoint, variable coeffi-
cients second-order elliptic problem

Lu ≡ −
3∑

i,j=1

∂j(aij∂iu) = f in Ω, u = 0 on ∂Ω. (2.1)

Here we assume f is smooth enough, and A = (aij) is a 3 × 3 symmetric
matrix function in (L∞(Ω))3×3 and uniformly positive definite. Set ∂1u = ∂u

∂x ,

∂2u = ∂u
∂y , and ∂3u = ∂u

∂z . Thus, the variational formulation of (2.1) is

a(u , v) = (f , v) ∀ v ∈ H1
0 (Ω), (2.2)

where

a(u , v) ≡
∫
Ω

3∑
i,j=1

aij∂iu∂jv dxdydz

and

(f , v) =

∫
Ω

fv dxdydz.

To discretize the problem (2.2), one proceeds as follows. The domain Ω is
firstly partitioned into cubes of side h, and each of these is then subdivided into
six tetrahedra (see Fig. 1). We denote by T h this partition.

�
�

�
�� �

�
�

��

Figure 1: A tetrahedral partition
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For this fully uniform mesh of tetrahedral elements, let Sh
0 (Ω) ⊂ H1

0 (Ω)
be the piecewise linear tetrahedral finite element space, and uI ∈ Sh

0 (Ω) the
Lagrange interpolant to the solution u of (2.2).

Discretizing (2.2) using Sh
0 as approximating space means finding uh ∈ Sh

0

such that a(uh , v) = (f , v) for all v ∈ Sh
0 . Here uh is a finite element approxi-

mation to u. Thus we have the Galerkin orthogonality relation

a(u− uh , v) = 0 ∀ v ∈ Sh
0 (Ω). (2.3)

To derive the main result of this article, for every Z ∈ Ω, we need to introduce
the discrete derivative Green’s function ∂Z,ℓG

h
Z ∈ Sh

0 (Ω) defined by

a(v, ∂Z,ℓG
h
Z) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω). (2.4)

Here, for any direction ℓ ∈ R3, |ℓ| = 1, ∂Z,ℓG
h
Z and ∂ℓv(Z) stand for the

following onesided directional derivatives, respectively.

∂Z,ℓG
h
Z = lim

|∆Z|→0

Gh
Z+∆Z −Gh

Z

|∆Z|
, ∂ℓv(Z) = lim

|∆Z|→0

v(Z +∆Z)− v(Z)

|∆Z|
, ∆Z = |∆Z|ℓ.

Remark 1. Since ∆Z = |∆Z|ℓ, that is, ∆Z is of the same direction as ℓ. Thus,
provided that the direction ℓ is given, the above limits exist. Hence, no matter
what direction is given, the above definition has good meaning.

3 Gradients Recovered by SPR and Supercon-
vergence

SPR is a gradient recovery method introduced by Zienkiewicz and Zhu. This
method is now widely used in engineering practices for its robustness in a pos-
terior error estimation and its efficiency in computer implementation.

For v ∈ Sh
0 (Ω), we denote by Rh the SPR-recovery operator and begin by

defining the point values of Rhv at the element nodes. After the recovered
gradient values of all nodes are obtained, we give a linear interpolation by using
these values, namely SPR-recovery gradient Rhv. Obviously Rhv ∈ Sh

0 (Ω).
Let us firstly assume N is a interior node of the partition T h, and denote

by ω the element patch around N containing 24 tetrahedra. Under the local
coordinate system centered N , we let Qi be the barycenter of a tetrahedron
ei ⊂ ω, i = 1, 2, · · · , 24. SPR uses the discrete least-squares fitting to seek
linear vector function p ∈ (P1(ω))

3, such that

24∑
i=1

[p(Qi)−∇v(Qi)]q(Qi) = 0 ∀q ∈ P1(ω), (3.1)

where v ∈ Sh
0 (Ω). The existence and uniqueness of the minimizer in (3.1) can

be found in [14].
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We define Rhv(N) = p(0). Then the following Lemma 3.1 and Lemma 3.2
hold.
Lemma 3.1. Let ω be the element patch around an interior node N , and
u ∈W 3,∞(ω). For uI ∈ Sh

0 (Ω) the interpolant to u, we have

|∇u(N)−RhuI(N)| ≤ Ch2∥u∥3,∞,ω.

Lemma 3.2. The recovery operator Rh satisfies

Rhv(N) =
1

24

24∑
i=1

∇v(Qi).

Lemma 3.3. For v ∈ Sh
0 (Ω), we have the weak estimate

|a(u− uI , v)| ≤ Ch2∥u∥3,∞,Ω|v|1,1,Ω.

Lemma 3.4. For ∂Z,ℓG
h
Z the discrete derivative Green’s function defined in

(2.4), we have the following estimate∣∣∂Z,ℓG
h
Z

∣∣
1,1

≤ C| lnh| 43 .

Remark 2. The proofs of Lemma 3.1 and Lemma 3.2 can be seen in [11],
Lemma 3.3 in [13], and Lemma 3.4 in [15].
Theorem 3.1. For uI and uh, the linear interpolant and the linear tetrahedral
finite element approximation to u, respectively. Thus we have the following
supercloseness estimate

|uh − uI |1,∞,Ω ≤ Ch2| lnh| 43 ∥u∥3,∞,Ω.

Proof. For every Z ∈ Ω and any direction ℓ, from (2.3) and (2.4),

∂ℓ (uh − uI) (Z) = a(uh − uI , ∂Z,ℓG
h
Z) = a(u− uI , ∂Z,ℓG

h
Z).

Hence, using Lemma 3.3,

|∂ℓ (uh − uI) (Z)| ≤ Ch2 ∥u∥3,∞,Ω

∣∣∂Z,ℓG
h
Z

∣∣
1,1,Ω

,

which combined with Lemma 3.4 completes the proof of Theorem 3.1.
Theorem 3.2. For uI ∈ Sh

0 (Ω) the linear interpolant to u, the solution of (2.2),
and Rh the gradient recovered operator by SPR, we have the superconvergent
estimate

|∇u−RhuI |0,∞,Ω ≤ Ch2∥u∥3,∞,Ω.

Proof. Denote by F : ê → e an affine transformation. Obviously, there ex-
ists an element e ∈ T h, using the triangle inequality and the Sobolev Embedding
Theorem [16], and considering Lemma 3.2, such that

|∇u−RhuI |0,∞,Ω = |∇u−RhuI |0,∞, e

≤ Ch−1 |∇û−RhûI |0,∞, ê

≤ Ch−1
[
|∇û|0,∞, ê + |RhûI |0,∞, ê

]
≤ Ch−1

[
|∇û|0,∞, χ̂ + |ûI |1,∞, χ̂

]
≤ Ch−1 ∥û∥3,∞, χ̂ ,
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where χ̂ is a small patch of elements surrounding the tetrahedron, ê. Due to
the fact that, for û quadratic over χ̂,

∇û−RhûI = 0 in ê,

so, from the Bramble-Hilbert Lemma [17],

|∇u−RhuI |0,∞,Ω ≤ Ch−1 |û|3,∞, χ̂ ≤ Ch2 |u|3,∞,Ω ,

which completes the proof of Theorem 3.2.
Theorem 3.3. For uh ∈ Sh

0 (Ω) the linear finite element approximation to u,
the solution of (2.2), and Rh the gradient recovered operator by SPR, we have
the superconvergent estimate

|∇u−Rhuh|0,∞,Ω ≤ Ch2| lnh| 43 ∥u∥3,∞,Ω.

Proof. Using the triangle inequality, we have

|∇u−Rhuh|0,∞,Ω ≤ |Rh(uh − uI)|0,∞,Ω

+ |∇u−RhuI |0,∞,Ω

≤ |uh − uI |1,∞,Ω

+ |∇u−RhuI |0,∞,Ω ,

which combined with Theorems 3.1 and 3.2 completes the proof of Theorem 3.3.
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Abstract. Lin [18, 19] introduced and investigated the following quadratic functional equations

cf

(
n∑

i=1

xi

)
+

n∑
j=2

f

(
n∑

i=1

xi − (n+ c− 1)xj

)
(0.1)

= (n+ c− 1)

f(x1) + c
n∑

i=2

f(xi) +
n∑

i<j,j=3

(
n−1∑
i=2

f(xi − xj)

) ,

Q

(
n∑

i=1

dixi

)
+

∑
1≤i<j≤n

didjQ(xi − xj) =

(
n∑

i=1

di

)(
n∑

i=1

diQ(xi)

)
. (0.2)

In this paper, we prove the Hyers-Ulam stability of the above quadratic functional equations in para-

normed spaces.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [7] and

Steinhaus [31] independently and since then several generalizations and applications of this notion have

been investigated by various authors (see [8, 16, 20, 21, 29]). This notion was defined in normed spaces

by Kolk [17].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [33] Let X be a vector space. A paranorm P : X → [0,∞) is a function on X such

that

(1) P (0) = 0;

0 2010 Mathematics Subject Classification: 35A17; 39B52; 39B72.
0 Keywords: paranormed space; fixed point; quadratic functional equation; Hyers-Ulam stability.

∗Corresponding author.
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(2) P (−x) = P (x) ;

(3) P (x+ y) ≤ P (x) + P (y) (triangle inequality)

(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn−x) → 0, then P (tnxn−tx) →
0 (continuity of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X.

The paranorm is called total if, in addition, we have

(5) P (x) = 0 implies x = 0.

A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from a question of Ulam [32] concerning the

stability of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of

Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by

Th.M. Rassias [23] for linear mappings by considering an unbounded Cauchy difference. A generaliza-

tion of the Th.M. Rassias theorem was obtained by Găvruta [10] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Th.M. Rassias’ approach.

In 1990, Th.M. Rassias [24] during the 27th International Symposium on Functional Equations asked

the question whether such a theorem can also be proved for p ≥ 1. In 1991, Gajda [9] following the

same approach as in Th.M. Rassias [23], gave an affirmative solution to this question for p > 1. It was

shown by Gajda [9], as well as by Th.M. Rassias and Šemrl [28] that one cannot prove a Th.M. Rassias’

type theorem when p = 1 (cf. the books of P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Rassias [12]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional

equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic functional

equation was proved by Skof [30] for mappings f : X → Y , where X is a normed space and Y is a

Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain X is

replaced by an Abelian group. Czerwik [4] proved the Hyers-Ulam stability of the quadratic functional

equation. The stability problems of several functional equations have been extensively investigated by a

number of authors and there are many interesting results concerning this problem (see [1, 6], [13]–[15],

[22], [25]–[27]).

Throughout this paper, assume that (X,P ) is a Fréchet space and that (Y, ∥ · ∥) is a Banach space.

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of the quadratic

functional equation (0.1) in paranormed spaces. In Section 3, we prove the Hyers-Ulam stability of the

quadratic functional equation (0.2) in paranormed spaces.

2. Hyers-Ulam stability of the functional equation (0.1) in paranormed spaces

For a given mapping f , we define

Df(x1, x2, · · · , xn) = cf

(
n∑

i=1

xi

)
+

n∑
j=2

f

(
n∑

i=1

xi − (n+ c− 1)xj

)

−(n+ c− 1)

f(x1) + c
n∑

i=2

f(xi) +
n∑

i<j,j=3

(
n−1∑
i=2

f(xi − xj)

) .

In this section, we prove the Hyers-Ulam stability of the functional equation Df(x1, · · · , xn) = 0 in

paranormed spaces.

Throughout this section, assume that v := 2− n− c is an integer greater than one.
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Note that P (vx) ≤ vP (x) for all x ∈ Y .

Theorem 2.1. Let r, θ be positive real numbers with r > 2. Let f : Y → X be a mapping such that

P (Df(x1, · · · , xn)) ≤ θ

n∑
i=1

∥xi∥r (2.1)

for all x1, · · · , xn ∈ Y . Then there exists a unique quadratic mapping R : Y → X such that

P (f(x)−R(x)) ≤ θ

vr − v2
∥x∥r (2.2)

for all x ∈ Y .

Proof. Putting x2 = x
v and x1 = x3 = x4 = · · · = xn = 0 in (2.1), we get

P
(
f(x)− v2f

(x
v

))
≤ θ∥x∥r

vr

for all x ∈ Y

Hence

P
(
v2lf

( x
vl

)
− v2mf

( x

vm

))
≤

m−1∑
j=l

θ∥x∥r

v(r−2)j+r
(2.3)

holds for all non-negative integers l and m with m > l and all x ∈ Y . It follows from (2.3) that the

sequence {v2kf( x
vk )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence {v2kf( x

vk )}
converges. So the mapping R : Y → X can be defined as

R(x) := lim
k→∞

v2kf
( x
vk

)
for all x ∈ Y .

By (2.1),

P (DR(x1, · · · , xn)) = lim
k→∞

P
(
v2kDR

(x1
vk
, · · · , xn

vk

))
≤ lim

k→∞
v2kP

(
DR

(x1
vk
, · · · , xn

vk

))
≤ lim

k→∞
v2kθ

(
n∑

i=1

|| xi
vk

||r
)

= lim
k→∞

θ (
∑n

i=1 ||xi∥|r)
v(r−2)k

= 0

for all x1, · · · , xn ∈ Y . So DR(x1, · · · , xn) = 0. So the mapping R : Y → X is quadratic. Moreover,

letting l = 0 and passing the limit m → ∞ in (2.3), we get (2.2). So there exists a quadratic mapping

R : Y → X satisfying (2.2).

Now, let T : Y → X be another quadratic mapping satisfying (2.2). Then we have

P (R(x)− T (x)) = P
(
v2qR

( x
vq

)
− v2qT

( x
vq

))
≤ P

(
v2q
(
R
( x
vq

)
− f

( x
vq

)))
+ P

(
v2q
(
T
( x
vq

)
− f

( x
vq

)))
≤ 2θ

vr − v2
∥x∥r · v

2q

vrq
,

which tends to zero as q → ∞ for all x ∈ Y . So we can conclude that R(x) = T (x) for all x ∈ Y . This

proves the uniqueness of R. Thus the mapping R : Y → X is the unique quadratic mapping satisfying

(2.2). �

Theorem 2.2. Let r, θ be positive real numbers with r < 2. Let f : X → Y be a mapping such that

||Df(x1, · · · , xn)|| ≤ θ
n∑

i=1

P (xi)
r (2.4)
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for all x1, · · · , xn ∈ X. Then there exists a unique quadratic mapping R : X → Y such that

||f(x)−R(x)|| ≤ θ

v2 − vr
P (x)r (2.5)

for all x ∈ X.

Proof. Putting x2 = x and x1 = x3 = x4 = · · · = xn = 0 in (2.4), we get

||f(vx)− v2f(x)|| ≤ θP (x)r

and so ∥∥∥∥f(x)− 1

v2
f(vx)

∥∥∥∥ ≤ θ
1

v2
P (x)r

for all x ∈ X

Hence ∥∥∥∥ 1

v2l
f
(
vlx
)
− 1

v2m
f (vmx)

∥∥∥∥ ≤
m−1∑
j=l

θ
1

v2
vrjP (x)r

v2j
(2.6)

holds for all non-negative integers l and m with m > l and all x ∈ X. It follows from (2.6) that

the sequence { 1
v2k f(v

kx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
v2k f(v

kx)} converges. So the mapping R : X → Y can be defined as

R(x) := lim
k→∞

1

v2k
f
(
vkx

)
for all x ∈ X.

By (2.4),

||DR(x1, · · · , xn)|| = lim
k→∞

∥∥∥∥ 1

v2k
DR(vkx1, · · · , vkxn)

∥∥∥∥ ≤ lim
k→∞

1

v2k
∥DR(vkx1, · · · , vkxn)∥

≤ lim
k→∞

vrk

v2k
θ

n∑
i=1

P (xi)
r = 0

for all x1, · · · , xn ∈ X. So DR(x1, · · · , xn) = 0. So the mapping R : X → Y is quadratic. Moreover,

letting l = 0 and passing the limit m → ∞ in (2.6), we get (2.5). So there exists a quadratic mapping

R : X → Y satisfying (2.5).

Now, let T : X → Y be another quadratic mapping satisfying (2.5). Then we have

||R(x)− T (x)|| =

∥∥∥∥ 1

v2q
R (vqx)− 1

v2q
T (vqx)

∥∥∥∥
≤

∥∥∥∥ 1

v2q
(R (vqx)− f (vqx))

∥∥∥∥+ ∥∥∥∥ 1

v2q
(T (vqx)− f (vqx))

∥∥∥∥
≤ 2θ

v2 − vr
P (x)r · v

rq

v2q
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that R(x) = T (x) for all x ∈ X. This

proves the uniqueness of R. Thus the mapping R : X → Y is the unique quadratic mapping satisfying

(2.5). �
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3. Hyers-Ulam stability of the functional equation (0.2) in paranormed spaces

For a given mapping f , we define

DQ(x1, · · · , xn) := Q

(
n∑

i=1

dixi

)
+

∑
1≤i<j≤n

didjQ (xi − xj)−
n∑

i=1

di

(
n∑

i=1

diQ (xi)

)
.

In this section, we prove the Hyers-Ulam stability of the functional equation DQ(x1, · · · , xn) = 0 in

paranormed spaces.

Throughout this section, assume that d :=
∑n

j=1 dj is an integer greater than one.

Note that P (dx) ≤ dP (x) for all x ∈ Y .

Theorem 3.1. Let r, θ be positive real numbers with r > 2. Let Q : Y → X be a mapping such that

P (DQ(x1, · · · , xn)) ≤ θ
n∑

i=1

∥xi∥r (3.1)

for all x1, · · · , xn ∈ Y . Then there exists a unique quadratic mapping R : Y → X such that

P (Q(x)−R(x)) ≤ nθ

dr − d2
∥x∥r (3.2)

for all x ∈ Y .

Proof. Putting x1 = · · · = xn = x
d in (3.1), we get

P
(
Q(x)− d2Q

(x
d

))
≤ θ(n∥x∥r)

dr

for all x ∈ X

Hence

P
(
d2lQ

( x
dl

)
− d2mQ

( x

dm

))
≤

m−1∑
j=l

θ(n∥x∥r)
d(r−2)j+r

(3.3)

holds for all non-negative integers l and m with m > l and all x ∈ Y . It follows from (3.3) that the

sequence {d2kQ( x
dk )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence {d2kQ( x

dk )}
converges. So the mapping R : Y → X can be defined as

R(x) := lim
k→∞

d2kQ
( x
dk

)
for all x ∈ Y .

By (3.1),

P (DR(x1, · · · , xn)) = lim
k→∞

P
(
d2kDR

(x1
dk
, · · · , xn

dk

))
≤ lim

k→∞
d2kP

(
DR

(x1
dk
, · · · , xn

dk

))
≤ lim

k→∞
d2kθ

(
n∑

i=1

∥∥∥ xi
dk

∥∥∥r) = lim
k→∞

θ (
∑n

i=1 ||xi∥|r)
d(r−2)k

= 0

for all x1, · · · , xn ∈ Y . So DR(x1, · · · , xn) = 0. So the mapping R : Y → X is quadratic. Moreover,

letting l = 0 and passing the limit m → ∞ in (3.3), we get (3.2). So there exists a quadratic mapping

R : Y → X satisfying (3.2).

Now, let T : Y → X be another quadratic mapping satisfying (3.2). Then we have

P (R(x)− T (x)) = P
(
d2qR

( x
dq

)
− d2qT

( x
dq

))
≤ P

(
d2q
(
R
( x
dq

)
−Qf

( x
dq

)))
+ P

(
d2q
(
T
( x
dq

)
−Q

( x
dq

)))
≤ 2nθ

dr − d2
∥x∥r · d

2q

drq
,
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which tends to zero as q → ∞ for all x ∈ Y . So we can conclude that R(x) = T (x) for all x ∈ Y . This

proves the uniqueness of R. Thus the mapping R : Y → X is the unique quadratic mapping satisfying

(3.2). �

Theorem 3.2. Let r, θ be positive real numbers with r < 2. Let Q : X → Y be a mapping such that

||DQ(x1, · · · , xn)|| ≤ θ

n∑
i=1

P (xi)
r (3.4)

for all x1, · · · , xn ∈ X. Then there exists a unique quadratic mapping R : X → Y such that

||Q(x)−R(x)|| ≤ nθ

d2 − dr
P (x)r

for all x ∈ X.

Proof. Putting x1 = · · · = xn = x in (3.4), we get

||Q(dx)− d2Q(x)|| ≤ nθP (x)r

and so ∥∥∥∥Q(x)− 1

d2
Q(dx)

∥∥∥∥ ≤ nθ

d2
P (x)r

for all x ∈ X

Hence ∥∥∥∥ 1

d2l
Q
(
dlx
)
− 1

d2m
Q (dmx)

∥∥∥∥ ≤ nθ

d2

m−1∑
j=l

drj

d2j
P (x)r (3.5)

holds for all non-negative integers l and m with m > l and all x ∈ X. It follows from (3.5) that

the sequence { 1
d2kQ(dkx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
d2kQ(dkx)} converges. So the mapping R : X → Y can be defined as

R(x) := lim
k→∞

1

d2k
Q
(
dkx

)
for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.1. �
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Union soft sets applied to commutative BCI-ideals
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Abstract. The aim of this article is to lay a foundation for providing a soft algebraic tool in considering many

problems that contain uncertainties. In order to provide these soft algebraic structures, the notion of union soft

commutative BCI-ideals is introduced, and related properties are investigated. Relations between a union soft

commutative BCI-ideal and a (closed) union soft BCI-ideal are displayed. Conditions for a union soft BCI-

ideal to be a union soft commutative BCI-ideal are established. Characterizations of a union soft commutative

BCI-ideal are considered, and a new union soft commutative BCI-ideal from an old one is constructed.

1. Introduction

The real world is inherently uncertain, imprecise and vague. Various problems in system

identification involve characteristics which are essentially non-probabilistic in nature [26]. In

response to this situation Zadeh [27] introduced fuzzy set theory as an alternative to probability

theory. Uncertainty is an attribute of information. In order to suggest a more general framework,

the approach to uncertainty is outlined by Zadeh [28]. To solve complicated problem in economics,

engineering, and environment, we can’t successfully use classical methods because of various

uncertainties typical for those problems. There are three theories: theory of probability, theory

of fuzzy sets, and the interval mathematics which we can consider as mathematical tools for

dealing with uncertainties. But all these theories have their own difficulties. Uncertainties can’t

be handled using traditional mathematical tools but may be dealt with using a wide range of

existing theories such as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague

sets, theory of interval mathematics, and theory of rough sets. However, all of these theories have

their own difficulties which are pointed out in [23]. Maji et al. [19] and Molodtsov [23] suggested

that one reason for these difficulties may be due to the inadequacy of the parametrization tool

of the theory. To overcome these difficulties, Molodtsov [23] introduced the concept of soft set

as a new mathematical tool for dealing with uncertainties that is free from the difficulties that

have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the

applications of soft sets. Worldwide, there has been a rapid growth in interest in soft set theory

02010 Mathematics Subject Classification: 06F35; 03G25; 06D72.
0Keywords: Exclusive set, Union soft algebra, (Closed) union soft BCI-ideal, Union soft c-BCI-ideal.

∗ The corresponding author. Tel: +82 2 2260 3410, Fax: +82 2 2266 3409
0E-mail: skywine@gmail.com (Y. B. Jun); szsong@jejunu.ac.kr (S. Z. Song);

sunshine@dongguk.edu (S. S. Ahn)
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and its applications in recent years. Evidence of this can be found in the increasing number

of high-quality articles on soft sets and related topics that have been published in a variety of

international journals, symposia, workshops, and international conferences in recent years. Maji

et al. [19] described the application of soft set theory to a decision making problem. Maji et

al. [18] also studied several operations on the theory of soft sets. Aktaş and Çağman [2] studied

the basic concepts of soft set theory, and compared soft sets to fuzzy and rough sets, providing

examples to clarify their differences. They also discussed the notion of soft groups. Jun and Park

[17] studied applications of soft sets in ideal theory of BCK/BCI-algebras. Jun et al. [14, 15]

introduced the notion of intersectional soft sets, and considered its applications to BCK/BCI-

algebras. Also, Jun [10] discussed the union soft sets with applications in BCK/BCI-algebras.

We refer the reader to the papers [1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 24, 25, 29] for further information

regarding algebraic structures/properties of soft set theory.

In this paper, we discuss applications of the union soft sets in a commutative BCI-ideals of

BCI-algebras. We introduce the notion of union soft commutative BCI-ideals, and investigated

related properties. We consider relations between a union soft commutative BCI-ideal and a

(closed) union soft BCI-ideal. We provide conditions for a union soft BCI-ideal to be a union

soft commutative BCI-ideal, and establish characterizations of a union soft commutative BCI-

ideal. We construct a new union soft commutative BCI-ideal from an old one.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was

extensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following axioms:

(a1) (∀x ∈ X) (x ∗ 0 = x),

(a2) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),
(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y)

where x ≤ y if and only if x ∗ y = 0. In a BCI-algebra X, the following hold:

(b1) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y) ,
(b2) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)) .
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A BCI-algebra X is said to be commutative (see [22]) if

(∀x, y ∈ X) (x ≤ y ⇒ x = y ∗ (y ∗ x)) . (2.1)

Proposition 2.1. A BCI-algebra X is commutative if and only if it satisfies:

(∀x, y ∈ X) (x ∗ (x ∗ y) = y ∗ (y ∗ (x ∗ (x ∗ y)))) . (2.2)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all

x, y ∈ S. A subset I of a BCI-algebra X is called a BCI-ideal of X if it satisfies:

0 ∈ I, (2.3)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.4)

A BCI-ideal I of a BCI-algebra X satisfies:

(∀x ∈ X)(∀y ∈ I) (x ≤ y ⇒ x ∈ I) (2.5)

A BCI-ideal I of a BCI-algebra X is said to be closed if it satisfies:

(∀x ∈ X) (x ∈ I ⇒ 0 ∗ x ∈ I)

A subset I of a BCI-algebra X is called a commutative BCI-ideal (briefly, c-BCI-ideal) of X

(see [20]) if it satisfies (2.3) and

(x ∗ y) ∗ z ∈ I, z ∈ I ⇒ x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ I (2.6)

for all x, y, z ∈ X.

Proposition 2.2 ([20]). A BCI-ideal I of a BCI-algebra X is commutative if and only if x∗y ∈ I

implies x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ I.

Proposition 2.3 ([20]). Let I be a closed BCI-ideal of a BCI-algebra X. Then I is commutative

if and only if it satisfies:

(∀x, y ∈ X) (x ∗ y ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I)

Observe that every c-BCI-ideal is a BCI-ideal, but the converse is not true (see [20]).

We refer the reader to the books [8, 21] for further information regarding BCK/BCI-algebras.

A soft set theory is introduced by Molodtsov [23], and Çaǧman et al. [4] provided new defini-

tions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters. We say that the

pair (U,E) is a soft universe. Let P(U) denotes the power set of U and A,B,C, · · · ⊆ E.

Definition 2.4 ([4, 23]). A soft set FA over U is defined to be the set of ordered pairs

FA := {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)} ,

where fA : E → P(U) such that fA(x) = ∅ if x /∈ A.
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The function fA is called the approximate function of the soft set FA. The subscript A in the

notation fA indicates that fA is the approximate function of FA.

In what follows, denote by S(U) the set of all soft sets over U.

Let FA ∈ S(U) and let τ ⊆ U. Then the τ -exclusive set of FA is defined to be the set

e(FA; τ) := {x ∈ A | fA(x) ⊆ τ} .

Obviously, we have the following properties:

(1) e(FA;U) = A.

(2) fA(x) = ∩{τ ⊆ U | x ∈ e(FA; τ)} .
(3) (∀τ1, τ2 ⊆ U) (τ1 ⊆ τ2 ⇒ e(FA; τ1) ⊆ e(FA; τ2)) .

3. Union soft c-BCI-ideals

Definition 3.1 ([10]). Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of

E, let FA ∈ S(U). Then FA is called a union soft BCI-ideal (briefly, U-soft BCI-ideal) over U

if the approximate function fA of FA satisfies:

(∀x ∈ A) (fA(0) ⊆ fA(x)) , (3.1)

(∀x, y ∈ A) (fA(x) ⊆ fA(x ∗ y) ∪ fA(y)) . (3.2)

Definition 3.2. Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of E, let

FA ∈ S(U). Then FA is called a union soft commutative BCI-ideal (briefly, U-soft c-BCI-ideal)

over U if the approximate function fA of FA satisfies (3.1) and

fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ fA((x ∗ y) ∗ z) ∪ fA(z) (3.3)

for all x, y, z ∈ A.

Example 3.3. Let (U,E) = (U,X) where X = {0, a, 1, 2, 3} is a BCI-algebra with the following

Cayley table:

∗ 0 a 1 2 3

0 0 0 3 2 1

a a 0 3 2 1

1 1 1 0 3 2

2 2 2 1 0 3

3 3 3 2 1 0

Let τ1, τ2 and τ3 be subsets of U such that τ1 ( τ2 ( τ3. Define a soft set FE over U as follows:

FE = {(0, τ1), (a, τ2), (1, τ3), (2, τ3), (3, τ3)} .

Routine calculations show that FE is a U-soft c-BCI-ideal over U.

Theorem 3.4. Let (U,E) = (U,X) where X is a BCI-algebra. Then every U-soft c-BCI-ideal

is a U-soft BCI-ideal.
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Proof. Let FA be a U-soft c-BCI-ideal over U where A is a subalgebra of E. Taking y = 0 in

(3.3) and using (a1) and (III) imply that

fA(x) = fA(x ∗ 0) = fA(x ∗ ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ 0)))))
⊆ fA((x ∗ 0) ∗ z) ∪ fA(z) = fA(x ∗ z) ∪ fA(z)

for all x, z ∈ A. Therefore FA is a U-soft BCI-ideal over U. �

The following example shows that the converse of Theorem 3.4 is not true.

Example 3.5. Let (U,E) = (U,X) where X = {0, 1, 2, 3, 4} is a BCI-algebra with the following

Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 3 0

Let τ1, τ2 and τ3 be subsets of U such that τ1 ( τ2 ( τ3. Define a soft set FE over U as follows:

FE = {(0, τ1), (1, τ2), (2, τ3), (3, τ3), (4, τ3)} .

Routine calculations show that FE is a U-soft BCI-ideal over U. But it is not a U-soft c-BCI-

ideal over U since

fE(2 ∗ ((3 ∗ (3 ∗ 2)) ∗ (0 ∗ (0 ∗ (2 ∗ 3))))) = τ3 * τ1 = fE((2 ∗ 3) ∗ 0) ∪ fE(0).

We provide conditions for a U-soft BCI-ideal to be a U-soft c-BCI-ideal.

Theorem 3.6. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). Then the following are equivalent:

(1) FA is a U-soft c-BCI-ideal over U.

(2) FA is a U-soft BCI-ideal over U and its approximate function fA satisfies:

(∀x, y ∈ A) (fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ fA(x ∗ y)) . (3.4)

Proof. Assume that FA is a U-soft c-BCI-ideal over U. Then FA is a U-soft BCI-ideal over U

(see Theorem 3.4). If we take z = 0 in (3.3) and use (a1) and (3.1), then we have (3.4).

Conversely, let FA be a U-soft BCI-ideal over U such that its approximate function fA satisfies

(3.4). Then fA(x ∗ y) ⊆ fA((x ∗ y) ∗ z) ∪ fA(z) for all x, y, z ∈ A by (3.2), which implies from

(3.4) that

fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ fA((x ∗ y) ∗ z) ∪ fA(z)

for all x, y, z ∈ A. Therefore FA is a U-soft c-BCI-ideal over U. �
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Definition 3.7 ([10]). Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of

E, let FA ∈ S(U). A U-soft BCI-ideal FA over U is said to be closed if the approximate function

fA of FA satisfies:

(∀x ∈ A) (fA(0 ∗ x) ⊆ fA(x)) . (3.5)

Lemma 3.8 ([10]). Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of E,

let FA ∈ S(U).

(1) If FA is a U-soft BCI-ideal over U, then the approximate function fA satisfies the fol-

lowing condition:

(∀x, y, z ∈ A) (x ∗ y ≤ z ⇒ fA(x) ⊆ fA(y) ∪ fA(z)) . (3.6)

(2) If the approximate function fA of FA satisfies (3.1) and (3.6), then FA is a U-soft BCI-

ideal over U.

Theorem 3.9. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let FA

be a closed U-soft BCI-ideal over U. Then the following are equivalent:

(1) FA is a U-soft c-BCI-ideal over U.

(2) The approximate function fA of FA satisfies:

(∀x, y ∈ A) (fA(x ∗ (y ∗ (y ∗ x))) ⊆ fA(x ∗ y)) . (3.7)

Proof. Assume that FA is a U-soft c-BCI-ideal over U. Note that

(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))))
≤ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∗ (y ∗ (y ∗ x))
= ((y ∗ (y ∗ x)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (0 ∗ (x ∗ y)))
= 0 ∗ (0 ∗ (0 ∗ (x ∗ y))) = 0 ∗ (x ∗ y)

for all x, y ∈ A. Using Lemma 3.8(1), (3.4) and (3.5), we have

fA(x ∗ (y ∗ (y ∗ x)))
⊆ fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ∪ fA(0 ∗ (x ∗ y))
⊆ fA(x ∗ y) ∪ fA(0 ∗ (x ∗ y)) = fA(x ∗ y)

for all x, y ∈ A. Now suppose that the approximate function fA of FA satisfies (3.7). Since

(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ∗ (x ∗ (y ∗ (y ∗ x)))
≤ (y ∗ (y ∗ x)) ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))
≤ 0 ∗ (0 ∗ (x ∗ y)),
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it follows from Lemma 3.8(1), (3.5) and (3.7) that

fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))))
⊆ fA(x ∗ (y ∗ (y ∗ x))) ∪ fA(0 ∗ (0 ∗ (x ∗ y)))
⊆ fA(x ∗ y) ∪ fA(0 ∗ (0 ∗ (x ∗ y))) = fA(x ∗ y)

for all x, y ∈ A. By Theorem 3.6, FA is a U-soft c-BCI-ideal over U. �

Theorem 3.10. Let (U,E) = (U,X) where X is a commutative BCI-algebra. Then every closed

U-soft BCI-ideal is a U-soft c-BCI-ideal.

Proof. Let FA be a closed U-soft BCI-ideal over U where A is a subalgebra of E. Using (a3),

(b1), (I), (III) and Proposition 2.1, we have

(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))
= (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∗ (y ∗ (y ∗ x))
= (y ∗ (y ∗ (y ∗ x))) ∗ (y ∗ (x ∗ (x ∗ y)))
= (y ∗ x) ∗ (y ∗ (x ∗ (x ∗ y)))
≤ (x ∗ (x ∗ y)) ∗ x = 0 ∗ (x ∗ y)

It follows from Lemma 3.8(1) and (3.5) that

fA(x ∗ (y ∗ (y ∗ x))) ⊆ fA(x ∗ y) ∪ fA(0 ∗ (x ∗ y)) = fA(x ∗ y),

for all x, y ∈ A. Therefore, by Theorem 3.9, FA is a U-soft c-BCI-ideal over U. �

Using the notion of τ -exclusive sets, we consider a characterization of a U-soft c-BCI-ideal.

Lemma 3.11 ([10]). Let (U,E) = (U,X) where X is a BCI-algebra, Given a subalgebra A of

E, let FA ∈ S(U). Then the following are equivalent.

(1) FA is a U-soft BCI-ideal over U.

(2) The nonempty τ -exclusive set of FA is a BCI-ideal of A for any τ ⊆ U.

Theorem 3.12. Let (U,E) = (U,X) where X is a BCI-algebra, Given a subalgebra A of E, let

FA ∈ S(U). Then the following are equivalent.

(1) FA is a U-soft c-BCI-ideal over U.

(2) The nonempty τ -exclusive set of FA is a c-BCI-ideal of A for any τ ⊆ U.

Proof. Assume that FA is a U-soft c-BCI-ideal over U. Then FA is a U-soft BCI-ideal over U

by Theorem 3.4. Hence e(FA; τ) is a BCI-ideal of A for all τ ⊆ U by Lemma 3.11. Let τ ⊆ U

and x, y ∈ A be such that x ∗ y ∈ e(FA; τ). Then fA(x ∗ y) ⊆ τ, and so

fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ fA(x ∗ y) ⊆ τ

by Theorem 3.6. Thus

x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ e(FA; τ).
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It follows from Proposition 2.2 that e(FA; τ) is a c-BCI-ideal of A.

Conversely, suppose that the nonempty τ -exclusive set of FA is a c-BCI-ideal of A for any

τ ⊆ U. Then e(FA; τ) is a BCI-ideal of A for all τ ⊆ U. Hence FA is a U-soft BCI-ideal over U

by Lemma 3.11. Let x, y ∈ A be such that fA(x ∗ y) = τ. Then x ∗ y ∈ e(FA; τ), and so

x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ e(FA; τ)

by Proposition 2.2. Hence

fA (x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ τ = fA(x ∗ y).

It follows from Theorem 3.6 that FA is a U-soft c-BCI-ideal over U. �

The c-BCI-ideals e(FA; τ) in Theorem 3.12 are called the exclusive c-BCI-ideals of FA.

Theorem 3.13. Let (U,E) = (U,X) where X is a BCI-algebra. Let FE,GE ∈ S(U) such that

(i) (∀x ∈ E) (fE(x) ⊆ gE(x)) ,

(ii) FE and GE are U-soft BCI-ideals over U.

If FE is closed and GE is a U-soft c-BCI-ideal over U, then FE is also a U-soft c-BCI-ideal

over U.

Proof. Assume that FE is closed and GE is a U-soft c-BCI-ideal over U. Let τ be a subset of U

such that e(FE; τ) ̸= ∅ ̸= e(GE; τ). Then e(FE; τ) and e(GE; τ) are BCI-ideals of E and obviously

e(FE; τ) ⊇ e(GE; τ). Let x ∈ e(FE; τ). Then fE(x) ⊆ τ, and so fE(0∗x) ⊆ fE(x) ⊆ τ since FE is

closed. Thus 0 ∗x ∈ e(FE; τ), and thus e(FE; τ) is a closed BCI-ideal of E. Since GE is a U-soft

c-BCI-ideal over U, it follows from Theorem 3.12 that e(GE; τ) is a c-BCI-ideal of E. Let x, y ∈ E

be such that x ∗ y ∈ e(FE; τ). Then 0 ∗ (x ∗ y) ∈ e(FE; τ). Since (x ∗ (x ∗ y)) ∗ y = 0 ∈ e(GE; τ),

it follows from Proposition 2.2 that

(x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))
= (x ∗ (x ∗ y)) ∗ ((y ∗ (y ∗ (x ∗ (x ∗ y)))) ∗ (0 ∗ (0 ∗ ((x ∗ (x ∗ y)) ∗ y))))
∈ e(GE; τ) ⊆ e(FE; τ)

so from (a3) that

(x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∗ (x ∗ y) ∈ e(FE; τ).

Hence x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∈ e(FE; τ) by (2.4). Note that

(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))))
≤ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∗ (y ∗ (y ∗ x))
≤ (y ∗ x) ∗ (y ∗ (x ∗ (x ∗ y)))
≤ (x ∗ (x ∗ y)) ∗ x = 0 ∗ (x ∗ y) ∈ e(FE; τ).

Using (2.5) and (2.4), we have x ∗ (y ∗ (y ∗ x)) ∈ e(FE; τ). Hence e(FE; τ) is a c-BCI-ideal of E

by Proposition 2.3. Therefore FE is a U-soft c-BCI-ideal over U by Theorem 3.12. �
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Theorem 3.14. Let (U,E) = (U,X) and FA ∈ S(U) where X is a BCI-algebra and A is a

subalgebra of E. For a subset τ of U, define a soft set F ∗
A over U by

f ∗
A : E → P(U), x 7→

{
fA(x) if x ∈ e(FA; τ),

U otherwise.

If FA is a U-soft c-BCI-ideal over U, then so is F ∗
A.

Proof. If FA is a U-soft c-BCI-ideal over U, then e(FA; τ) is a c-BCI-ideal of A for any τ ⊆ U.

Hence 0 ∈ e(FA; τ), and so f ∗
A(0) = fA(0) ⊆ fA(x) ⊆ f ∗

A(x) for all x ∈ A. Let x, y, z ∈ A. If

(x ∗ y) ∗ z ∈ e(FA; τ) and z ∈ e(FA; τ), then x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ e(FA; τ) and

so

f ∗
A(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))))
= fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))))
⊆ fA((x ∗ y) ∗ z) ∪ fA(z) = f ∗

A((x ∗ y) ∗ z) ∪ f ∗
A(z).

If (x ∗ y) ∗ z /∈ e(FA; τ) or z /∈ e(FA; τ), then f ∗
A((x ∗ y) ∗ z) = U or f ∗

A(z) = U. Hence

f ∗
A(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ U = f ∗

A((x ∗ y) ∗ z) ∪ f ∗
A(z).

This shows that F ∗
A is a U-soft c-BCI-ideal over U. �

Theorem 3.15. Let (U,E) = (U,X) where X is a BCI-algebra. Then any c-BCI-ideal of E

can be realized as an exclusive c-BCI-ideal of some U-soft c-BCI-ideal over U.

Proof. Let A be a c-BCI-ideal of E. For any subset τ ( U, let FA be a soft set over U defined

by

fA : E → P(U), x 7→
{

τ if x ∈ A,

U if x /∈ A.

Obviously, fA(0) ⊆ fA(x) for all x ∈ E. For any x, y, z ∈ E, if (x ∗ y) ∗ z ∈ A and z ∈ A then

x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y)))) ∈ A. Hence

fA((x ∗ y) ∗ z) ∪ fA(z) = τ = fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))).

If (x ∗ y) ∗ z /∈ A or z /∈ A then fA((x ∗ y) ∗ z) = U or fA(z) = U. It follows that

fA(x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (0 ∗ (x ∗ y))))) ⊆ U = fA((x ∗ y) ∗ z) ∪ fA(z).

Therefore FA is a U-soft c-BCI-ideal over U, and clearly e(FA; τ) = A. This completes the

proof. �
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Abstract

Let H(D) be the linear space of all analytic functions defined on the
open disc D = {z| |z| < 1}. A log-harmonic mappings is a solution of the
nonlinear elliptic partial differential equation

fz = w
f

f
fz

where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D.
It has been shown that if f is a non-vanishing log-harmonic mapping, then
f can be expressed as

f(z) = h(z)g(z)

where h(z) and g(z) are analytic function in D. On the other hand, if f
vanishes at z = 0 but it is not identically zero then f admits following
representation

f(z) = z |z|2β h(z)g(z)

where Reβ > −1
2
, h and g are analytic in D, g(0) = 1, h(0) 6= 0. Let

f = z |z|2β hg be a univalent log-harmonic mapping.
———————————————————————————————-
2000 AMS Mathematics Subject Classification 30C45.

Keywords and phrases: Starlike log-harmonic functions, univalent func-
tions, distortion theorem, Marx-Strohhacker inequality
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We say that f is a starlike log-harmonic mapping of order α if

∂(arg f(reiθ))

∂θ
= Re

zfz − zfz
f

> α , 0 ≤ α < 1. (∀z ∈ U)

and denote by S∗lh(α) the set of all starlike log-harmonic mappings of order
α.

The aim of this paper is to define some inequalities of starlike log-harmonic
functions of order α (0 ≤ α ≤ 1).

I. Introduction

Let Ω be the family of functions φ(z) regular in the unit disc D and
satisfying the conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D.

Next, denote by P (α)(0 ≤ α < 1) the family of functions

p(z) = 1 + p1z + ...

regular in D and such that p(z) in P (α) if and only if

p(z) =
1 + (1− 2α) φ(z)

1− φ(z)

for some functions z ∈ Ω and every z ∈ D.
Let S1(z) and S2(z) be analytic functions in the open unit disc, with

S1(0) = S2(0), if S1(z) = S2(φ(z)) then we say that S1(z) is subordinate to
S2(z), where φ(z) ∈ Ω([4]), and we write S1(z) ≺ S2(z).

Let H(D) be the linear space of all analytic functions defined on the open
disc D = {z| |z| < 1}. A log-harmonic mappings is a solution of the nonlinear
elliptic partial differential equation

fz = w
f

f
fz

where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D.

It has been shown that if f is a non-vanishing log-harmonic mapping, then
f can be expressed as

f(z) = h(z)g(z)

where h(z) and g(z) are analytic function in D.

2
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On the other hand, if f vanishes at z = 0 but it is not identically zero
then f admits following representation

f(z) = z |z|2β h(z)g(z)

where Reβ > −1
2
, h and g are analytic in D, g(0) = 1, h(0) 6= 0.

Let f = z |z|2β hg be a univalent log-harmonic mapping. We say that f
is a starlike logharmonic mapping of order α if

∂(arg f(reiθ))

∂θ
= Re

zfz − zfz
f

> α , 0 ≤ α < 1. (∀z ∈ U)

and denote by S∗lh(α) the set of all starlike log-harmonic mappings of order
α([3]).

If α = 0, we get the class of starlike log-harmonic mappings. Also, let

ST (α) = {f ∈ S∗lh(α) and f ∈ H(U)} .

If f ∈ S∗lh(0) then F (ς) = log(f(eς)) is univalent and harmonic on the
half plane {ς | Re {ς} < 0}. It is known that F is closely related with
the theory of nonparametric minimal surfaces over domains of the form
−∞ < u < u0(v) , u0(v + 2π) = u0(v), see ([1],[2]).

In this paper, we obtain Marx-Strohhacker Inequality and new distortion
theorems using the subordination prinsiple for the starlike log-harmonic map-
pings of order α, previously studied by Z. Abdulhadi and Y. Abu Muhanna [3]
who obtained the representation theorem and a different distortion theorem
for the same class.

3
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II. Main Results

Theorem 2.1.Let f(z) = zh(z)g(z) be an analytic logaritmic harmonic
function in the open unit disc U . If f(z) satisfies the condition

z
h′(z)

h(z)
− z g

′(z)

g(z)
≺ 2(1− α)z

1− z
= F (z) (1)

then f ∈ S∗lh(α).
Proof. We define the function by

h

g
= (1− φ(z))−2(1−α) (2)

where (1− φ(z))−2(1−α) has the value 1 at z = 0. Then w(z) is analytic and
φ(0) = 0. If we take the logarithmic derivative of (2) and the after brief
calculations, we get

z
h′(z)

h(z)
− z g

′(z)

g(z)
≺ 2(1− α)zφ′(z)

1− φ(z)

Now it is easy to realize that the subordination (1) is equivalent to
|φ(z)| < 1 for all z ∈ U . Indeed assume the contrary: then there is a
z1 ∈ U such that |φ(z1)| = 1, so by I.S. Jack Lemma z1φ

′(z1) = kφ(z1) for
some k ≥ 1 and for such z1 ∈ U , we have

z1
h′(z1)

h(z1)
− z1

g′(z1)

g(z1)
≺ 2(1− α)kφ(z1)

1− φ(z1)
= F (φ(z1)) /∈ F (U)

but this contradicts (1); so our assumption is wrong, i.e, |φ(z)| < 1 for all
z ∈ u. By using condition (1) we get

1 + z
h′(z)

h(z)
− z g

′(z)

g(z)
=

1 + (1− 2α)φ(z)

1− φ(z)
. (3)

The equality (3) shows that f(z) ∈ S∗lh(α).

4

481

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.3, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

AYDOGAN ET AL 478-485



Corollary 2.2.For the starlike logharmonic functions of order α, we have
Marx-Strohhacker Inequality is∣∣∣∣∣1−

(
g

h

) 1
2(1−α)

∣∣∣∣∣ < 1

g and hare analytic in u and 0 /∈ hg(u).
Proof. Using theorem 2.1 we have

(1− φ(z))
1−2α+1
−1 = h

g
⇒ (1− φ(z))−2(1−α) = h

g
⇒ 1

(1−φ(z))2(1−α) = h
g
⇒ 1

1−φ(z) =
(
h
g

) 1
2(1−α) ⇒

1− φ(z) =
(
g
h

) 1
2(1−α) ⇒ 1−

(
g
h

) 1
2(1−α) = φ(z) ⇒

∣∣∣∣1− ( gh) 1
2(1−α)

∣∣∣∣ = |φ(z)| < 1.

Theorem 2.3. If f ∈ S∗lh(α) then

1

(1 + r)2(1−α)
≤
∣∣∣∣∣hg
∣∣∣∣∣ < 1

(1− r)2(1−α)
(4)

Proof. The set of the values of the function
(
2(1−α)z
(1−z)

)
is the closed disc

with the centre C and the radius ρ, where

C = C(r) =

(
2(1− α)r2

1− r2
, 0

)
, ρ = ρ(r) =

2(1− α)r

1− r2
.

Using the subordination, we can write∣∣∣∣∣
(
z
h′(z)

h(z)
− z g

′(z)

g(z)

)
− 2(1− α)r2

1− r2

∣∣∣∣∣ ≤ 2(1− α)r

1− r2
. (5)

Therefore we have

−2(1− α)r

1 + r
≤ Re

(
z
h′(z)

h(z)
− z g

′(z)

g(z)

)
≤ 2(1− α)r

1− r
. (6)

On the other hand

Re

(
z
h′

h

)
−Re

(
z
g′

g

)
= r

∂

∂r
(log |h| − log |g|) . (7)

If we consider the relations (5), (6), (7) together we obtain

−2(1− α)

1 + r
≤ ∂

∂r
(log |h| − log |g|) ≤ 2(1− α)

1− r
(8)

After the integrating we obtain (4).

5
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Theorem 2.4. If f ∈ S∗lh(α) then

|b1| − |a1|r
|a1| − |b1|r

(1− r)2(1−α) ≤ |g
′(z)|
|h′(z)|

≤ |b1|+ |a1|r
|a1|+ |b1|r

(1 + r)2(1−α). (9)

Proof. Using theorem 2.3 we can write

(1− r)2(1−α) ≤ |g(z)|
|h(z)|

≤ (1 + r)2(1−α) (10)

On the other hand, since f is solution of the non-linear elliptic partial
differential equation

fz = w
f

f
fz

then we obtain

w(z) =

g′(z)
h′(z)

g(z)
h(z)

=
b1
a1

+ . . . (11)

Now we define the function

φ(z) =
w(z)− w(0)

1− w(0)w(z)
, z ∈ D. (12)

Therefore φ(z) satisfies the condition of Schwarz lemma. Using the esti-
mate the Schwarz lemma |φ(z)| ≤ r,which given

|φ(z)| =
∣∣∣∣∣ w(z)− w(0)

1− w(0)w(z)

∣∣∣∣∣ ≤ r (13)

The inequality (13) can be written in the following form∣∣∣∣∣∣w(z)− b1
a1

1− b1
a1

w(z)

∣∣∣∣∣∣ ≤ r ⇒
∣∣∣∣∣w(z)− b1

a1

∣∣∣∣∣ ≤ r

∣∣∣∣∣1− b1
a1
w(z)

∣∣∣∣∣ (14)

The inequality (14) is equivalent

∣∣∣∣∣∣w(z)−
(1− r2)

∣∣∣ b1
a1

∣∣∣
1− ( b1

a1
)2r2

∣∣∣∣∣∣ ≤
(

1−
∣∣∣ b1
a1

∣∣∣2) r
1−

∣∣∣ b1
a1

∣∣∣2 r2 (15)

6
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The equality holds in the inequality (15) only for the function

w(z) =

g′(z)
h′(z)

g(z)
h(z)

(16)

From the inequality (15) we have∣∣∣ b1
a1

∣∣∣− r
1−

∣∣∣ b1
a1

∣∣∣ r ≤ |w(z)| ≤

∣∣∣ b1
a1

∣∣∣+ r

1 +
∣∣∣ b1
a1

∣∣∣ r (17)

Considering the relation (10), (17) together, end after the simple calculations,

|b1| − |a1| r
|a1| − |b1| r

∣∣∣∣∣g(z)

h(z)

∣∣∣∣∣ ≤
∣∣∣∣∣g′(z)

h′(z)

∣∣∣∣∣ ≤ |b1|+ |a1| r|a1|+ |b1| r

∣∣∣∣∣g(z)

h(z)

∣∣∣∣∣ (18)

using inequality (4) in the inequality (18) we get (8).

7
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1

Abstract

In this paper, we characterize nth differentiation composition operators from weight-
ed Banach space of holomorphic function to weighted Bloch space, and give some nec-
essary and sufficient conditions for the boundedness and compactness of the operators.

1 Introduction

Let H(D) and S(D) denote the class of analytic functions and analytic self-maps on the unit
disk D of the complex plane of C, respectively. Let v and w be strictly positive continuous
and bounded functions (weight) on D.

Weighted Banach spaces of holomorphic functions is defined by

H∞v = {f ∈ H(D) : ‖f‖v := sup
z∈D

v(z)|f(z)| <∞},

endowed with the weighted sup-norm ‖.‖v.
An f ∈ H(D) belongs to weighted Bloch spaces Bw if

bw(f) = sup
z∈D

w(z)|f ′(z)| <∞.

The quantity bw(f) defines a seminorm on Bw, while a natural norm is given by

‖f‖Bw = |f(0)|+ bw(f).

This norm makes Bw into a Banach space.
By Bw,0 we denote the little weighted Bloch space, the subspace of Bw, consisting of all

f ∈ Bw such that
lim
|z|→1

w(z)|f ′(z)| = 0.

Each φ in S(D) induces through composition a linear composition operator Cφ : H(D)→
H(D), f 7→ f ◦ φ. And n-differentiating composition operator is a linear operator defined by

1The authors were supported in part by the National Natural Science Foundation of China (Grant Nos.
10971153, 11126164, 11201331)
∗Corresponding author.
2010 Mathematics Subject Classification. Primary: 47B38; Secondary: 30H30, 30H05, 47B33, 47G10.
Key words and phrases.n-differentiation composition operator, weighted Banach spaces, weighted Bloch
space, compact, difference.
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Dn
φ : H(D) → H(D), f 7→ f (n)(φ). We are interested in Dn

φ acting from weighted Banach
spaces of holomorphic functions to weighted Bloch spaces.

In the setting of weighted spaces the so-called associated weight plays an important role.
For a weight v its associated weight ṽ is defined follows:

ṽ(z) =
1

sup{|f(z)| : f ∈ H∞v , ‖f‖v ≤ 1}
=

1

‖δz‖H∞
v

,

where δz denotes the point evaluation of z. By [1] the associated weight ṽ is continuous,
ṽ ≥ v > 0 and for every z ∈ D we can find fz ∈ H∞v with ‖fz‖v ≤ 1 such that |fz(z)| = 1

ṽ(z) .

We say that a weight v is radial if v(z) = v(|z|) for every z ∈ D. A positive continuous
function v is called normal if there exist δ ∈ [0, 1) and s, t(0 < s < t) such that for every
z ∈ D with |z| ∈ [δ, 1),

v(|z|)
(1− |z|)s

is decreasing on [δ, 1) and lim
|z|→1

v(|z|)
(1− |z|)s

= 0;

v(|z|)
(1− |z|)t

is increasing on [δ, 1) and lim
|z|→1

v(|z|)
(1− |z|)t

=∞.

A radial, non-increasing weight is called typical if lim
|z|→1

v(z) = 0. When studying the struc-

ture and isomorphism classes of the space H∞v (see [6, 7]), Lusky introduced the following
condition (L1) (renamed after the author) for radial weights:

(L1) inf
n∈N

v(1− 2−n−1)

1− 2−n
> 0,

which will play a great role in this article. Moreover, radial weights with (L1) (for example,
see [2]) are essential, that is, we can find a constant k > 0 such that

v(z) ≤ ṽ(z) ≤ kv(z) for every z ∈ D.

Now, let ϕa(z) = a−z
1−āz , z ∈ D, be the Möbius transformation that interchanges a and 0.

We will use the fact that derivative of ϕa is given by

ϕ′a(z) = − 1− |a|2

(1− āz)2
for every z ∈ D.

Our aim in this note is to characterize boundedness and compactness of operator Dφ
n

from weighted Banach spaces of holomorphic functions to weighted Bloch spaces in terms of
the involved weights as well as the inducing map. For n = 0 and n = 1, as corollaries we get
a characterization of boundedness and compactness of Cφ and CφD that act from weighted
Banach spaces of holomorphic functions to weighted Bloch spaces.

Throughout this paper, we will use the symbol C to denote a finite positive number, and
it may differ from one occurrence to the other.

2 Background and Some Lemmas

Now let us state a couple of lemmas, which are used in the proof of the main results in the
next sections. The first lemma is taken from [9].
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Lemma 1. Let v be a radial weight satisfying condition (L1). There is a constant C > 0
(depending only on the weight v) such that for all f ∈ H∞v ,

|f (n)(z)| ≤ C ‖f‖v
v(z)(1− |z|2)n

, (1)

for every z ∈ D and n ∈ N.

Proof. We will prove the theorem by mathematical induction.
For n = 1, see Lemma 2 in [9].
If (1) is true for n− 1. Then for n, let u(z) = v(z)(1− |z|2)n−1, since

|f (n−1)(z)| ≤ C ‖f‖v
v(z)(1− |z|2)n−1

,

then f (n−1) ∈ H∞u .
For f (n−1) using the result of n = 1 the lemma is proved.

The following result is well-known (see, e.g. [3, 8])

Lemma 2. Suppose that w is a normal weight and v is a radial weight satisfying (L1). Then
the operator Dn

φ : H∞v → Bw(or Bw,0) is compact if and only if whenever {fm} is a bounded
sequence in H∞v with fm → 0 uniformly on compact subsets of D, and then ‖Dn

φfm‖Bw
→ 0.

The following lemma can be proved similarly to Lemma 1 in [4] (see, also [5]). It will be
useful to give a criterion for compactness in Bw,0.

Lemma 3. Assume w is normal. A closed set K in Bw,0 is compact if and only if it is
bounded and satisfies

lim
|z|→1

sup
f∈K

w(z)|f ′(z)| = 0. (2)

3 The Boundedness of Dn
φ : H∞v → Bw(or Bw,0)

In this section we formulate and prove results regarding the boundedness of the operator
Dn
φ : H∞v → Bw(or Bw,0).

Theorem 1. Suppose that w be arbitrary weight, v be a radial weight satisfying condition
(L1), then Dn

φ : H∞v → Bw is bounded if and only if

sup
z∈D

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

<∞, (3)

Proof. First, we assume that the operator Dn
φ : H∞v → Bw is bounded. Fix a point a ∈ D,

and consider the function

fa(z) = ϕn+1
a (z)ga(z) for every z ∈ D,

where ga is a function in the unit ball of H∞v such that ga(a) = 1
ṽ(a) . Then

‖fa‖v = sup
z∈D

v(z)|fa(z)| ≤ sup
z∈D

v(z)|ga(z)| ≤ 1.

It is easy to check that
(ϕn+1
a )(k)(a) = 0, k = 0, 1, ..., n;
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(ϕn+1
a )(n+1)(a) =

(−1)n+1(n+ 1)!

(1− |a|2)n+1
.

So

f (n+1)
a (a) =

n+1∑
k=0

Ckn+1(ϕn+1
a )(k)(a)g(n+1−k)

a (a) =
(−1)n+1(n+ 1)!

(1− |a|2)n+1ṽ(a)
.

Then by the boundedness of Dn
φ : H∞v → Bw, we have

∞ > ‖Dn
φfφ(a)‖Bw

≥ sup
z∈D

w(z)|f (n+1)
φ(a) (φ(z))φ′(z)|

≥ w(a)|f (n+1)
φ(a) (φ(a))φ′(a)| = (n+ 1)!w(a)|φ′(a)|

(1− |φ(a)|2)n+1ṽ(φ(a))
.

Since v has (L1), the weights v and ṽ are equivalent then ṽ can be replaced by v, and
combine with the arbitrariness of a ∈ D, we obtain (3).

Conversely, an application of Lemma 1 yields

w(z)|f (n+1)(φ(z))φ′(z)| ≤ C w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

‖f‖v, (4)

and

|f (n)(φ(0))| ≤ C ‖f‖v
v(φ(0))(1− |φ(0)|2)n

.

Combine with this and taking the supremum in (4) over D, then employing condition (3),
we see that Dn

φ : H∞v → Bw must be bounded.

By the similar proof of Theorem 1 we see that the following result is true.

Theorem 2. Suppose that w be arbitrary weight, v be a radial weight satisfying condition
(L1), then Dn

φ : H∞v → Bw,0 is bounded if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

= 0. (5)

Especially, for n = 0, we obtain necessary and sufficient conditions for the boundedness
of the operators Cφ : H∞v → Bw(or Bw,0).

Corollary 1. Suppose that w be arbitrary weight, v be a radial weight satisfying condition
(L1), then the following statements hold:

(i) Cφ : H∞v → Bw is bounded if and only if

sup
z∈D

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)

<∞.

(ii) Cφ : H∞v → Bw,0 is bounded if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)

= 0.

For n = 1, Dn
φ is the operator CφD, then we have the following corollary .

489

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.3, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

CHEN ET AL 486-493



Chen, Zeng and Zhou: N-differentiation composition operators

Corollary 2. Suppose that w be arbitrary weight, v be a radial weight satisfying condition
(L1), then the following statements hold:

(i) CφD : H∞v → Bw is bounded if and only if

sup
z∈D

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)2

<∞.

(ii) CφD : H∞v → Bw,0 is bounded if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)2

= 0.

4 The Compactness of Dn
φ : H∞v → Bw(or Bw,0)

In this section, we turn our attention to the question of compactness.

Theorem 3. Suppose that w be arbitrary weight, v be a radial weight satisfying condition
(L1). Then Dn

φ : H∞v → Bw is compact if and only if

lim
r→1

sup
|φ(z)|>r

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

= 0. (6)

Proof. First, we assume that the operator Dn
φ : H∞v → Bw is compact. Let {zm}m ⊂ D be

a sequence with |φ(zm)| → 1 such that

lim
r→1

sup
|φ(z)|>r

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

= lim
m→∞

w(zm)|φ′(zm)|
v(φ(zm))(1− |φ(zm)|2)n+1

.

By passing to a subsequence and still denoted by {zm}m, we assume that there is N ∈ N,
such that |φ(zm)|m ≥ 1

2 for every m ≥ N . For every m ∈ N, we consider functions

fm(z) = zmϕn+1
φ(zm)(z)gφ(zm)(z) for every z ∈ D,

where gφ(zm) is a function in the unit ball of H∞v such that |gφ(zm)(φ(zm))| = 1
ṽ(φ(zm)) .

Again since v has (L1), ṽ may be replaced by v. Obviously, {fm}m ⊂ H∞v is a bounded
sequence that tends to zero uniformly on the compact subsets of D. Hence by Lemma 2, we
have that ‖Dn

φfm‖Bw
→ 0. Moreover,

(zmϕn+1
φ(zm))

(k)(φ(zm)) = 0, k = 0, 1, ..., n;

(zmϕn+1
φ(zm))

(n+1)(φ(zm)) =
(−1)n+1(n+ 1)!φm(zm)

(1− |φ(zm)|2)n+1
.

Since

f (n+1)
m (φ(zm)) =

n+1∑
k=0

Ckn+1(zmϕn+1
φ(zm))

(k)g
(n+1−k)
φzm

(φ(zm)).

Therefore |f (n+1)
m (φ(zm))| = (n+1)!|φ(zm)|m

ṽ(φ(zm))(1−|φ(zm)|2)n+1 , and for m ≥ N

0 ← ‖Dn
φfm‖Bw

≥ w(zm)|f (n+1)
m (φ(zm))φ′(zm)|

=
(n+ 1)!w(zm)|φ′(zm)||φ(zm)|m

ṽ(φ(zm))(1− |φ(zm)|2)n+1

≥ 1

2

w(zm)|φ′(zm)|
v(φ(zm))(1− |φ(zm)|2)n+1

,
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and the claim follows.
Conversely, suppose that (6) holds. Let {fm}m ⊂ H∞v be a bounded sequence which

converges to zero uniformly on the compact subsets of D, we may assume that ‖fm‖v ≤ 1
for every m ∈ N. By Lemma 2 we have to show that

‖Dn
φfm‖Bw

→ 0 if m→∞.

Let us fix ε > 0. By hypothesis there is 0 < r < 1 such that

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

<
ε

2C
if |φ(z)| > r,

where C is the constant given in Lemma 1. Thus, if |φ(z)| > r, by Lemma 1,

w(z)|φ′(z)||f (n+1)
m (φ(z))| ≤ C w(z)|φ′(z)|

v(φ(z))(1− |φ(z)|2)n+1
‖fm‖v <

ε

4
. (7)

Now, we can find M > 0 such that

sup
|φ(z)|≤r

w(z)|φ′(z)| ≤M. (8)

Moreover, since {fm}m converges to 0 uniformly on compact subsets of D as m → ∞.
Cauchy’s integral formula gives that {f (n+1)

m }m also converges to 0 uniformly on compact
subsets of D as m→∞. So there is N1 ∈ N such that

sup
|φ(z)|≤r

|f (n+1)
m (φ(z))| ≤ ε

4M
for every m ≥ N1. (9)

Also, {f (n)
m (φ(0))}m converges to 0 as m → ∞, then there exists N2 > 0 such that

|f (n)
m (φ(0))| < ε

2 for every m > N2. Finally, together with (7) (8) and (9) we can conclude
that

‖Dn
φfm‖Bw = |f (n)

m (φ(0))|+ sup
z∈D

w(z)|φ′(z)||f (n+1)
m (φ(z))|

≤ |f (n)
m (φ(0))|+ sup

|φ(z)|≤r
w(z)|φ′(z)| sup

|φ(z)|≤r
|f (n+1)
m (φ(z))|

+ sup
|φ(z)|>r

w(z)|φ′(z)||f (n+1)
m (φ(z))|

< ε,

for every m ≥ N, where N := max{N1, N2}. Hence the claim follows.

Theorem 4. Suppose that w be a normal weight, v be a radial weight satisfying condition
(L1). Then Dn

φ : H∞v → Bw,0 is compact if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

= 0. (10)

Proof. Suppose that Dn
φ : H∞v → Bw,0 is compact. Then Dn

φ : H∞v → Bw is compact.
Hence, by Theorem 3 we see that (6) holds. Then for every ε > 0 there exists a r ∈ (0, 1)
such that

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

< ε if r < |φ(z)| < 1.
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On the other hand, since h(z) = zn+1

(n+1)! ∈ H
∞
v , from the compactness of Dn

φ : H∞v → Bw,0,
it follows that φ ∈ Bw,0. Then there exists a ρ ∈ (r, 1) such that

w(z)|φ′(z)| < ε inf
t∈[0,r]

v(t)(1− |t|2)n+1 if ρ < |z| < 1, (11)

Therefore, when ρ < |z| < 1 and r < |φ(z)| < 1, we have that

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

< ε. (12)

If ρ < |z| < 1 and |φ(z)| ≤ r, combine with (11), we have that

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)n+1

≤ w(z)|φ′(z)|
inf

t∈[0,r]
v(t)(1− |t|2)n+1

< ε. (13)

Inequalities (12) and (13) imply (10) holds.
Conversely, assume that (10) holds. Then (3) holds, which along with (4) implies that the

set Dn
φ({f ∈ H∞v : ‖f‖v ≤ 1}) is bounded in Bw,0. By Lemma 3 we see that Dn

φ : H∞v → Bw,0
is compact if and only if

lim
|z|→1

sup
‖f‖v≤1

w(z)|f (n+1)(φ(z))φ′(z)| = 0.. (14)

Taking the supremum in (4) over the unit ball of H∞v , then letting |z| → 1, we obtain (14),
from which the compactness of Dn

φ : H∞v → Bw,0 follows.

Noticing the results of Theorem 2 and Theorem 4, we conclude that the boundedness
and compactness of the operator Dn

φ : H∞v → Bw,0 is equivalent. Similarly, for n = 0, we
obtain necessary and sufficient conditions for the compactness of the operators Cφ : H∞v →
Bw(or Bw,0).

Corollary 3. Suppose that w be a normal weights, v be a radial weight satisfying condition
(L1). Then the following statements hold:

(i) Cφ : H∞v → Bw is compact if and only if

lim
r→1

sup
|φ(z)|>r

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)

= 0.

(ii) Cφ : H∞v → Bw,0 is compact if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)

= 0.

And for n = 1, Dn
φ is the operator CφD.

Corollary 4. Suppose that w be a normal weights, v be a radial weight satisfying condition
(L1). Then the following statements hold:

(i) CφD : H∞v → Bw is compact if and only if

lim
r→1

sup
|φ(z)|>r

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)2

= 0.

(ii) CφD : H∞v → Bw,0 is compact if and only if

lim
|z|→1

w(z)|φ′(z)|
v(φ(z))(1− |φ(z)|2)2

= 0.
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FUZZY n-JORDAN ∗-DERIVATIONS ON INDUCED FUZZY C∗-ALGEBRAS

CHOONKIL PARK1, KHATEREH GHASEMI∗2, SHAHRAM GHAFFARY GHALEH3

Abstract. Using the fixed point method, we prove the fuzzy version of the Hyers-Ulam
stability of n-Jordan ∗-derivations on induced fuzzy C∗-algebras associated with the following
functional equation

f

(
b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a− b+ 3c

3

)
= f(a).

1. Introduction and Preliminaries

The stability of functional equations originated from a question of Ulam [36] concerning the

stability of group homomorphisms in 1940. More precisely, he proposed the following problem:

Given a group G, a metric group (G′, d) and ϵ > 0, does there exist a δ > 0 such that if

a function f : G → G′ satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then
there exists a homomorphism T : G → G′ such that d(f(x), T (x)) < ϵ for all x ∈ G? In

1941, Hyers [16] gave a partial solution of the Ulam’s problem for the case of approximate

additive mappings under the assumption that G and G′ are Banach spaces. In 1950, Aoki [1]

generalized the Hyers’ theorem for approximately additive mappings. In 1978, Th. M. Rassias

[33] generalized the theorem of Hyers by considering the stability problem with unbounded

Cauchy differences. The stability problems of several functional equations have been extensively

investigated by a number of authors and there are many interesting results concerning this

problem (see [7, 9, 11, 12, 13, 14, 19, 30, 31, 34, 35]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.1. ([4, 10]) Let (X, d) be a complete generalized metric space and let J : X → X

be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element

x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};

2010 Mathematics Subject Classification. Primary 46S40; 47S40; 39B52; 47H10; 46L05.
Key words and phrases. Fuzzy n-Jordan ∗-derivation; induced fuzzy C∗-algebra; Hyers-Ulam stability.
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(4) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [17] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with applications. By

using fixed point methods, the stability problems of several functional equations have been

extensively investigated by a number of authors (see [5, 6, 27, 28, 32]).

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector topological

structure on the space. Some mathematics have defined fuzzy normed on a vector space from

various points of view [15, 21, 23, 24, 25, 29, 37]. In particular, Bag and Samanta [3] following

Cheng and Mordeson [8], gave an idea of fuzzy norm in such a manner that the corresponding

fuzzy metric is of Kramosil and Michalek type [20]. They established a decomposition theorem

of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed

spaces [2].

We use the definition of fuzzy normed spaces given in [3, 23, 24] to investigate a fuzzy version

of the Hyers-Ulam stability of n-Jordan ∗-derivations in induced fuzzy C∗-algebras associated

with the following functional equation

f

(
b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a− b+ 3c

3

)
= f(a).

Definition 1.2. ([3, 23, 24, 25]) Let X be a complex vector space. A functionN : X×R → [0, 1]

is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
N1: N(x, t) = 0 for t ≤ 0

N2: x = 0 if and only if N(x, t) = 1 for all t > 0

N3: N(cx, t) = N(x, t
|c|) if c ∈ C− {0}

N4: N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)}
N5: N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1

N6: for x ̸= 0, N(x, .) is continuous on R.
The pair (X , N) is called a fuzzy normed vector space.

Definition 1.3. ([3, 23, 24, 25]) Let (X , N) be a fuzzy normed vector space.

(1) A sequence {xn} in X is said to be convergent if there exists an x ∈ X such that

limn→∞N(xn − x, t) = 1 for all t > 0. in this case, x is called the limit of the sequence {xn}
and we denote it by N − limn→∞ xn = x.

(2) A sequence {xn} in X is called Cauchy if for each ϵ > 0 and each t > 0 there exists an

n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ϵ.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If

each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy

normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector space X , Y is continuous

at point x0 ∈ X if for each sequence {xn} converging to x0 in X , then the sequence {f(xn)}
converges to f(x0). If f : X → Y is continuous at each x ∈ X , then f : X → Y is said to be

continuous on X (see [2]).

Definition 1.4. Let X be a ∗-algebra and (X , N) a fuzzy normed space.

(1) The fuzzy normed space (X , N) is called a fuzzy normed ∗-algebra if

N(xy, st) ≥ N(x, s) ·N(y, t) & N(x∗, t) = N(x, t)
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(2) A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Example 1.5. Let (X , ∥ · ∥) be a normed ∗-algebra. let

N(x, t) =

{ t
t+∥x∥ , t > 0, x ∈ X
0, t ≤ 0, x ∈ X .

Then N(x, t) is a fuzzy norm on X and (X , N(x, t)) is a fuzzy normed ∗-algebra.

Definition 1.6. Let (X , ∥ · ∥) be a C∗-algebra and N a fuzzy norm on X .

(1) The fuzzy normed ∗-algebra (X , N) is called an induced fuzzy normed ∗-algebra
(2) The fuzzy Banach ∗-algebra (X , N) is called an induced fuzzy C∗-algebra.

Definition 1.7. Let (X , N) be an induced fuzzy normed ∗-algebra. Then a C-linear mapping

D : (X , N) → (X , N) is called a fuzzy n-Jordan ∗-derivation if

D(an) = D(a)an−1 + aD(a)an−2 + . . .+ an−2D(a)a+ an−1D(a) & D(a∗) = D(a)∗

for all a ∈ X .

Throughout this paper, assume that (X , N) is an induced fuzzy C∗-algebra.

2. Main results

Lemma 2.1. Let (Z, N) be a fuzzy normed vector space and let f : X → Z be a mapping such

that

N

(
f

(
y − x

3

)
+ f

(
x− 3z

3

)
+ f

(
3x− y + 3z

3

)
, t

)
≥ N

(
f(x),

t

2

)
(2.1)

for all x, y, z ∈ X and all t > 0. Then f is additive, i.e., f(x+y) = f(x)+f(y) for all x, y ∈ X .

Proof. Letting x = y = z = 0 in (2.1), we get

N(3f(0), t) = N

(
f(0),

t

3

)
≥ N

(
f(0),

t

2

)
for all t > 0. By N5 and N6, N(f(0), t) = 1 for all t > 0. It follows from N2 that f(0) = 0.

Letting y = x = 0 in (2.1), we get

N(f(0) + f(−z) + f(z), t) ≥ N

(
f(0),

t

2

)
= 1

for all t > 0. It follows from N2 that f(−z) + f(z) = 0 for all z ∈ X . So

f(−z) = −f(z)

for all z ∈ X .

Letting x = 0 and replacing y, z by 3y,−z, respectively, in (2.1), we get

N(f(y) + f(z) + f(−y − z), t) ≥ N

(
f(0),

t

2

)
= 1

for all t > 0. It follows from N2 that

f(y) + f(z) + f(−y − z) = 0 (2.2)

for all y, z ∈ X . Thus

f(y + z) = f(y) + f(z)

for all y, z ∈ X , as desired. �
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Using the fixed point method, we prove the Hyers-Ulam stability of fuzzy n-Jordan ∗-
derivations on induced fuzzy C∗-algebras.

Theorem 2.2. Let φ : X 3 → [0,∞) be a function such that there exists an L < 3
3n with

φ
(x
3
,
y

3
,
z

3

)
≤ L

3
φ(x, y, z) (2.3)

for all x, y, z ∈ X . Let f : X → X be a mapping such that

N

(
µf

(
y − x

3

)
+ µf

(
x− 3z

3

)
+ µf

(
3x− y + 3z

3

)
− f(µx), t

)
≥ t

t+ φ(x, y, z)
, (2.4)

N(f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ φ(w, v, 0)
(2.5)

for all x, y, z, w, v ∈ X , all t > 0 and all µ ∈ T1 := {λ ∈ C : |λ| = 1}. Then D(x) = N −
limn→∞ 3nf( x

3n ) exists for each x ∈ X and defines a fuzzy n-Jordan ∗-derivation D : X → X
such that

N(f(x)−D(x), t) ≥ (1− L)t

(1− L)t+ φ(x, 2x, 0)
(2.6)

for all x ∈ X and all t > 0.

Proof. Letting µ = 1, y = 2x and z = 0 in (2.4), we get

N
(
3f
(x
3

)
− f(x), t

)
≥ t

t+ φ (x, 2x, 0)
(2.7)

for all x ∈ X .

Consider the set

S := {g : X → X}

and introduce the generalized metric on S:

d(g, h) = inf{α ∈ R+ : N(g(x)− h(x), αt) ≥ t

t+ φ (x, 2x, 0)
, ∀x ∈ X ,∀t > 0},

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see the proof of [22,

Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 3g
(x
3

)
for all x ∈ X .

Let g, h ∈ S be given such that d(g, h) = ε. Then

N (g(x)− h(x), εt) ≥ t

t+ φ (x, 2x, 0)
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for all x ∈ X and all t > 0. Hence

N (Jg(x)− Jh(x), Lεt) = N
(
3g
(x
3

)
− 3h

(x
3

)
, Lεt

)
= N

(
g
(x
3

)
− h

(x
3

)
,
L

3
εt

)
≥

Lt
3

Lt
3 + φ

(
x
3 ,

2x
3 , 0

) ≥
Lt
3

Lt
3 + L

3φ (x, 2x, 0)

=
t

t+ φ (x, 2x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.7) that d(f, Jf) ≤ 1.

By Theorem 1.1, there exists a mapping D : X → X satisfying the following:

(1) D is a fixed point of J , i.e.,

D
(x
3

)
=

1

3
D(x) (2.8)

for all x ∈ X . The mapping D is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that D is a unique mapping satisfying (2.8) such that there exists a α ∈ (0,∞)

satisfying

N(f(x)−D(x), αt) ≥ t

t+ φ (x, 2x, 0)

for all x ∈ X ;

(2) d(Jkf,D) → 0 as k → ∞. This implies the equality

N - lim
k→∞

3kf
( x
3k

)
= D(x)

for all x ∈ X ;

(3) d(f,D) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,D) ≤ 1

1− L
.

This implies that the inequality (2.7) holds.

It follows from (2.3) that

∞∑
k=0

3kφ(
x

3k
,
y

3k
,
z

3k
) <∞

for all x, y, z ∈ X .

By (2.4),

N

(
3kµf

(
y − x

3k+1

)
+ 3kµf

(
x− 3z

3k+1

)
+ 3kµf

(
3x− y + 3z

3k+1

)
−3kf

(µx
3k

)
, 3kt

)
≥ t

t+ φ( x
3k
, y
3k
, z
3k
)
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for all x, y, z ∈ X , all t > 0 and all µ ∈ T1. So

N

(
3kµf

(
y − x

3k+1

)
+ 3kµf

(
x− 3z

3k+1

)
+ 3kµf

(
3x− y + 3z

3k+1

)
−3kf

(µx
3k

)
, t
)
≥

t
3k

t
3k

+ φ( x
3k
, y
3k
, z
3k
)
=

t

t+ 3kφ( x
3k
, y
3k
, z
3k
)

for all x, y, z ∈ X , all t > 0 and all µ ∈ T1. Since limk→∞
t

t+3kφ( x

3k
, y

3k
, z

3k
)
= 1 for all x, y, z ∈ X

and all t > 0,

N

(
µD

(
y − x

3

)
+ µD

(
x− 3z

3

)
+ µD

(
3x− y + 3z

3

)
−D(µx), t

)
= 1

for all x, y, z ∈ X , all t > 0 and all µ ∈ T1. Thus

µD

(
y − x

3

)
+ µD

(
x− 3z

3

)
+ µD

(
3x− y + 3z

3

)
= D(µx) (2.9)

for all x, y, z ∈ X , all t > 0 and all µ ∈ T1. Letting x = y = z = 0 in (2.9), we get D(0) = 0.

Let µ = 1 and x = 0 in (2.9). By the same reasoning as in the proof of Lemma 2.1, one can

easily show that D is additive. Letting y = 2x and z = 0 in (2.9), we get

µD(x) = 3µD
(x
3

)
= D(µx)

for all x ∈ X and all µ ∈ T1. By [26, Theorem 2.1], the mapping D : X → X is C-linear.
By (2.5) and letting v = 0 in (2.5), we have

N

(
3nkf

(
wn

3nk

)
− 3nkf

( w
3k

)
wn−1 − 3nkwf

( w
3k

)
wn−2 − · · · − 3nkwn−2f

( w
3k

)
w

−3nkwn−1f
( w
3k

)
, 3nkt

)
≥ t

t+ φ( w
3k
, 0, 0)

for all w ∈ X and all t > 0. So

N

(
3nkf

(
wn

3nk

)
− 3nkf

( w
3k

)
wn−1 − 3nkwf

( w
3k

)
wn−2 − · · · − 3nkwn−2f

( w
3k

)
w

−3nkwn−1f
( w
3k

)
, t
)
≥

t
3nk

t
3nk + φ( w

3k
, 0, 0)

=
t

t+ (3n−1L)kφ(w, 0, 0)

for all w ∈ X and all t > 0. Since limk→∞
t

t+(3n−1L)kφ(w,0,0)
= 1 for all w ∈ X and all t > 0,

N(D(wn)−D(w)wn−1 − wD(w)wn−2 · · ·wn−2D(w)w − wn−1D(w), t) = 1

for all w ∈ X and all t > 0. Thus

D(wn)−D(w)wn−1 − wD(w)wn−2 · · ·wn−2D(w)w − wn−1D(w) = 0

for all w ∈ X .

By (2.5) and letting w = 0 in (2.5), we have

N

(
3kf

(
v∗

3k

)
− 3kf

( v
3k

)∗
, 3kt

)
≥ t

t+ φ(0, v
3k
, 0)
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for all v ∈ X and all t > 0. So

N

(
3kf

(
v∗

3k

)
− 3kf

( v
3k

)∗
, t

)
≥

t
3k

t
3k

+ φ(0, v
3k
, 0)

=
t

t+ 3kφ(0, v
3k
, 0)

for all v ∈ X and all t > 0. Since limk→∞
t

t+3kφ(0, v

3k
,0)

= 1 for all v ∈ X and all t > 0,

N(D(v∗)−D(v)∗, t) = 1

for all x ∈ X and all t > 0. Thus D(v∗)−D(v)∗ = 0 for all v ∈ X .

Therefore, the mapping D : X → X is a fuzzy n-Jordan ∗-derivation. �

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > n. Let X be a normed vector

space with norm ∥ · ∥. Let f : X → X be a mapping satisfying

N

(
µf

(
y − x

3

)
+ µf

(
x− 3z

3

)
+ µf

(
3x− y + 3z

3

)
− f(µx), t

)
≥ t

t+ θ(∥x∥p + ∥y∥p + ∥z∥p)
, (2.10)

N(f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ θ(∥w∥p + ∥v∥p)
(2.11)

for all x, y, z, w, v ∈ X , all t > 0 and all µ ∈ T1. Then D(x) = N − limn→∞ 3nf( x
3n ) exists for

each x ∈ X and defines a fuzzy n-Jordan ∗-derivation D : X → X such that

N(f(x)−D(x), t) ≥ (3p − 3)t

(3p − 3)t+ 3pθ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking

φ(x, y, z) = θ(∥x∥p + ∥y∥p + ∥z∥p)

and L = 31−p. �

Theorem 2.4. Let φ : X 3 → [0,∞) be a function such that there exists an L < 1 with

φ(x, y, z) ≤ 3Lφ
(x
3
,
y

3
,
z

3

)
for all x, y, z ∈ X . Let f : X → X be a mapping satisfying (2.4) and (2.5). Then D(x) = N −
limn→∞

1
3n f(3

nx) exists for each x ∈ X and defines a fuzzy n-Jordan ∗-derivation D : X → X
such that

N(f(x)−D(x), t) ≥ (1− L)t

(1− L)t+ Lφ(x, 0, 0)
(2.12)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.

Consider the linear mapping J : S → S such that

Jg(x) :=
1

3
g (3x)

for all x ∈ X .
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It follows from (2.7) that

N

(
f(x)− 1

3
f(3x),

1

3
t

)
≥ t

t+ φ(3x, 0, 0)
≥ t

t+ 3Lφ(x, 0, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L. Hence

d(f,D) ≤ L

1− L
,

which implies that the inequality (2.12) holds.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a positive real number with p < 1. Let X be a normed

vector space with norm ∥ · ∥. Let f : X → X be a mapping satisfying (2.10) and (2.11). Then

D(x) = N − limn→∞
1
3n f(3

nx) exists for each x ∈ X and defines a fuzzy n-Jordan ∗-derivation
D : X → X such that

N(f(x)−D(x), t) ≥ (3− 3p)t

(3− 3p)t+ 3pθ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking

φ(x, y, z) = θ(∥x∥p + ∥y∥p + ∥z∥p)

and L = 3p−1. �
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Abstract. In this paper, we investigate the Hyers-Ulam stability of the Tribonacci functional equation

f(x) = f(x− 1) + f(x− 2) + f(x− 3)

in 2-Banach spaces.

Keywords: Hyers-Ulam stability, 2-Banach space, Fibonacci functional equation, Tribonacci func-

tional equation.

1. Introduction and preliminaries

The concept of 2-normed spaces was first introduced by S. Gähler [8]. Let X be a
complex vector space of a dimension greater than one. Suppose that ∥·, ·∥ is a real valued
mapping on X ×X satisfying the following conditions

N1: ∥b, a∥ = ∥a, b∥
N2: ∥a, b∥ = 0 ⇔ a and b are linearly dependent
N3: ∥αa, b∥ = |α| ∥a, b∥
N4: ∥a+ ã, b∥ ≤ ∥a, b∥+ ∥ã, b∥

for all a, b ∈ X and α ∈ C. Then ∥·, ·∥ is called a 2-norm on X and the pair (X, ∥·, ·∥)
is called a 2-normed space. Some of the basic properties of 2-norms are that they are
non-negative and ∥a, b + αa∥ = ∥a, b∥ for all a, b ∈ X and α ∈ C. As an example of
a 2-normed space, we may take an inner product space (X,< ·, · >), and define the
standard 2-norm on X by

∥a, b∥ =

∣∣∣∣ < a, a > < a, b >
< b, a > < b, b >

∣∣∣∣ .
A sequence {xn} in a 2-normed space (X; ∥·, ·∥) is said to converge to some x ∈ X in
the 2-norm if ∥x− xn, u∥ → 0 as n → ∞ for all u ∈ X. A sequence {xn} in a 2-normed

0 E-mails:1Madjid.Eshaghi@gmail.com; 2Ali.Divandari@gmail.com;
3rostamian333@gmail.com; 4baak@hanyang.ac.kr; 5dyshin@uos.ac.kr.
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space (X, ∥·, ·∥) is said to be Cauchy with respect to the 2-norm if

lim
n,m→∞

∥xn − xm, u∥ = 0

for all u ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X is said
to be complete with respect to the 2-norm. Any complete 2-normed space is said to be
2-Banach space.
Throughout this paper, we denote by Tn the nth Tribonacci number for n ∈ N. In

particular, we define T0 = 0, T1 = T2 = 1 and Tn = Tn−1+Tn−2+Tn−3 for n ≥ 3. Similar
application of Pascal’s triangle in the Fibonacci numbers can be applied to calculate the
Tribonacci numbers.

1
1 1

1 1 2
1 3 1 4

1 5 5 1 7
1 7 13 † 7 1 13

1 9 25 25 9 1
...

(a) Numbers in the nth row are the sum of three neighbours: 25 = 13 + 5 + 7.

(b) Sums of shallow diagonals giving Tribonacci numbers: 4= 1+3.

Let X be 2-Banach space. A function f : R → X is called a Tribonacci function if it
satisfies

f(x) = f(x− 1) + f(x− 2) + f(x− 3). (1.1)

The stability of functional equations originated from a question of Ulam [15] in 1940.
In the next year, Hyers [9] proved the problem for the Cauchy functional equation. The
stability problems of several functional equations have been extensively investigated by
a number of authors and there are many interesting results concerning this problem (see
[1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14]).
Recently, Bidkham and et al. [7] investigated the solution and the Hyers-Ulam sta-

bility of (1.1) in normed spaces.
In this paper, we establish the Hyers-Ulam stability of (1.1) in 2-normed spaces.
We denote the roots of the equation x3 − x2 − x− 1 = 0 By α, β and γ. β and γ are

complex, |β| = |γ| and α is greater than one. We have

α+ β + γ = 1 , αβ + αγ + βγ = −1, αβγ = 1. (1.2)

2. Main result

As we shall see in the following theorem, the general solution of the Tribonacci func-
tional equation is strongly related to the Tribonacci numbers Tn.

Theorem 2.1. ([7]) Let X be a real vector space. A function f : R → X is a
Tribonacci function if and only if there exists a function g : [−2, 2] → X such that

f(x) = T[x]+2g(x− [x]) + T ′
[x]g(x− [x]− 1) + T[x]+1g(x− [x]− 2),

where T ′
[x] = T[x]+3 − T[x]+2 for all x ∈ R.
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In the following theorem, we prove the Hyers-Ulam stability of the Tribonacci func-
tional equation (1.1) in 2-Banach spaces. We try to prove this theorem under condition

∥f(x)− [f(x− 1) + f(x− 2) + f(x− 3)], z∥ ≤ ϵ

for all x ∈ R and z ∈ X, but this condition is very heavy and often inaccessible. In the
following we offer a condition to obtain a best result.

Theorem 2.2. Let (X, ∥·, ·∥) be a real 2-Banach space. If a function f : R → X
satisfies the inequality

∥f(x), f(x− 1) + f(x− 2) + f(x− 3)∥ ≤ ϵ

for all x ∈ R and some ϵ > 0, then there exists a Tribonacci function G : R → X such
that

∥f(x), G(x)∥ ≤ 1

|α2(β − γ) + β2(γ − α) + γ2(α− β)|
[
2(1 + |β|) + |β|2

1− |β|2
]ϵ

for all x ∈ R.

Proof. By (1.2), it follows from (1.1) that

∥f(x), (α+ β + γ)f(x− 1)− (αβ + αγ + βγ)f(x− 2) + αβγ f(x− 3)∥ ≤ ϵ

for all x ∈ R. If we replace x by x− r and x+ r in the last inequality, then we have

∥f(x− r), α[f(x− r − 1)− γf(x− r − 2)]

+β [f(x− r − 1)− (α+ γ)f(x− r − 2) + αγf(x− r − 3)] + γf(x− r − 1)∥ ≤ ϵ,

∥f(x− r), α[f(x− r − 1)− βf(x− r − 2)]

+γ [f(x− r − 1)− (α+ β)f(x− r − 2) + αβf(x− r − 3)] + βf(x− r − 1)∥ ≤ ϵ,

∥f(x+ r), α[f(x+ r − 1)− γf(x+ r − 2)]

+β [f(x+ r − 1)− (α+ γ)f(x+ r − 2) + αγf(x+ r − 3)] + γf(x+ r − 1)∥ ≤ ϵ

for all x ∈ R and all r ∈ Z. Hence we have
∥f(x− r), βrα[f(x− r − 1)− γf(x− r − 2)] + βr+1 [f(x− r − 1)

− (α+ γ)f(x− r − 2) + αγf(x− r − 3)] + βrγf(x− r − 1)∥ ≤ |βr|ϵ, (2.1)

∥f(x− r), γrβ[f(x− r − 1)− αf(x− r − 2)] + γr+1 [f(x− r − 1)

− (α+ β)f(x− r − 2) + αβf(x− r − 3)] + γrαf(x− r − 1)∥ ≤ |γr|ϵ, (2.2)

∥f(x+ r), α−rβ[f(x+ r − 1)− γf(x− r − 2)] + α−r+1 [f(x+ r − 1)

− (β + γ)f(x+ r − 2) + βγf(x+ r − 3)]α−rβf(x− r − 1)∥ ≤ |α−r|ϵ (2.3)

for all x ∈ R and all r ∈ Z. Then we have

∥f(x), α[f(x−1)−γf(x−2)]+γf(x−1)+βn[f(x−n)−(α+γ)f(x−n−1)+αγf(x−n−2)]∥

≤
n=1∑
r=0

∥f(x−r), βrα[f(x−r−1)−γf(x−r−2)]+βr+1[f(x−r−1)−(α+γ)f(x−r−2)

+ αγf(x− r − 3)] + βrγf(x− r − 1)∥ ≤
n−1∑
r=0

|βr|ϵ, (2.4)
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∥f(x), β[f(x−1)−αf(x−2)]+αf(x−1)+γn[f(x−n)−(α+β)f(x−n−1)+αβf(x−n−2)]∥

≤
n=1∑
r=0

∥f(x−r), γrβ[f(x−r−1)−αf(x−r−2)]+γr+1[f(x−r−1)−(α+β)f(x−r−2)

+ αβf(x− r − 3)] + γrαf(x− r − 1)∥ ≤
n−1∑
r=0

|γr|ϵ, (2.5)

∥f(x), γ[f(x−1)−βf(x−2)]+γf(x−1)+α−n[f(x−n)−(β+γ)f(x−n−1)+βγf(x−n−2)]∥

≤
n=1∑
r=0

∥f(x+r), α−rβ[f(x+r−1)−γf(x−r−2)]+α−r+1 [f(x+r−1)−(β+γ)f(x+r−2)

+ βγf(x+ r − 3)] + α−rβf(x− r − 1)∥ ≤
n−1∑
r=0

|α−r|ϵ (2.6)

for all x ∈ R and all r ∈ Z.
By (2.1), (2.2) and (2.3), we obtain that

{βn[f(x− r − 1)− (α+ γ)f(x− r − 2) + αγf(x− r − 3)]},

{γn[f(x− r − 1)− (α+ β)f(x− r − 2) + αβf(x− r − 3)]},
{α−n[f(x+ r − 1)− (β + γ)f(x+ r − 2) + βγf(x+ r − 3)]}

are Cauchy sequences for any fixed x ∈ R. Hence we can define the functions G1 : R →
X, G2 : R → X and G3 : R → X by

G1 = lim
n→∞

βn[f(x− r − 1)− (α+ γ)f(x− r − 2) + αγf(x− r − 3)],

G2 = lim
n→∞

γn[f(x− r − 1)− (α+ β)f(x− r − 2) + αβf(x− r − 3)],

G3 = lim
n→∞

α−n [f(x+ r − 1)− (β + γ)f(x+ r − 2) + βγf(x+ r − 3)]

for all x ∈ R and all r ∈ Z. Using the above definition of G1, G2 and G3, we show that
there are Tribonacci functions

G1(x− 1) +G1(x− 2) +G1(x− 3)

= β−1 limn→∞ βn+1[f(x− (n+1))− (α+ γ)f(x− (n+1)− 1)+αγf(x− (n+1)− 2)]

+β−2 limn→∞ βn+2[f(x− (n+2))− (α+ γ)f(x− (n+2)− 1) +αγf(x− (n+2)− 2)]

+β−3 limn→∞ βn+3[f(x− (n+3))− (α+ γ)f(x− (n+3)− 1) +αγf(x− (n+3)− 2)]

= β−1G1(x) + β−2G1(x) + β−3G1(x) = G1(x),

G2(x− 1) +G2(x− 2) +G2(x− 3)

= γ−1 limn→∞ γn+1[f(x− (n+1))− (α+ β)f(x− (n+1)− 1)+αβf(x− (n+1)− 2)]
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+γ−2 limn→∞ γn+2[f(x− (n+2))− (α+ β)f(x− (n+2)− 1) +αβf(x− (n+2)− 2)]

+γ−3 limn→∞ γn+3[f(x− (n+3))− (α+ β)f(x− (n+3)− 1) +αβf(x− (n+3)− 2)]

= γ−1G2(x) + γ−2G2(x) + γ−3G2(x) = G2(x),

G3(x− 1) +G3(x− 2) +G3(x− 3)

= α−1 limn→∞ α−n+1 [f(x− (n+1))− (β+γ)f(x− (n+1)−1)+βγf(x− (n+1)−2)]

+α−2 limn→∞ α−n+2 [f(x− (n+2))− (β+γ)f(x− (n+2)− 1)+βγf(x− (n+2)− 2)]

+α−3 limn→∞ α−n+3 [f(x− (n+3))− (β+γ)f(x− (n+3)− 1)+βγf(x− (n+3)− 2)]

= α−1G3(x) + α−2G3(x) + α−3G3(x) = G3(x)
for all x ∈ R. It follows from (2.4), (2.5) and (2.6) that

∥f(x), (α+ γ)f(x− 1)− αγf(x− 2) +G2(x)∥ ≤ 1

1− |β|
ϵ, (2.7)

∥f(x), (α+ β)f(x− 1)− αβf(x− 2) +G2(x)∥ ≤ 1

1− |γ|
ϵ =

1

1− |β|
ϵ, (2.8)

∥f(x), (β + γ)f(x− 1)− βγf(x− 2) +G3(x)∥ ≤ |α−1|
1− |α−1|

ϵ =
|β2|

1− |β2|
ϵ (2.9)

for all x ∈ R. Now, put ∆ = α2(β − γ) + β2(γ − α) + γ2(α− β), and define

G(x) :=
β2(γ − α)

∆
G1(x) +

γ2(α− β)

∆
G2(x) +

α2(β − γ)

∆
G3(x)

for all x ∈ R. By (2.7), (2.8) and (2.9), we have

∥f(x), G(x)∥

= ∥f(x), β
2(γ − α)

∆
G1(x) +

γ2(α− β)

∆
G2(x) +

α2(β − γ)

∆
G3(x)∥

≤ 1

|∆|
[∥f(x), β2(γ2 − α2)f(x− 1)− β2(γ − α)αγf(x− 2) + β2(γ − α)G1∥

+∥f(x), γ2(α2 − β2)f(x− 1)− γ2(α− β)αβf(x− 2) + γ2(α− β)G2∥
+∥f(x), α2(β2 − γ2)f(x− 1)− α2(β − γ)βγf(x− 2) + α2(β − γ)G3∥]

≤ 1

|∆|
[

2

1− |β|
+

|β|2

1− |β|2
]ϵ

≤ 1

|∆|
[
2(1 + |β|) + |β|2

1− |β|2
]ϵ

for all x ∈ R.
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On the other hand, it is easy to show that G is a Tribonacci function and this completes
the proof. �
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1. Introduction

The Euler numbers and polynomials possess many interesting properties and arising in many areas

of mathematics and physics(see [1-12]). Throughout this paper, we always make use of the following

notations: C denotes the set of complex numbers, Zp denotes the ring of p-adic rational integers,

Qp denotes the field of p-adic rational numbers, and Cp denotes the completion of algebraic closure

of Qp.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one

talks of q-extension, q is considered in many ways such as an indeterminate, a complex number

q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally

assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1. Throughout this paper we use

the notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
(cf. [1-6]) .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},

the p-adic q-integral was defined by Kim as follows:

I−q(g) =

∫
Zp

g(x)dμ−q(x) = lim
N→∞

[2]q
1 + qpN

pN−1∑
x=0

g(x)(−q)x, see [1-5] . (1.1)

If we take g1(x) = g(x+ 1) in (1.1), then we easily see that

qI−q(g1) + I−q(g) = [2]qg(0). (1.2)

Let Tp = ∪N≥1CpN = limN→∞ CpN , where CpN = {ζ|ζpN

= 1} is the cyclic group of order pN . For

ζ ∈ Tp, we denote by φζ : Zp → Cp the locally constant function x �−→ ζx.

In [7], we defined the twisted q-Euler numbers and polynomials with weak weight α and in-

vestigate their properties. For α ∈ Z, q ∈ Cp with |1 − q|p ≤ 1, and ζ ∈ Tp, the twisted q-Euler

polynomials Ẽ
(α)
n,q,ζ(x) with weak weight α are defined by

F̃
(α)
q,ζ (x, t) =

∞∑
n=0

Ẽ
(α)
n,q,ζ(x)

tn

n!
=

[2]qα

ζqαet + 1
ext. (1.3)

509

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.3, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

RYOO 509-514



The twisted q-Euler numbers Ẽ
(α)
n,q,ζ with weak weight α are defined by the generating function:

F̃
(α)
q,ζ (t) =

∞∑
n=0

Ẽ
(α)
n,q,ζ

tn

n!
=

[2]qα

ζqαet + 1
. (1.4)

The following elementary properties of the q-Euler numbers Ẽ
(α)
n,q,ζ and polynomials Ẽ

(α)
n,q,ζ(x) with

weak weight α are readily derived form (1.1), (1.2), (1.3) and (1.4) (see, for details, [7]). We,

therefore, choose to omit details involved.

Theorem 1(Witt formula). For α ∈ Z, q ∈ Cp with |1− q|p < 1, and ζ ∈ Tp, we have

Ẽ
(α)
n,q,ζ =

∫
Zp

ζxxndμ−qα(x), Ẽ
(α)
n,q,ζ(x) =

∫
Zp

ζy(x+ y)
n
dμ−qα(y).

Theorem 2. For any positive integer n, we have

Ẽ
(α)
n,q,ζ(x) =

n∑
k=0

(
n

k

)
Ẽ

(α)
k,q,ζx

n−k.

In this paper, by using the symmetry of p-adic q-integral on Zp, we obtain the recurrence

identities the twisted q-Euler polynomials with weak weight α.

2. The alternating sums of powers of consecutive q-integers

Let q be a complex number with |q| < 1 and ζ be the pN -th root of unity. By using (1.3), we

give the alternating sums of powers of consecutive q-integers as follows:

∞∑
n=0

Ẽ
(α)
n,q,ζ

tn

n!
=

[2]qα

ζqαet + 1
= [2]qα

∞∑
n=0

(−1)nζnqαnent.

From the above, we obtain

−
∞∑

n=0

(−1)nζnqαne(n+k)t +

∞∑
n=0

(−1)n−kζn−kqα(n−k)ent =

k−1∑
n=0

(−1)n−kζn−kqα(n−k)ent.

Thus, we have

− [2]qα
∞∑

n=0

(−1)nζnqαne(n+k)t + [2]qα(−1)−kζ−kq−αk
∞∑

n=0

(−1)nζnqαnent

= [2]qα(−1)−kζ−kq−αk
k−1∑
n=0

(−1)nζnqαnent.

(2.1)

By using (1.3)and (1.4), and (2.1), we obtain

−
∞∑
j=0

Ẽ
(α)
j,q,ζ(k)

tj

j!
+(−1)−kζ−kq−αk

∞∑
j=0

Ẽ
(α)
j,q,ζ

tj

j!
= [2]qα

∞∑
j=0

(
(−1)−kζ−kq−αk

k−1∑
n=0

(−1)nζnqαnnj

)
tj

j!
.

By comparing coefficients of
tj

j!
in the above equation, we obtain

k−1∑
n=0

(−1)nζnqαnnj =
(−1)k+1ζkqαkẼ

(α)
j,q,ζ(k) + Ẽ

(α)
j,q,ζ

[2]qα
.

By using the above equation we arrive at the following theorem:
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Theorem 3. Let k be a positive integer and q ∈ C with |q| < 1. Then we obtain

T̃
(α)
j,q,ζ(k − 1) =

k−1∑
n=0

(−1)nζnqαnnj =
(−1)k+1ζkqαkẼ

(α)
j,q,ζ(k) + Ẽ

(α)
j,q,ζ

[2]qα
.

Remark 4. For ζ = 1, we have

lim
q→1

T̃
(α)
j,q,ζ(k − 1) =

k−1∑
n=0

(−1)nnj =
(−1)k+1Ej(k) + Ej

2
,

where Ej(x) and Ej denote the Euler polynomials and Euler numbers, respectively.

Next, we assume that q ∈ Cp and ζ ∈ Tp. We obtain recurrence identities the q-Euler polyno-

mials and the q-analogue of alternating sums of powers of consecutive integers. By using (1.1), we

have

qnI−q(gn) + (−1)n−1I−q(g) = [2]q

n−1∑
l=0

(−1)n−1−lqlg(l),

where gn(x) = g(x+ n). If n is odd from the above, we obtain

qnI−q(gn) + I−q(g) = [2]q

n−1∑
l=0

(−1)n−1−lqlg(l) (cf. [1-5]). (2.2)

It will be more convenient to write (2.2) as the equivalent integral form

qαn
∫
Zp

g(x+ n)dμ−qα(x) +

∫
Zp

g(x)dμ−qα(x) = [2]qα
n−1∑
k=0

(−1)kqαkg(k). (2.3)

Substituting g(x) = ζxext into the above, we obtain

ζnqαn
∫
Zp

ζxe(x+n)tdμ−qα(x) +

∫
Zp

ζxextdμ−qα(x) = [2]qα
n−1∑
j=0

(−1)jζjqαjejt. (2.4)

After some elementary calculations, we have∫
Zp

ζxextdμ−qα(x) =
[2]qα

ζqαet + 1
,

∫
Zp

ζxe(x+n)tdμ−qα(x) = ent
[2]qα

ζqαet + 1
.

(2.5)

By using (2.4) and (2.5), we have

ζnqαn
∫
Zp

ζxe(x+n)tdμ−qα(x) +

∫
Zp

ζxextdμ−qα(x) =
[2]qα(1 + ζnqαnent)

ζqαet + 1
.

From the above, we get

[2]qα(1 + ζnqαnent)

ζqαet + 1
=

[2]qα
∫
Zp

ζxextdμ−qα(x)∫
Zp

ζnxqα(n−1)xentxdμ−qα(x)
. (2.6)

By substituting Taylor series of ext into (2.4), we obtain

∞∑
m=0

(
ζnqαn

∫
Zp

ζx(x+ n)mdμ−qα(x) +

∫
Zp

ζxxmdμ−qα(x)

)
tm

m!

=

∞∑
m=0

⎛
⎝[2]qα

n−1∑
j=0

(−1)jζjqαjjm

⎞
⎠ tm

m!
.
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By comparing coefficients
tm

m!
in the above equation, we obtain

ζnqαn
m∑

k=0

(
m

k

)
nm−k

∫
Zp

ζxxkdμ−qα(x) +

∫
Zp

ζxxmdμ−qα(x) = [2]qα
n−1∑
j=0

(−1)jζjqαjjm.

By using Theorem 3, we have

ζnqαn
m∑

k=0

(
m

k

)
nm−k

∫
Zp

ζxxkdμ−qα(x) +

∫
Zp

ζxxmdμ−qα(x) = [2]qα T̃
(α)
m,q,ζ(n− 1). (2.7)

By using (2.6) and (2.7), we arrive at the following theorem:

Theorem 5. Let n be odd positive integer. Then we have∫
Zp

ζxextdμ−qα(x)∫
Zp

ζnxqα(n−1)xentxdμ−qα(x)
=

∞∑
m=0

(
T̃

(α)
m,q,ζ(n− 1)

) tm

m!
.

Let w1 and w2 be odd positive integers. By (2.5), Theorem 5, and after some elementary

calculations, we obtain the following theorem.

Theorem 6. Let w1 and w2 be odd positive integers. Then we have∫
Zp

ζw2xew2xtdμ−qw2α(x)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2txdμ−qα(x)
=

[2]qw2α

[2]qα

∞∑
m=0

(
T̃

(α)
m,qw2 ,ζw2 (w − 1)wm

2

) tm

m!
. (2.8)

By (1.1), we obtain∫
Zp

∫
Zp

ζw1x1+w2x2e(w1x1+w2x2+w1w2x)tdμ−qw1α(x1)dμ−qw2α(x2)∫
Zp

ζw2x2qα(w1w2−1)xew1w2xtdμ−qα(x)

=
ew1w2xt

∫
Zp

ζw1x1ew1x1tdμ−qw1α(x1)
∫
Zp

ζw2x2ew2x2tdμ−qw2α(x2)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2xtdμ−qα(x)
.

(2.9)

By using (2.8) and (2.9), after elementary calculations, we obtain

a =

(∫
Zp

ζw1x1e(w1x1+w1w2x)tdμ−qw1α(x1)

)( ∫
Zp

ζw2x2ex2w2tdμ−qw2α(x2)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2xtdμ−qα(x)

)

=

( ∞∑
m=0

Ẽ
(α)
m,qw1 ,ζw1 (w2x)w

m
1

tm

m!

)(
[2]qw2α

[2]qα

∞∑
m=0

T̃
(α)
m,qw2 ,ζw2 (w1 − 1)wm

2

tm

m!

)
.

(2.10)

By using Cauchy product in the above, we have

a =
∞∑

m=0

⎛
⎝ [2]qw2α

[2]qα

m∑
j=0

(
m

j

)
Ẽ

(α)
j,qw1 ,ζw1 (w2x)w

j
1T̃

(α)
m−j,qw2 ,ζw2 (w1 − 1)wm−j

2

⎞
⎠ tm

m!
. (2.11)

By using the symmetry in (2.10), we obtain

a =

(∫
Zp

ζw2x2e(w2x2+w1w2x)tdμ−qw2α(x2)

)( ∫
Zp

ζw1x1ex1w1tdμ−qw1α(x1)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2xtdμ−qα(x)

)

=

( ∞∑
m=0

Ẽ
(α)
m,qw2 ,ζw2 (w1x)w

m
2

tm

m!

)(
[2]qw1α

[2]qα

∞∑
m=0

T̃
(α)
m,qw1 ,ζw1 (w2 − 1)wm

1

tm

m!

)
.
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Thus we obtain

a =

∞∑
m=0

⎛
⎝ [2]qw1α

[2]qα

m∑
j=0

(
m

j

)
Ẽ

(α)
j,qw2 ,ζw2 (w1x)w

j
2T̃

(α)
m−j,qw1 ,ζw1 (w2 − 1)wm−j

1

⎞
⎠ tm

m!
. (2.12)

By comparing coefficients
tm

m!
in the both sides of (2.11) and (2.12), we arrive at the following

theorem.

Theorem 7. Let w1 and w2 be odd positive integers. Then we obtain

[2]qw2α

m∑
j=0

(
m

j

)
Ẽ

(α)
j,qw1 ,ζw1 (w2x)w

j
1T̃

(α)
m−j,qw2 ,ζw2 (w1 − 1)wm−j

2

= [2]qw1α

m∑
j=0

(
m

j

)
Ẽ

(α)
j,qw2 ,ζw2 (w1x)w

j
2T̃

(α)
m−j,qw1 ,ζw1 (w2 − 1)wm−j

1 ,

where Ẽ
(α)
k,q,ζ(x) and T̃

(α)
m,q,ζ(k) denote the twisted q-Euler polynomials with weak weight α and the

q-analogue of alternating sums of powers of consecutive integers, respectively.

By using Theorem 2, we have the following corollary:

Corollary 8. Let w1 and w2 be odd positive integers. Then we obtain

[2]qw1α

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wm−k

1 wj
2x

j−kẼ
(α)
k,q,ζw2 T̃

(α)
m−j,qw1 ,ζw1 (w2 − 1)

= [2]qw2α

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wj

1w
m−k
2 xj−kẼ

(α)
k,q,ζw1 T̃

(α)
m−j,qw2 ,ζw2 (w1 − 1).

By using (2.9), we have

a =

(
ew1w2xt

∫
Zp

ζw1x1ex1w1tdμ−qw1α(x1)

)( ∫
Zp

ζw2x2ex2w2tdμ−qw2α(x2)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2xtdμ−qα(x)

)

=
[2]qw2α

[2]qα

w1−1∑
j=0

(−1)jζw2jqw2αj

∫
Zp

ζw1x1e

(
x1+w2x+j

w2

w1

)
(w1t)

dμ−qw1α(x1)

=
∞∑

n=0

⎛
⎝ [2]qw2α

[2]qα

w1−1∑
j=0

(−1)jζw2jqw2αjẼ
(α)
n,qw1 ,ζw1

(
w2x+ j

w2

w1

)
wn

1

⎞
⎠ tn

n!
.

(2.13)

By using the symmetry property in (2.13), we also have

a =

(
ew1w2xt

∫
Zp

ζw2x2ex2w2tdμ−qw2α(x2)

)( ∫
Zp

ζw1x1ex1w1tdμ−qw1α(x1)∫
Zp

ζw1w2xqα(w1w2−1)xew1w2xtdμ−qα(x)

)

=
[2]qw1α

[2]qα

w2−1∑
j=0

(−1)jζw1jqw1αj

∫
Zp

ζw2x2e

(
x2+w1x+j

w1

w2

)
(w2t)

dμ−qw2α(x2)

=
∞∑

n=0

⎛
⎝ [2]qw1α

[2]qα

w2−1∑
j=0

(−1)jζw1jqw1αjẼ
(α)
n,qw2 ,ζw2

(
w1x+ j

w1

w2

)
wn

2

⎞
⎠ tn

n!
.

(2.14)

By comparing coefficients
tn

n!
in the both sides of (2.13) and (2.14), we have the following theorem.
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Theorem 9. Let w1 and w2 be odd positive integers. Then we have

[2]qw2α

w1−1∑
j=0

(−1)jζw2jqw2αjẼ
(α)
n,qw1 ,ζw1

(
w2x+ j

w2

w1

)
wn

1

=[2]qw1α

w2−1∑
j=0

(−1)jζw1jqw1αjẼ
(α)
n,qw2 ,ζw2

(
w1x+ j

w1

w2

)
wn

2 .

(2.15)

Remark 10. Let w1 and w2 be odd positive integers. If q → 1 and ζ = 1, we have

w1−1∑
j=0

(−1)jEn

(
w2x+ j

w2

w1

)
wn

1 =

w2−1∑
j=0

(−1)jEn

(
w1x+ j

w1

w2

)
wn

2 .

Substituting w1 = 1 into (2.15), we arrive at the following corollary.

Corollary 11. Let w2 be odd positive integer. Then we obtain

Ẽ
(α)
n,q,ζ(x) =

[2]qα

[2]qw2α

w2−1∑
j=0

(−1)jζjqαjẼ
(α)
n,qw2 ,ζw2

(
x+ j

w2

)
wn

2 .
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Elliptic Equations with Jump Coefficients∗
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Abstract. This paper provides a proof of robustness of the two-level
hierarchical basis preconditioner for the linear finite element approximation
of second order elliptic problems with strongly discontinuous coefficients.
As a result, we prove that the convergence rate of the conjugate gradient
method with two-level preconditioner is uniform with respect to large jumps
and mesh sizes.
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1 Introduction

In this paper, we will discuss the two-level hierarchical basis preconditioned
conjugate gradient methods for the linear finite element approximation of
the second order elliptic boundary value problem





−∇ · (ω∇u) = f in Ω
u = gD on ΓD

−ω
∂u

∂n
= gN on ΓN

( 1.1)

where Ω ∈ Rd(d = 1, 2 or 3) is a polygonal or polyhedral domain with
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Z. Liu and Y. He, Two-Level Hierarchical Basis Preconditioner 2

Dirichlet boundary ΓD and Neumann boundary ΓN . The coefficient ω =
ω(x) is a positive and piecewise constant function. More precisely, we assume
that there are M open disjointed polygonal or polyhedral regions Ωm(m =
1, · · ·,M) satisfying ∪M

m=1Ωm = Ω with

ωm = ω|Ωm ,m = 1, · · ·,M

where each ωm > 0 is a constant. The analysis can be carried through to a
more general case when ω(x) varies moderately in each subdomain.

We assume that the subdomain Ωm : m = 1, · · ·,M are given and fixed
but may possibly have complicated geometry. We are concerned with the ro-
bustness of the preconditioned conjugate gradient method in regard to both
the meshsize and jump coefficients. This model problem is relevant to many
applications, such as groundwater flow [1, 15], fluid pressure prediction [19],
electromagnetics [13], semiconductor modeling [9], electrical power network
modeling [14] and fuel cell modeling [20, 21], where the coefficients have large
discontinuities across interfaces between subdomains with different material
properties.

The goal of the current paper is to provide proof of the robustness of the
two-level hierarchical basis preconditioner (Two-Level-PCG).

The rest of the paper is organized as follows. To the paper is compre-
hensive and self-contained, we refer directly to parts of contents in [23] and
[25].(Section 2 in the paper). In Section 2, we introduce some basic nota-
tion, the PCG algorithm and some theoretical foundations. In Section 3,
we introduce the two-level hierarchical basis method and preconditioner. In
Section 4, we analyze the eigenvalue distribution of the two-level precondi-
tioned system and prove the convergence rate of the PCG algorithm. Section
5 is the conclusions. Following [22], short notation x . y means x ≤ Cy;
and x∼y means cx ≤ y ≤ Cx.

2 Preliminaries

2.1 Notation

We introduce the bilinear form

a(u, v) =
M∑

m=1

ωm(∇u,∇v)L2(Ωm), ∀u, v ∈ H1
D(Ω),
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where H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}, and introduce the H1-norm and
seminorm with respect to any subregion Ωm by

|u|1,Ωm = ‖∇u‖0,Ωm , ‖u‖1,Ωm = (‖u‖2
0,Ωm

+ |u|21,Ωm
)

1
2 .

Thus,

a(u, u) =
M∑

m=1

ωm|u|21,Ωm
:= |u|21,ω.

We also need the weighted L2-inner product

(u, v)0,ω =
M∑

m=1

ωm(u, v)L2(Ωm)

and the weighted L2- and H1-norms

‖u‖0,ω = (u, u)
1
2
0,ω, ‖u‖1,ω = (‖u‖2

0,ω + |u|21,ω)
1
2 .

For any subset O ⊂ Ω, let |u|1,ω,O and ‖u‖0,ω,O be the restrictions of |u|1,ω

and ‖u‖0,ω on the subset O, respectively.
For the distribution of the coefficients, we introduce the index set

I = {m : meas(∂Ωm ∩ ΓD) = 0}

where meas(·) is the d − 1 measure. In other words, I is the index set of
all subregions which do not touch the Dirichlet boundary. We assume that
the cardinality of I is m0. We shall emphasize that m0 is a constant which
depends only on the distribution of the coefficients.

2.2 The Discrete Systems

Given a quasi-uniform triangulation Th with the meshsize h, let

Vh = {v ∈ H1
D(Ω) : v|τ ∈ P1(τ),∀τ ∈ Th}

be the piecewise linear finite element space, where P1 denotes the set of
linear polynomials. The finite element approximation of (1.1) is the function
u ∈ Vh, such that

a(u, v) = (f, v) +
∫

ΓN

gNv, ∀v ∈ Vh.
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We define a linear symmetric positive definite operator A : Vh → Vh by

(Au, v)0,ω = a(u, v).

The related inner product and the induced energy norm are denoted by

(·, ·)A := a(·, ·), ‖ · ‖A :=
√

a(·, ·).
Then we have the following operator equation,

Au = F. ( 2.1)

2.3 Preconditioned Conjugate Gradient (PCG) Methods

The well known conjugate gradient method is the basis of all the precondi-
tioning techniques to be studied in this paper. The PCG methods can be
viewed as a conjugate gradient method applied to the preconditioned system

BAu = BF.

Here, B is an SPD operator, known as a preconditioner of A. Note that
BA is symmetric with respect to the inner product (·, ·)B−1 (or (·, ·)A).
For the implementation of the PCG algorithm, we refer to the monographs
[2, 17, 18].

Let uk, k = 0, 1, · · ·, be the solution sequence of the PCG algorithm. It
is well known that

‖u− uk‖A ≤ 2

(√
k(BA)− 1√
k(BA) + 1

)k

‖u− u0‖A, ( 2.2)

which implies that the PCG method generally converges faster with a smaller
condition number k(BA).

Even though the estimate given in (2.2) is sufficient for many applica-
tions, in general it is not sharp. One way to improve the estimate is to
look at the eigenvalue distribution of BA(see [2, 12] for more details). More
specifically, suppose that we can divide σ(BA), the spectrum of BA, into
two sets, σ0(BA) and σ1(BA), where σ0 consists of all ”bad” eigenvalues
and the remaining eigenvalues in σ1 are bounded above and below, then we
have the following theorem.

Theorem 2.1 Suppose that σ(BA) = σ0(BA)∪σ1(BA) such that there are
m elements in σ0(BA) and λ ∈ [a, b] for each λ ∈ σ1(BA). Then

‖u− uk‖A ≤ 2K

(√
b/a− 1√
b/a + 1

)k−m

‖u− u0‖A, ( 2.3)
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where

K = max
λ∈σ1(BA)

∏

µ∈σ0(BA)

∣∣∣∣1−
λ

µ

∣∣∣∣ .

If there are only m small eigenvalues in σ0, say

0 < λ1 ≤ λ2 · ·· ≤ λm ¿ λm+1 ≤ · · · ≤ λn,

then

K =
m∏

i=1

∣∣∣∣1−
λn

λi

∣∣∣∣ ≤
(

λn

λ1
− 1

)m

= (k(BA)− 1)m.

In this case, the convergence rate estimate (2.3) becomes

‖u− uk‖A

‖u− u0‖A
≤ 2(k(BA)− 1)m

(√
b/a− 1√
b/a + 1

)k−m

. ( 2.4)

Based on (2.4), given a tolerance 0 < ε < 1, the number of iterations of the
PCG algorithm needed for ‖u−uk‖A

‖u−u0‖A
< ε is given by

k ≥ m +
(

log

(
2
ε

)
+ mlog(k(BA)− 1)

)
/log

(√
b/a + 1√
b/a− 1

)
. ( 2.5)

Observing the convergent estimate (2.4), if there are only a few small
eigenvalues of BA in σ0(BA), then the convergent rate of the PCG methods

will be dominated by the factor
√

b/a+1√
b/a−1

, i.e., by b/a where b = λn(BA) and

a = λm+1(BA). We define this quantity as the ”effective condition number”.
Definition. ([23]) Let V be a Hilbert space. The m-th effective condition

number of an operator A : V → V is defined by

km+1(A) =
λmax(A)
λm+1(A)

where λm+1(A) is the (m+1)-th minimal eigenvalue of A.
To estimate the effective condition number, we need to estimate λm+1(A).

A fundamental tool is the following Courant-Fisher min-max theorem.

Theorem 2.2 The eigenvalues of a SPD operator A : V → V are charac-
terized by the relation

λm+1(A) = min
S,dim(S)=n−m.

max
x∈S,x6=0

(Ax, x)
(x, x)

. ( 2.6)
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Especially, for any subspace V0 ⊂ V with dim(V0) = n − m, the following
estimation of λm+1(A) holds:

λm+1(A) ≥ min
06=x∈V0

(Ax, x)
(x, x)

. ( 2.7)

3 Two-Level Hierarchical Basis Preconditioner

The classical two-level hierarchical basis method was proposed and devel-
oped by Axelsson, Bank, Dupont, and Yserentant [3, 4, 5, 6, 24]. As usual,
we assume that V is decomposed as a direct sum

V = SVs ⊕ PVc. ( 3.1)

for some components Vs and Vc isomorphic to Rns and Rnc respectively, with

n = ns + nc. A typical and simple example to keep in mind is S =
(

I
0

)

and P =
(

W
I

)
for some W such that the square matrix (S, P ) is unit

upper triangular, and hence invertible.

3.1 Some notation

Two ingredients (the space decomposition (3.1) and the smoother M) are
important in the two-level hierarchical basis method. Various restrictions
of M and A to the subspaces mentioned before will be needed. We first
define the exact coarse grid matrix Ac and its hierarchical complement As

as follows
Ac = P T AP, As = ST AS.

Later we will see, in the case of a two level hierarchical basis preconditioner,
one needs M to be well-defined only on the first component SVs. In that
case, we refer to M as Ms. Then

Ms = ST MS.

In order to define the hierarchical basis preconditioner, we also need two
symmetrized version of the smoother M :

M̃ = MT (MT + M −A)−1M, ( 3.2)

M = M(MT + M −A)−1MT . ( 3.3)
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Figure 1: Quadratic element(left) and piecewise linear element(right).

If we assume that A = D − L− LT where D, L, LT are the diagonal, lower
triangle, and upper triangle part of A, and let M = D − LT , then

M̃−1
s = (D − LT )−1

s Ds(D − L)−1
s , ( 3.4)

where Ds = ST DS, (D−LT )s = ST (D−LT )S, and (D−L)s = ST (D−L)S.

3.2 The Element Stiffness Matrix for The Hierarchical Basis

In this subsection, we consider the stiffness matrix for the hierarchical basis
in each element. Following Braess [7], and Bank [6], simply we let ω = 1
in (1.1) and let t be a triangle with vertices vi, edges ei, and angles θi,
1 ≤ i ≤ 3. Here, we consider two kinds of different hierarchical basis: the
quadratic element and piecewise linear element.

For the space of continuous quadratic finite elements (illustrated on the
left in Figure 1), we let φi, 1 ≤ i ≤ 3 denote the linear basis functions for
element t. Then on element t, the subspace PVc will be the span of 〈φi〉3i=1.
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And the subspace SVs is composed of the quadratic bump functions 〈ψi〉3i=1,
where ψi = 4φjφk, and (i, j, k) is a cyclic permutation of (1, 2, 3).

For the space of continuous piecewise linear polynomials on a refined
mesh (illustrated on the right in Figure 1), let PVc be defined as the quadratic
finite elements above. But the subspace SVs contains the continuous piece-
wise polynomials on the fine grid that are zero at the vertices of t. Then
on element t, the subspace SVs = 〈φ̂i〉3i=1, where φ̂i is the standard nodal
piecewise linear basis functions associated with the midpoint of edge ei of t.

Following [6] and [7], we can establish the relation

Li = cotθi = −2|t|∇φj · ∇φk, ( 3.5)

where |t| is measure of element t, it is about hd, d = 1, 2, 3.
Then the element stiffness matrix for the quadratic hierarchical basis can

be shown to be

At
Q =

( ∗ ∗
∗ At

s

)
, ( 3.6)

where At
s is the restriction of As on the element t, and

At
s =

4
3




L1 + L2 + L3 −L3 −L2

−L3 L1 + L2 + L3 −L1

−L2 −L1 L1 + L2 + L3


 . ( 3.7)

The diagonal of At
s is

Dt
s =

4
3




L1 + L2 + L3 0 0
0 L1 + L2 + L3 0
0 0 L1 + L2 + L3


 . ( 3.8)

The element stiffness matrix for the piecewise linear hierarchical basis is
given by

At
L =

( ∗ ∗
∗ At

s

)
. ( 3.9)

In this case,

At
s =




L1 + L2 + L3 −L3 −L2

−L3 L1 + L2 + L3 −L1

−L2 −L1 L1 + L2 + L3


 , ( 3.10)

and

Dt
s =




L1 + L2 + L3 0 0
0 L1 + L2 + L3 0
0 0 L1 + L2 + L3


 . ( 3.11)
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3.3 The Two-Level Hierarchical Basis Preconditioner

In this subsection, we can define the two-level hierarchical basis precondi-
tioner using some notations in above subsections. Let

B̂TL =
(

I 0
P T ASM−1

s I

)(
M s 0
0 Ac

)(
I M−T

s ST AP
0 I

)
. ( 3.12)

Then, the two-level hierarchical basis preconditioner is defined by

B−1
TL =

(
S, P

)
B̂−1

TL

(
S, P

)T
. ( 3.13)

4 The Condition Number Analysis of B−1
TLA

Following [11], for the two-level hierarchical basis preconditioner B−1
TL, we

have following estimate.

Lemma 4.1 Assume that (Ms + MT
s − As) is S.P.D, for any v ∈ V , the

following bounds hold:

1
K

vT BTLv ≤ vT Av ≤ vT BTLv, K . sup
w

1

λ(M̃−1
s As)

. ( 4.1)

If M̃−1
s is given by (3.4), then we have the following relationship between

the symmetric Gauss-Seidel preconditioner and the Jacobi preconditioner.

Lemma 4.2 For any v ∈ V , we have

1
4
vT Dsv ≤ vT M̃sv ≤ vT Dsv. ( 4.2)

Proof:
M̃s = (D − L)sD

−1
s (D − LT )s.

Following the Schwarz inequality we can prove the second inequality. Then,
we prove the first inequality.

Using the fact that Ds and As are S.P.D, then for any v ∈ V we have

((D − L)sv, v)A =
1
2
((As + Ds)v, v)A ≥ 1

2
(Dsv, v)A.

Taking v = (D − LT )−1
s w, we have for all w ∈ V :

1
2
(Ds(D−L)−T

s w, (D−L)−T
s w)A ≤ ((D−L)−1

s w, w)A = (Ds(D−L)−T
s w, D−1

s w)A.

523

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.3, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

LIU ET AL 515-527



Z. Liu and Y. He, Two-Level Hierarchical Basis Preconditioner 10

On the other hand,

1
2
(M̃−1

s w, w)A ≤ (M̃−1
s w, w)1/2

A (D−1
s w, w)1/2

A .

Consequently,
(M̃−1

s w, w)A ≤ 4(D−1
s w, w)A,

and
(M̃sv, v)A ≥ 1

4
(Dsv, v)A.

The proof of Lemma 4.2 can be found in [26].
Following lemma provides the eigenvalue estimate of Jacobi precondi-

tioner.

Lemma 4.3 For any v ∈ V , we have

vT Dsv∼h−2‖v‖2
0,ω.

Proof: Note that on each element, we have

3∑

i=1

Li = −2hd(∇φ1∇φ2 +∇φ1∇φ3 +∇φ2∇φ3)∼hd−2.

Consequently, following [23] we have

vT Dsv∼hd−2(v, v)l2,ω∼h−2‖v‖2
0,ω.

This completes the proof.
In order to research the effective condition number for the Jacobi pre-

conditioner, we need to define the space

Ṽh =
{

v ∈ Vh :
∫

Ωm

v = 0,m ∈ I

}
.

On this space, the following Poincare-Friedrichs inequality holds:

‖v‖0,ω . ‖∇v‖0,ω, ∀v ∈ Ṽh. ( 4.3)

Then, we have following important lemma.

Lemma 4.4 Assume that the triangulation Th is quasi-uniform, then we
have

h2J(ω)−1vT Dsv . vT Asv, ∀v ∈ Rn, ( 4.4)

and
h2vT Dsv . vT Asv, ∀v ∈ Ṽh. ( 4.5)

where J(ω) = maxm ωm
minm ωm

.
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Proof: In fact, we have

a(v, v) ≥ min
m
{ωm}|v|21,Ω & min

m
{ωm}‖v‖2

0,Ω ≥
minm{ωm}
maxm{ωm}h−2(h2)‖v‖2

0,Ω.

Applying Lemma 4.3 and inequality (4.3), we also have

vT Dsv .
∑

τ∈Th

h−2‖v‖2
0,ω,τ = h−2

M∑

m=1

ωm‖v‖2
0,Ωm

. h−2|v|21,ω = h−2vT Asv.

This completes the proof. Followed by Lemmas 4.1-4.4, we have the following
results regarding the condition number of B−1

TLA.

Theorem 4.1 For the hierarchical basis preconditioner B−1
TL defined by (3.13),

the condition number and m0-th effective condition number satisfies:

k(B−1
TLA) ≤ J(ω)h−2, km0+1(B−1

TLA) ≤ h−2.

Theorem 4.2 For the hierarchical basis preconditioned conjugate gradient
methods, we have the following convergence rate

‖u− uk‖A

‖u− u0‖A
≤ 2(C1J(ω)h−2 − 1)m0

(
1− 2

1 + C2h−1

)k−m0

, k ≥ m0. ( 4.6)

5 Conclusions

In this paper, we provided a proof of robustness of the two-level hierarchical
basis preconditioner for the linear finite element approximation of second or-
der elliptic problems with strongly discontinuous coefficients. We discussed
the eigenvalue distribution of the Two-Level-preconditioner and found that
only a few small eigenvalues infected by the large jump.
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A New Fourth-Order Explicit Finite Difference Method for the

Solution of Parabolic Partial Differential Equation with Nonlocal

Boundary Conditions

M. Ghoreishi∗, A.I.B.Md.Ismail∗ and A. Rashid†

Abstract

In this paper, a new fourth-order explicit finite difference method is proposed for solving linear
and nonhomogeneous parabolic partial differential equation with nonlocal boundary conditions. The
advantage of the explicit finite difference methods is easier to implement than the implicit methods.
Moreover, the explicit method need lesser CPU time than the implicit schemes. Numerical results
show that the proposed method is very accurate and effective.

Key words: Finite difference method, Fourth-order explicit method, Nonlocal boundary conditions,
nonhomogeneous parabolic partial differential equation.

1 Introduction

Many physical phenomena can be modelled by parabolic partial differential equations which involve
integral terms in the boundary conditions. These boundary conditions are called nonlocal boundary
conditions. One-dimensional parabolic equation with nonlocal boundary conditions have important ap-
plications in electro-chemistry, porous media flow, thermo-elasticity, heat conduction and several others.
The existence, uniqueness and theoretical aspects of these equations have been studied by [17, 20, 35].
Generally, it is difficult to find the analytical solution of parabolic partial differential equations with
nonlocal boundary conditions.

Approximate and numerical techniques for obtaining approximate solution of these equations have
been developed by many researchers [5, 6, 7, 8, 9, 11, 19, 23, 27, 29, 28]. Some standard numerical
methods have been used for the solution of one dimensional diffusion equation with nonlocal bound-
ary conditions such as finite difference method, finite element method, adomian decomposition method
(ADM), Chebyshev spectral collocation method, reducing kernel space method and method of lines
[1, 13, 21, 24, 25, 26, 30].

In this paper a method based on explicit finite difference method is introduced and applied to obtain
the numerical solution of the following parabolic equation:

∂u

∂t
=

∂2u

∂x2
+ q(x, t), 0 ≤ x ≤ 1 , 0 ≤ t ≤ T, (1.1)

with initial condition
u(x, 0) = f(x), 0 ≤ x ≤ 1, (1.2)

and subject to the boundary conditions

u(0, t) =
∫ 1

0

φ(x, t)u(x, t)dx + g1(t), 0 < t ≤ T, (1.3)

u(1, t) =
∫ 1

0

ψ(x, t)u(x, t)dx + g2(t), 0 < t ≤ T, (1.4)
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where q(x, t), f(x), g1(t), g2(t), φ(x, t) and ψ(x, t) are known functions.
Many authors applied various type of finite difference methods to obtain the numerical solution of

equations (1.1)–(1.4). Dehghan [15, 16] applied the forward Euler, backward Euler, BTCS (backward in
time and centered in space) schemes, Crandall’s implicit formula, FTCS (forward in time and centered
in space) method for the heat equation. The nonlocal boundary conditions have been approximated by
Trapezoidal rule and fourth-order Simpson composite formula. Zhou et al. [36], Mu and Du [25] intro-
duced an efficient technique based on reproducing kernel space to solve the partial differential equations
with nonlocal boundary conditions. The BTCS and explicit Crandall’s formula have been developed by
Martin-Vaquero and Vigo-Aguiar [32, 31] to solve the above mentioned equations .

The aim of this paper is to describe an efficient technique based on explicit finite difference method
to find out the numerical solution of parabolic equation with nonlocal boundary conditions. The new
method is of fourth order and it is compared with BTCS, Crank-Nicolson and Crandall’s formula. The
basic idea of this approach is to write q(x, t) as a linear combination of qn+1

i−1 , qn+1
i , qn+1

i+1 , qn
i−1, qn

i and
qn
i+1. The objective of this technique is to improve the results obtained by many researchers in some

papers [3, 10, 16, 26, 31, 32, 36]. We considered that coefficient qn+1
i+1 , qn+1

i−1 and qn
i−1, qn

i+1 are not equal.
The nonlocal boundary conditions are solved by higher order Integration rules.

This paper is organized as follows: In section 2, the new fourth-order explicit technique is presented,
the composite Simpson rule and sixth-order formula for the nonlocal boundary conditions are also intro-
duced. Numerical results are presented in section 3. Finally conclusion is given in section 4.

2 Explicit Finite Difference Method

The domain [0, 1]× [0, T ] is divided into an M×N mesh with a spatial size of h = 1/M and temporal
size k = T/N . The grid points (xi, tn) are defined by

xi = ih, i = 0, 1, ..., M,

tn = nk, n = 0, 1, ..., N,

where M and N are integers. The notation un
i , qn

i , φn
i , ψn

i , gn
1 and gn

2 represents, respectively, the
finite difference approximations of u(xi, tn), q(xi, tn), φ(xi, tn), ψ(xi, tn), g1(tn) and g2(tn). The FTCS
(forward in time and centrad in space) finite difference scheme for the heat equation (1.1) can be written
as

un+1
i = run

i−1 + (1− 2r)un
i + run

i+1 + kqn
i , (2.1)

for i = 1, ..., M − 1, n = 0, 1, ..., N − 1 and r = k
h2 . The stability condition for this method is proved in

[16]:

r ≤ 1
2
.

The local truncation error of this method can be written as [31, 33]:

τ = (ut − uxx − q) +
6rutt − uxxxx

12
h2 +

60r2uttt − uxxxxxx

360
h4 + O(h6). (2.2)

Now it can be verified that
utt = uxxxx + qxx + qt. (2.3)

By substituting (2.3) into (2.2) the truncation error can be obtained as

τ =
6rqt + 6rqxx + (6r − 1)uxxxx

12
h2 +

60r2uttt − uxxxxxx

360
h4 + O(h6). (2.4)

It is clear that (2.4) is second order. Now, we write qn
i using a linear combination of qn+1

i−1 , qn+1
i , qn+1

i+1 ,
qn
i−1, qn

i and qn
i+1, then we have

un+1
i − un

i

k
=

un
i+1 − 2un

i + un
i−1

h2
+ a1q

n+1
i−1 + a2q

n+1
i + a3q

n+1
i+1 + a4q

n
i−1 + a5q

n
i + a6q

n
i+1. (2.5)

2
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By using the Taylor’s expansion in (2.5), we can obtain
(

6∑

i=1

ai − 1

)
+ h(a3 − a1 − a4 + a6)qx + rh2(a1 + a2 + a3)qt +

h2

2
(a1 + a3+

a4 + a6)qxx − h3

6
(a6 − a4)qxxx + rh3(a3 − a1)qxt + A(u(x, t), q)h4 + O(h6) = 0.

(2.6)

where

A(u(x, t), q) =
−15qtt + 10utt − 15qxxxx − 6uxxxxxx + (60− 180a5)qxxt

2160
. (2.7)

By substituting (2.4), (2.6) and (2.7) into (2.5), we get the following system of linear equations

a1 + a2 + a3 + a4 + a5 + a6 = 1,

a3 − a1 − a4 + a6 = 0,

a1 + a2 + a3 =
1
2
, (2.8)

a6 − a4 = 0,

a3 − a1 = 0,

a1 + a3 + a4 + a6 = r,

and r = 1/6. By selecting a5 = m thus equation (2.5) can be written as

un+1
i = run

i−1 + (1− 2r)un
i + run

i+1 +
k

12
[(6m− 2)(qn+1

i−1 + qn+1
i+1 )

+ (10− 12m)qn+1
i − (6m− 3)(qn

i−1 + qn
i+1) + 12mqn

i ].
(2.9)

It should be noted that this technique is fourth order accurate when r = 1/6. By considering (2.9),
we can consider many values for m such that the solution of these equation become converges to the
exact solution. Our goal in this paper is to improve the results obtained in the literature. To find the
optimal value of m, we can apply the following algorithm.

1. Step 1: We consider, m1 =
a1

b1
, m2 =

a2

b2

2. Step 2: We calculate, Em1 and Em2

3. Step 3: If Em1 < Em2 then, m2 =
a1 + a2

b1 + b2
, else m1 =

a1 + a2

b1 + b2

4. Step 4: If |Emi
| < l then m = mi is optimal i = 1 or 2, else we repeat Step 1.

Equation (2.9) has M−1 linear equations and M +1 unknowns. Thus two more equations are needed.
The integral in the boundary conditions can be approximated by composite Simpson rule and sixth order
formula.

2.1 Composite Simpson formula
The Simpson composite formula for solving the nonlocal boundary conditions (1.3) and (1.4) can be

written as [16, 31]:

un+1
0 =

∫ 1

0

φ(x, tn+1)u(x, tn+1)dx + gn+1
1 =

h

3
(
φn+1

0 un+1
0

+ 4
M/2∑

i=1

φn+1
2i−1u

n+1
2i−1 + 2

M/2−1∑

i=1

φn+1
2i un+1

2i + φn+1
M un+1

M ) + gn+1
1 + O(h4),

(2.10)
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and

un+1
M =

∫ 1

0

ψ(x, tn+1)u(x, tn+1)dx + gn+1
2 =

h

3
(ψn+1

0 un+1
0

+ 4
M/2∑

i=1

ψn+1
2i−1u

n+1
2i−1 + 2

M/2−1∑

i=1

ψn+1
2i un+1

2i + ψn+1
M un+1

M ) + gn+1
2 + O(h4).

(2.11)

Thus

(hφn+1
0 − 3)un+1

0 + 4h

M/2∑

i=1

φn+1
2i−1u

n+1
2i−1 + 2h

M/2−1∑

i=1

φn+1
2i un+1

2i + hφn+1
M un+1

M = −3gn+1
1 , (2.12)

hψn+1
0 un+1

0 + 4h

M/2∑

i=1

ψn+1
2i−1u

n+1
2i−1 + 2h

M/2−1∑

i=1

ψn+1
2i un+1

2i + (hψn+1
M − 3)un+1

M = −3gn+1
1 , (2.13)

Combining (2.12) and (2.13) with (2.9) gives (M + 1) × (M + 1) linear system of equations. We can
obtain

un+1
0 =

F1(Φ, U)(hψn+1
M − 3)− hF2(Ψ, U)φn+1

M

J(Φ,Ψ, U)
,

un+1
M =

F2(Ψ, U)(hφn+1
0 − 3)− hF1(Φ, U)ψn+1

0

J(Φ,Ψ, U)
,

where

F1(Φ, U) = −4h




M/2∑

i=1

φn+1
2i−1u

n+1
2i−1


− 2h




M/2−1∑

i=1

φn+1
2i un+1

2i


− 3gn+1

1 ,

F2(Ψ, U) = −4h




M/2∑

i=1

ψn+1
2i−1u

n+1
2i−1


− 2h




M/2−1∑

i=1

ψn+1
2i un+1

2i


− 3gn+1

2 ,

and
J(Φ, Ψ, U) = (hφn+1

0 − 3)(hψn+1
M − 3)− h2φn+1

M ψn+1
0 6= 0.

2) Sixth-order formula
The sixth-order integration formula can be used to approximate numerically the integral present in

the boundary conditions (1.3) and (1.4). We can write the sixth-order formula as [31]:

un+1
0 = u(0, tn+1) =

∫ 1

0

φ(x, tn+1)u(x, tn+1)dx + g1(tn+1)

=
2h

45
[7φn+1

0 un+1
0 + 32

M/2∑

i=1

φn+1
2i−1u

n+1
2i−1 + 12

M/4−1∑

i=0

φn+1
4i+2u

n+1
4i+2

+ 14
M/4−2∑

i=0

φn+1
4i+4u

n+1
4i+4 + 7φn+1

M un+1
M ] + gn+1

1 + O(h6),

(2.14)

and

un+1
M = u(1, tn+1) =

∫ 1

0

ψ(x, tn+1)u(x, tn+1)dx + g1(tn+1)

=
2h

45
[7ψn+1

0 un+1
0 + 32

M/2∑

i=1

φn+1
2i−1u

n+1
2i−1 + 12

M/4−1∑

i=0

ψn+1
4i+2u

n+1
4i+2

+ 14
M/4−2∑

i=0

ψn+1
4i+4u

n+1
4i+4 + 7ψn+1

M un+1
M ] + gn+1

1 + O(h6),

(2.15)
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where M should be a multiple of 4. So

(14hφn+1
0 − 45)un+1

0 + 14hφn+1
M un+1

M = F1(Φ, U), (2.16)

14hψn+1
0 un+1

0 + (14hψn+1
M − 45)un+1

M = F2(Ψ, U), (2.17)

where

F1(Φ, U) = −64h

M/2∑

i=1

φn+1
2i−1u

n+1
2i−1 − 24h

M/4−1∑

i=0

φn+1
4i+2u

n+1
4i+2 − 28h

M/4−2∑

i=0

φn+1
4i+4u

n+1
4i+4 − 45gn+1

1 ,

F2(Ψ, U) = −64h

M/2∑

i=1

ψn+1
2i−1u

n+1
2i−1 − 24h

M/4−1∑

i=0

ψn+1
4i+2u

n+1
4i+2 − 28h

M/4−2∑

i=0

ψn+1
4i+4u

n+1
4i+4 − 45gn+1

1 ,

Combining (2.16), (2.17) with (2.9) gives (M + 1)× (M + 1) linear system of equations. We can obtain

un+1
0 =

F1(Φ, U)(14hψn+1
M − 45)− 14hF2(Ψ, U)φn+1

M

J(Φ,Ψ, U)
,

un+1
M =

F2(Ψ, U)(14hφn+1
0 − 45)− 14hF1(Φ, U)ψn+1

0

J(Φ,Ψ, U)
,

where
J(Φ, Ψ, U) = 196h2(φn+1

0 ψn+1
M − φn+1

M ψn+1
0 )− 630h(φn+1

0 + ψn+1
M ) + 2025.

It should be noted that the system (2.8) does not have unique solution. Thus it can help us to obtain
the optimal value of m whilst it was not considered in [31]. To check the accuracy of present method,
we compared our results with the results obtained in [31]. It should also be noted that the explicit finite
difference methods are easier to implement than the implicit schemes or Crank-Nicolson method, because
in explicit schemes there is only one unknown is involved in the finite difference formula. Moreover,
implicit finite difference schemes require the solution of a large number of simultaneous linear algebraic
equations at each steps resulting in an extensive amount of CPU time utilized compared to explicit finite
difference methods for the same values of s and h.

3 Illustrative Examples

In this section, the new explicit finite difference method (NFTCS) applied to linear and nonhomo-
geneous parabolic partial differential equation (1.1) with nonlocal boundary conditions (1.3)–(1.4). The
results show that the described method is very accurate, capable and powerful. The numerical results
indicate that the approximate solution convergence to the exact solution as h tends to zero. The Simpson
formula and sixth-order formula are used to approximate the integral in the examples. The MATHE-
MATICA software is used to find the approximate solution and CPU time. For describing the error, we
define relative error ER and the absolute error EA as follows:

ER(u(x, t)) =
|u(ih, jk)approx − u(ih, jk)exact|

|u(ih, jk)exact|
and

EA(u(x, t)) = |u(ih, jk)approx − u(ih, jk)exact|

where u(ih, jk)approx is the approximate solution and u(ih, jk)exact is the exact solution.

Example 1:
We consider the nonhomogeneous parabolic partial differential equation [16, 31, 32, 33, 36]

∂u

∂t
=

∂2u

∂x2
+ q(x, t), 0 ≤ x ≤ 1 , 0 ≤ t ≤ T, (3.1)
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with the following initial and boundary conditions

f(x) = x2, 0 < x < 1,

φ(x, t) = x, 0 < x < 1, 0 < t < 1,

ψ(x, t) = x, 0 < x < 1, 0 < t < 1,

g1(t) =
−1

4(t + 1)2
, 0 < t < 1,

g2(t) =
3

4(t + 1)2
, 0 < t < 1,

q(x, t) =
−2(x2 + t + 1)

(t + 1)3
, 0 ≤ t ≤ 1, 0 < x < 1.

It can be verified that the exact solution is

u(x, t) =
(

x

t + 1

)2

.

By applying the algorithm which is introduced in section 2, we take m = 0.427487 in (2.9) and
obtained results are shown in tables 1 and 2 for various values of x and h. The Simpson composite rule
and sixth-order formula are used to approximate the nonlocal boundary conditions (1.3) and (1.4). It
can be seen that the errors are very small. In the last row in each table, we have obtained the CPU time
consumed in the implementation of NFTCS for various step size h and x at t = 1. As expected, the CPU
time increases as the step size h decrease.

Table 1: Absolute error NFTCS at t = 1 by using the Simpson formula.

x/h 0.25 0.125 0.0625 0.03125

0 1.97727×10−9 2.73501×10−13 4.75005×10−14 1.46390×10−14

0.25 8.07057×10−8 4.87357×10−9 3.03945×10−10 1.89884×10−11

0.5 3.92653×10−8 2.26709×10−9 1.40977×10−10 8.80097×10−12

0.75 3.27403×10−8 2.21648×10−9 1.39182×10−10 8.70845×10−12

1 1.97727×10−9 2.73392×10−13 4.75009×10−14 1.43112×10−14

CPU 0.078 2.248 76 1006.45

Table 2: Absolute error NFTCS at t = 1 by using the sixth-order formula.

x/h 0.25 0.125 0.0625 0.03125

0 2.32131×10−10 7.89537×10−13 5.05059×10−14 3.47797×10−14

0.25 7.77293×10−8 4.86301×10−9 3.03905×10−10 1.89883×10−11

0.5 3.60167×10−8 2.25557×10−9 1.40933×10−10 8.80078×10−11

0.75 3.57167×10−8 2.22705×10−9 1.39223×10−10 8.70862×10−12

1 2.32131×10−10 7.89538×10−13 5.05068×10−14 3.47777×10−14

CPU 0.078 1.391 53.687 807.840

The relative error ER for u(0.5, 1) is obtained for different step size h and compared the results obtain
by [31] (scheme FTCS4). We used the algorithm introduced in section 2 with optimal value of m. The
Simpson formula (NFTCS4) and sixth-order formula (NFTCS6) have been used for approximating the
integrals in the nonlocal boundary conditions.

Table 3: Relative error ER for u(0.5, 1) at various spatial length.

h FTCS4 [31] NFTCS4 NFTCS6

0.25 0.000127462 6.28724×10−7 5.76746×10−7

0.125 7.96658×10−6 3.63034×10−8 3.61190×10−8

0.0625 4.97912×10−7 2.25753×10−9 2.25683×10−9

0.03125 3.11195×10−8 1.40816×10−10 1.40812×10−10

In table 4, we compared the relative error ER at x = 0.5 and t = 1 by using NFTCS described in this
paper and FTCS, explicit Crandall’s formula (ECF) and implicit Crandall’s formula (ICF) obtained in
[31]. It is observed that the our results are better than the obtained results in [31].

6
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Table 4: Comparison between relative error ER in [31] and our solution for u(0.5, 1).

h FTCS [31] ECF [31] ICF [31] Our method

1/8 7.96658×10−6 6.19972×10−6 1.32985×10−5 3.63034×10−8

1/16 4.97912×10−7 3.87463×10−7 8.31040×10−7 2.25753×10−9

1/32 3.11195×10−8 2.42163×10−8 5.19395×10−8 4.37617×10−11

In Figure 1, we show the absolute error EA using the NFTCS at x = 0.125 and x = 1 with h = 1/8,
while the Simpson formula is used for approximating the integrals in the boundary conditions. Similarly,
the graph of absolute error NFTCS at x = 0.0625 and x = 1 with h = 1/16 is shown in Figure 2.
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Figure 1: The absolute error between solution obtained by using NFTCS and the exact solution for
x = 0.125 and x = 1 with h = 1/8, while the Simpson formula is used for approximating the integrals in
boundary conditions.
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Figure 2: The absolute error between solution obtained by using NFTCS and the exact solution for
x = 0.0625 and x = 1 with h = 1/16, while the Simpson formula is used for approximating the integrals
in boundary conditions.

The consumed CPU time of three numerical schemes FTCS [31], FTCS4, and FTCS6 is obtained and
the graph of CPU time is shown in Figure 3. It is clear from the Figure 3 that with the same step size
h, our method consumed less CPU time than other two numerical schemes.

Example 2:
To check the performance of the explicit finite difference scheme described in section 2, we take the

7
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Figure 3: The CPU time spent to find the relative error ER for u(0.5, 1).

heat equation (1.1) with the initial condition and the boundary conditions as follows [12, 24, 18]:

f(x) = x2 − x +
δ

6(1 + δ)
, 0 < x < 1,

φ(x, t) = −δ, 0 < x < 1, 0 ≤ t ≤ 1,

ψ(x, t) = −δ, 0 < x < 1, 0 ≤ t ≤ 1,

g1(t) = 0, 0 < x < 1,

g2(t) = 0, 0 < x < 1,

q(x, t) = −
(

x2 − x +
δ

6(1 + δ)
+ 2

)
e−t, 0 < x < 1, 0 ≤ t ≤ 1,

with δ = 0.0144. It can be verified that the exact solution is

u(x, t) =
(

x2 − x +
δ

6(1 + δ)

)
e−t.

We take m = 0.5166667, in equation (2.9) and the obtained results are shown in table 5 and table
6. The Simpson composite rule and sixth-order formula are used to approximate the nonlocal boundary
conditions (1.3) and (1.4). It can be seen that the errors are very small with different value of x and t.
In the last row in each table, we observed that the consumed CPU time increase with the decrease of
step size h .

Table 5: Absolute error NFTCS at t = 1 by using the Simpson formula.

x/h 0.25 0.125 0.0625 0.03125

0 7.11516×10−12 5.71649×10−13 3.62120×10−14 2.23064×10−15

0.25 1.37993×10−9 8.67588×10−11 5.42373×10−12 3.36300×10−13

0.5 2.54796×10−9 1.58515×10−10 9.90530×10−12 6.22738×10−13

0.75 1.37993×10−9 8.67587×10−11 5.42373×10−12 3.36300×10−13

1 7.11516×10−12 5.71649×10−13 3.62121×10−14 2.23064×10−15

CPU 0.093 1.407 53.578 1670.780
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Table 6: Absolute error NFTCS at t = 1 by using the Sixth-order formula.

x/h 0.25 0.125 0.0625 0.03125

0 9.18984×10−12 5.79563×10−13 3.62435×10−14 2.23118×10−15

0.25 1.37764×10−9 8.67501×10−11 5.42373×10−12 3.36300×10−13

0.5 2.55032×10−9 1.58524×10−10 9.90531×10−12 6.22738×10−13

0.75 1.37764×10−9 8.67501×10−11 5.42373×10−12 3.36300×10−13

1 9.18984×10−12 5.79563×10−13 3.62435×10−14 2.23117×10−15

CPU 0.079 1.406 52.985 1706.580

In table 7, we present a comparison between the numerical solution of this problem by using new
explicit finite difference method and those obtained by the method described in [31]. we observed that
the relative error ER of present method is better than the method described in [31]. Further more the
Simpson formula (NFTCS4) and sixth-order formula (NFTCS6) have been used for approximating the
integrals in the nonlocal boundary conditions.

Table 7: Relative error ER for u(0.5, 1) at various spatial length.

h Method in [31] NFTCS4 NFTCS6

0.25 3.12655×10−5 2.79690×10−8 2.79949×10−8

0.125 1.95407×10−6 1.74002×10−9 1.74012×10−9

0.0625 1.22130×10−7 1.08731×10−10 1.08731×10−10

0.03125 7.63314×10−9 6.83580×10−12 6.83580×10−12

In Figure 4, we show the absolute error EA using the NFTCS at x = 0.125 and x = 1 with step size
h = 1/8 when the Simpson formula is used for approximating the integrals in the boundary conditions.
Similarly, we show the absolute error NFTCS at x = 0.0625 and x = 1 with step size h = 1/16 in Figure
5.
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Figure 4: The absolute error between solution obtained by using NFTCS and the exact solution for
x = 0.125 and x = 1 with h = 1/8, while the Simpson formula is used for approximating the integrals in
boundary conditions.

The consumed CPU time to obtain the numerical solution of the present method with different
algorithm to to solve the non local boundary conditions are shown Figure 6. It is clear that for the all
small value of step size h, the consumed CPU time in applying the our methods and consumed CPU time
by the algorithm proposed in [31] are almost same.

4 Conclusion

Several approaches have been developed for obtaining the numerical solution of heat equation with
non-local boundary conditions. A new fourth-order explicit finite difference method has been applied to
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Figure 5: The absolute error between solution obtained by using NFTCS and the exact solution for
x = 0.0625 and x = 1 with h = 1/16, while the Simpson formula is used for approximating the integrals
in boundary conditions.
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Figure 6: The CPU time spent to find the relation error ER for u(0.5, 1) in table 7.

obtain numerical solution of one dimensional linear and non-homogeneous parabolic partial differential
equation with nonlocal boundary conditions in this paper. The present method is also capable for solving
parabolic type partial differential equations with non-local boundary conditions.
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Abstract. In this paper, the numerical treatment of a fourth order Lidstone
boundary value problem is proposed with the use of a discrete quintic spline
based on central differences. It is shown that the method is of order 4 if a
parameter takes a specific value, else it is of order 2. A well known numer-
ical example is presented to illustrate our method as well as to compare the
performance with other numerical methods proposed in the literature.

Keywords : Discrete quintic spline, central difference, Lidstone boundary value
problem, numerical solution, fourth order.

1 Introduction

We consider the fourth order Lidstone boundary value problem

y(4)(x) = f(x)y(x) + g(x), a ≤ x ≤ b

y(a) = A1, y(b) = B1, y′′(a) = A2, y′′(b) = B2

(1.1)

where f(x) and g(x) are continuous on [a, b] and Ai, Bi, i = 1, 2 are arbitrary
real finite constants.

Lidstone boundary value problems have received a lot of attention in the lit-
erature, notably on the existence of positive solutions, see for example [1, 7, 22]
and the references cited therein. The fourth order Lidstone boundary value
problem (1.1) considered arises from the physical problem of bending a rectan-
gular simply supported beam resting on an elastic foundation [14, 17], here y is
the vertical deflection of the plate. The use of polynomial splines in the numeri-
cal treatment of (1.1) has gathered substantial interests over the years. Usmani
and Warsi [20] have used quintic and sextic splines respectively to develop sec-
ond and fourth order convergent methods for (1.1). Thereafter, quartic splines
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are employed by Usmani [19] to formulate second order convergent method.
Also, during their investigation on fourth order obstacle boundary value prob-
lems, Al-Said and Noor [2] and Al-Said et al [3] have respectively used cubic and
quartic splines to obtain second order convergent methods for (1.1). Recently,
nonpolynomial spline functions have been proposed by Ramadan et al [12] to
obtain second and fourth order convergent methods for (1.1), these methods
reduced to those of [2, 19, 20] when certain parameters take certain values. A
related problem to (1.1) arises from the bending of a long uniformly loaded
rectangular plate supported over the entire surface by an elastic foundation and
rigidly supported along the edges [14, 17], here the boundary conditions are the
conjugate type y(a) − A1 = y(b) − B1 = y′(a) − A2 = y′ − B2 = 0. For this
problem, second order convergent methods based on quintic splines have been
established in [13, 16, 18], while fourth order convergent method based on sextic
splines has been discussed in [18]. The general observation from all these re-
search is that spline methods usually give better (or comparable) approximation
than finite difference methods and shooting type methods.

Motivated by all the above research especially the use of splines in solving
(1.1), in this paper we shall employ a discrete quintic spline to get a numeri-
cal solution of (1.1). Our proposed method is fourth-order convergent when a
parameter takes certain value, else it is second-order convergent. Through a
well know numerical example, we illustrate that our method outperforms other
spline methods for solving (1.1) in the literature [2, 3, 12, 19, 20].

Discrete splines were first introduced by Mangasarian and Schumaker [11] in
1971 as solutions to constrained minimization problems in real Euclidean space,
which are discrete analogs of minimization problems in Banach space whose
solutions are generalized splines. Subsequent investigations on discrete splines
can be found in the work of Schumaker [15], Astor and Duris [4], Lyche [9, 10]
and Wong et al [5, 6, 21]. Following [9, 10], the discrete spline we use will involve
central differences.

The plan of the paper is as follows. In section 2, we shall derive our method.
The matrix form of the method is presented in section 3 and its convergence
analysis is performed. In section 4, we present a well known example and
compare the performance of our method with other methods in the literature.

2 Numerical Method for (1.1)

Suppose P : a = x0 < x1 < · · · < xn = b is a uniform mesh of [a, b] with
xi − xi−1 = p, 1 ≤ i ≤ n, i.e., the step size p = b−a

n .

Let h ∈ (0, p] be a given constant. We recall the central difference operator
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Dh applying to a function F (x) gives

D
{0}
h F (x) = F (x); D

{1}
h F (x) =

F (x + h)− F (x− h)
2h

;

D
{2}
h F (x) =

F (x + h)− 2F (x) + F (x− h)
h2

;

D
{3}
h F (x) =

F (x + 2h)− 2F (x + h) + 2F (x− h)− F (x− 2h)
2h3

;

D
{4}
h F (x) =

F (x + 2h)− 4F (x + h) + 6F (x)− 4F (x− h) + F (x− 2h)
h4

.

We also use the basic polynomials x{j} introduced by [10]

x{j} = xj , j = 0, 1, 2; x{3} = x(x2 − h2),

x{4} = x2(x2 − h2), x{5} = x(x2 − h2)(x2 − 4h2).

It is noted that D
{1}
h x{j} = jx{j−1}, j = 0, 1, 2, 3, 5 and D

{1}
h x{4} = 2x(2x2 +

h2).

Definition 1. Let S(x;h) be a piecewise continuous function defined over
[a, b] (with mesh P ) and Si(x) be its restriction in [xi−1, xi], 1 ≤ i ≤ n passing
through the points (xi−1, si−1) and (xi, si). We say S(x;h) is a discrete quintic
spline if Si(x), 1 ≤ i ≤ n is a polynomial of degree 5 or less and

(Si+1 − Si)(xi + jh) = 0, j = −2,−1, 0, 1, 2, 1 ≤ i ≤ n− 1. (2.1)

The above definition is in the spirit of discrete cubic spline studied in [10].
In fact, in terms of central differences, the condition (2.1) has the following
equivalent form

D
{j}
h Si(xi) = D

{j}
h Si+1(xi), j = 0, 1, 2, 3, 4, 1 ≤ i ≤ n− 1. (2.2)

Throughout, we shall use the notations

y
(k)
i = y(k)(xi), fi = f(xi), gi = g(xi), si = Si(xi),

Mi = D
{2}
h Si(xi), Fi = D

{4}
h Si(xi), 0 ≤ i ≤ n.

We propose si’s to be the numerical solution of (1.1) at the mesh points, i.e.,

yi
∼= si, 0 ≤ i ≤ n. (2.3)

Discretizing (1.1) and noting the Lidstone boundary conditions, we set

s0 = y0 = A1, sn = yn = B1, M0 = y′′0 = A2,

Mn = y′′n = B2, Fi = fisi + gi, 0 ≤ i ≤ n.
(2.4)
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We shall now obtain an explicit expression of Si(x) in terms of its central dif-
ferences. To begin, let the functions hi(x), h̄i(x) and ¯̄hi(x) satisfy the following
for 0 ≤ i, j ≤ n :

hi(xj) = δij , D
{2}
h hi(xj) = D

{4}
h hi(xj) = 0,

D
{2}
h h̄i(xj) = δij , h̄i(xj) = D

{4}
h h̄i(xj) = 0,

D
{4}
h

¯̄hi(xj) = δij ,
¯̄hi(xj) = D

{2}
h

¯̄hi(xj) = 0.

By direct computation, we obtain the explicit expressions:

hi(x) =
x− xi−1

p
, x ∈ [xi−1, xi], 1 ≤ i ≤ n

=
xi+1 − x

p
, x ∈ [xi, xi+1], 0 ≤ i ≤ n− 1

= 0, otherwise;

h̄i(x) =
(x− xi−1){3}

6p
− (p2 − h2)(x− xi−1)

6p
,

x ∈ [xi−1, xi], 1 ≤ i ≤ n

=
(xi+1 − x){3}

6p
− (p2 − h2)(xi+1 − x)

6p
,

x ∈ [xi, xi+1], 0 ≤ i ≤ n− 1

= 0, otherwise;

¯̄hi(x) =
(x− xi−1){5}

120p
− (p2 − h2)(x− xi−1){3}

36p

+
(x− xi−1)(p2 − h2)(7p2 + 2h2)

360p
,

x ∈ [xi−1, xi], 1 ≤ i ≤ n

=
(xi+1 − x){5}

120p
− (p2 − h2)(xi+1 − x){3}

36p

+
(xi+1 − x)(p2 − h2)(7p2 + 2h2)

360p
,

x ∈ [xi, xi+1], 0 ≤ i ≤ n− 1

= 0, otherwise.

Clearly, Si(x), the restriction of S(x;h) in [xi−1, xi], can be expressed as

Si(x) = si−1hi−1(x) + sihi(x) + Mi−1h̄i−1(x) + Mih̄i(x) + Fi−1
¯̄hi−1(x)

+Fi
¯̄hi(x), x ∈ [xi−1, xi], 1 ≤ i ≤ n.

(2.5)
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Using (2.5), the ‘continuity’ requirement D
{1}
h Si(xi) = D

{1}
h Si+1(xi), 1 ≤

i ≤ n− 1 leads to the equation

(p2 − h2)Mi−1 + 2(h2 + 2p2)Mi + (p2 − h2)Mi+1

= 6(si−1 − 2si + si+1) +
(p2 − h2)

60
[
(2h2 + 7p2)Fi−1 + 4(4p2 − h2)Fi

+(2h2 + 7p2)Fi+1

]
.

(2.6)
Further, the ‘continuity’ requirement D

{3}
h Si(xi) = D

{3}
h Si+1(xi), 1 ≤ i ≤ n−1

yields

Mi−1 − 2Mi + Mi+1 =
1
6
[
(p2 − h2)Fi−1 + 2(h2 + 2p2)Fi + (p2 − h2)Fi+1

]
.

(2.7)
Using (2.6) and (2.7) in a lengthy algebraic procedure, we are able to eliminate
M ’s and get the ‘F -equation’ as

a1Fi−2 + a2Fi−1 + a3Fi + a2Fi+1 + a1Fi+2

= si−2 − 4si−1 + 6si − 4si+1 + si+2, 2 ≤ i ≤ n− 2
(2.8)

where

a1 =
(p2 − h2)(p2 − 4h2)

120
, a2 =

2(p2 − h2)(8h2 + 13p2)
120

,

a3 =
6(4h4 + 5h2p2 + 11p4)

120
.

(2.9)

Upon substituting Fj = fjsj + gj into (2.8), we see that (2.8) gives (n − 3)
equations with (n− 1) unknowns si, 1 ≤ i ≤ n− 1.

In order to solve for the unknown si’s, we need two more equations which
we write as

b1F0 + b2F1 + b3F2 + b4F3 = p2M0 + b5s0 + b6s1 + b7s2 + b8s3 (2.10)

and

c1Fn−3 + c2Fn−2 + c3Fn−1 + c4Fn = p2Mn + c5sn−3 + c6sn−2 + c7sn−1 + c8sn

(2.11)
where bi and ci, 1 ≤ i ≤ 8 are real numbers. We require the local truncation
errors in both (2.10) and (2.11) to be O(p8) (the reason will be clear when we
perform the convergence analysis in section 3). To fulfill this, we carry out Taylor
series expansion in (2.10) about x0 and set the coefficients of s

(k)
0 , 0 ≤ k ≤ 7 to

zeros. This yields 8 equations which we can solve to get bi, 1 ≤ i ≤ 8. Similarly,
in (2.11) we expand about xn and set the coefficients of s

(k)
n , 0 ≤ k ≤ 7 to zeros,

then we solve 8 equations to get ci, 1 ≤ i ≤ 8. The resulting (2.10) and (2.11)
are given as follows

p4

360
(28F0 + 245F1 + 56F2 + F3)− p2M0 = −2s0 + 5s1 − 4s2 + s3, (2.12)
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p4

360
(Fn−3 + 56Fn−2 + 245Fn−1 + 28Fn)− p2Mn = sn−3 − 4sn−2 + 5sn−1 − 2sn.

(2.13)
Once again, we substitute Fj = fjsj + gj into (2.12) and (2.13) to give two
equations in si, i = 1, 2, 3, n− 3, n− 2, n− 1.

Noting (2.4) the values of s0, sn, M0 and Mn are already known, hence we
can now solve (2.8), (2.12), (2.13) to obtain the values of si, 1 ≤ i ≤ n− 1. The
solvability of the linear system will be discussed in section 3.

3 Convergence Analysis

In this section, we shall establish the existence of a unique solution for (2.8),
(2.12), (2.13) and also conduct a convergence analysis for the method presented
in section 2. To begin, we define the norms of a column vector T = [ti] and a
matrix A = [aij ] as follows:

‖T‖ = max
i
|ti| and ‖A‖ = max

i

∑
j

|aij |.

Let ei = yi − si, 1 ≤ i ≤ n − 1 be the errors. Let Y = [yi], S = [si], W =
[wi], T = [ti] and E = [ei] be (n− 1)-dimensional column vectors. The system
(2.8), (2.12), (2.13) can be written as

AS = W (3.1)

where

A = A0 + Q, Q = BF, F = diag(fi), i = 1, 2, . . . , n− 1, (3.2)

A0 and B are (n− 1)× (n− 1) five-band symmetric matrices given by

A0 =



5 −4 1

−4 6 −4 1

1 −4 6 −4 1
. . .

1 −4 6 −4 1

1 −4 6 −4

1 −4 5


, (3.3)
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B =



− 245p4

360 − 56p4

360 − p4

360

−a2 −a3 −a2 −a1

−a1 −a2 −a3 −a2 −a1

. . .

−a1 −a2 −a3 −a2 −a1

−a1 −a2 −a3 −a2

− p4

360 − 56p4

360 − 245p4

360


(3.4)

and for the vector W = [wi], we have

wi =



2s0 − p2M0 +
p4

360
(28f0s0 + 28g0 + 245g1 + 56g2 + g3), i = 1

−s0 + a1f0s0 + a1g0 + a2g1 + a3g2 + a2g3 + a1g4, i = 2

a1gi−2 + a2gi−1 + a3gi + a2gi+1 + a1gi+2, 3 ≤ i ≤ n− 3

−sn + a1gn−4 + a2gn−3 + a3gn−2 + a2gn−1 + a1gn + a1fnsn,

i = n− 2

2sn − p2Mn +
p4

360
(gn−3 + 56gn−2 + 245gn−1 + 28gn + 28fnsn),

i = n− 1.
(3.5)

From (3.1) we have A(Y − E) = W or

AY = W + T (3.6)

where
T = AE. (3.7)

For 2 ≤ i ≤ n− 2, the i-th equation of the linear system (3.7) is

yi−2−4yi−1 +6yi−4yi+1 +yi+2 = a1y
(4)
i−2 +a2y

(4)
i−1 +a3y

(4)
i +a2y

(4)
i+1 +a1y

(4)
i+2 +ti

where ti’s are the local truncation errors given by

ti =
p4(p2 − 3h2)

12
y
(6)
i +

p4(4p4 − 15p2h2 + 8h4)
240

y
(8)
i + O(p9). (3.8)

For i = 1, n− 1, the i-th equations of the linear system (3.7) are respectively

−2y0 + 5y1 − 4y2 + y3 =
p4

360

(
28y

(4)
0 + 245y

(4)
1 + 56y

(4)
2 + y

(4)
3

)
− p2y′′0 + t1

and

yn−3 − 4yn−2 + 5yn−1 − 2yn

=
p4

360

(
y
(4)
n−3 + 56y

(4)
n−2 + 245y

(4)
n−1 + 28y(4)

n

)
− p2y′′n + tn−1
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where t1 and tn−1 are the local truncation errors given by

t1 = tn−1 = − 241
60480

p8y
(8)
i + O(p9). (3.9)

Remark 1. For the special case h = p√
3
, it is clear from (3.8) that

ti = − p8

2160
y
(8)
i + O(p9), 2 ≤ i ≤ n− 2.

Thus, taking (3.9) into consideration, we have

‖T‖ =
241

60480
p8L (3.10)

where L = maxx |y(8)(x)|.

Lemma 1. [2] The matrix A0 is invertible and

‖A−1
0 ‖ ≤ 5n4 + 4n2

384
=

5(b− a)4 + 4(b− a)2p2

384p4
. (3.11)

Lemma 2. [8] Let D be a square matrix such that ‖D‖ < 1. Then, (I + D) is
nonsingular and

‖(I + D)−1‖ ≤ 1
1− ‖D‖

.

Our first result guarantees the existence of a unique solution for (2.8), (2.12),
(2.13).

Theorem 1. The system (3.1) has a unique solution if

489
480

Kf̂ < 1 (3.12)

where K = 5(b−a)4+4(b−a)2p2

384 and f̂ = max1≤i≤n−1 |fi|.

Proof. If (3.1) has a unique solution, then it can be written as

S = A−1W = (A0 + Q)−1W = [A0(I + A−1
0 Q)]−1W = (I + A−1

0 Q)−1A−1
0 W.
(3.13)

From Lemma 1 the inverse A−1
0 exists, hence it remains to show that (I+A−1

0 Q)
is nonsingular.

From (3.4), a direct computation gives ‖B‖ ≤ 489
480p4. Since Q = BF, we find

‖Q‖ ≤ ‖B‖ ‖F‖ ≤ 489
480

p4f̂ . (3.14)
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It follows from (3.11) and (3.14) that

‖A−1
0 Q‖ ≤ ‖A−1

0 ‖ ‖Q‖ ≤ 5(b− a)4 + 4(b− a)2p2

384p4

(
489
480

p4f̂

)
=

489
480

Kf̂ < 1

(3.15)
where we have used (3.12) in the last inequality. Since ‖A−1

0 Q‖ < 1, we conclude
from Lemma 2 that (I+A−1

0 Q) is nonsingular. Hence, (3.1) has a unique solution
given by (3.13). �

The next result gives the order of convergence of our method.

Theorem 2. Suppose 489
480Kf̂ < 1. Then,

‖E‖ ∼= O(p4) if h =
p√
3

and ‖E‖ ∼= O(p2) for other values of h ∈ (0, p], i.e., the method (3.1) is fourth
order convergent if h = p√

3
and is second order convergent otherwise.

Proof. First, we consider the special case when h = p√
3
. From (3.7) we have

E = A−1T = (A0 + Q)−1T = (I + A−1
0 Q)−1A−1

0 T

Noting (3.15) we apply Lemma 2, and together with (3.11) and (3.10), we find

‖E‖ ≤ ‖(I + A−1
0 Q)−1‖ ‖A−1

0 ‖ ‖T‖

≤ ‖A−1
0 ‖ ‖T‖

1− ‖A−1
0 Q‖

≤ 5(b− a)4 + 4(b− a)2p2

384p4

(
241

60480
p8L

)(
1

1− 489
480Kf̂

)

=
241KLp4

60480
(
1− 489

480Kf̂
) ∼= O(p4).

This inequality shows that (3.1) is a fourth order convergence method when
h = p√

3
.

For other values of h ∈ (0, p], from (3.8) and (3.9) we have ‖T‖ ∼= O(p6).
Using a similar argument as above, we see that (3.1) is second order convergent.
�

4 Numerical Example

In this section, we present a numerical example to demonstrate our proposed
method as well as to illustrate the comparative performance with some well
known numerical methods for solving (1.1).
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Consider the Lidstone boundary value problem

y(4) + xy = −(8 + 7x + x3)ex, 0 ≤ x ≤ 1

y(0) = y(1) = 0, y′′(0) = 0, y′′(1) = −4e.
(4.1)

The analytical solution of (4.1) is

y(x) = x(1− x)ex.

In this example, we have a = 0, b = 1, f(x) = −x and g(x) = −(8 + 7x +
x3)ex. So K = 5+4p2

384 and f̂ < 1. For any p ∈ (0, 1), we have 489
480Kf̂ < 1

and hence it follows from Theorem 1 that our method gives a unique numerical
solution for (4.1).

To compute the numerical solution of (4.1), first we fix the mesh P (and
hence the step size p) and choose h = p√

3
. Then, we solve the system (2.8),

(2.12), (2.13) to get si, 1 ≤ i ≤ n− 1, which approximates yi.

The maximum absolute errors (maxi |yi−si|) obtained by our method as well
as by other methods in the literature are presented in Table 1. From the table
we can see that our method is fourth-order convergent when h = p√

3
. Moreover,

a clear comparison shows that our method outperforms continuous polynomial
spline (cubic, quartic, quintic, sextic) and nonpolynomial spline (quintic) meth-
ods.

Table 1: Maximum absolute errors maxi |yi − si|

Methods p = 1/8 p = 1/16 p = 1/32
Our method 7.48e− 08 5.30e− 09 4.91e− 10
Quintic nonpolynomial
spline (4th order) 2.09e− 07 7.92e− 09 1.27e− 09
Sextic spline [20] 1.26e− 06 7.87e− 08 4.91e− 09
Quintic nonpolynomial
spline (2nd order) [12] 9.42e− 05 6.17e− 06 3.95e− 07
Quartic spline [19] 4.24e− 04 1.08e− 04 2.70e− 05
Cubic spline [3] 5.69e− 04 1.47e− 04 3.71e− 05
Quintic spline [20] 8.67e− 04 2.16e− 04 5.40e− 05
Quartic spline [2] 1.62e− 03 6.39e− 04 5.88e− 05

A brief description of the methods listed in Table 1:

(i) In [12], second and fourth order convergent methods are derived using a
nonpolynomial spline function that has a polynomial part and a trigono-
metric part. The methods of [2, 19, 20] are special cases of nonpolynomial
spline methods when certain parameters take certain values.

(ii) In [20], quintic and sextic splines are employed respectively to establish
second and fourth order convergent methods.
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(iii) In [19], a second order convergent method is formulated using quartic
splines. Here, the consistency relations are obtained at the midknots,
this approach is different from other spline methods where consistency
relations are usually obtained at the uniformly spaced knots.

(iv) In [3], cubic splines are used to develop a second order convergent method.

(v) In [2], a second order convergent method is proposed based on quartic
splines.

5 Conclusion

We have developed a numerical method for fourth order Lidstone boundary
value problems using discrete quintic splines. The method is shown to be fourth
order convergent when the parameter h = p√

3
, and second order convergent

for other values of h ∈ (0, p]. A well known numerical example is presented to
demonstrate the outperformance of our method over other continuous spline
methods in the literature.
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In this paper we investigate the dynamics and behavior of the recursive
sequence

xn+1 = axn−k +
bxn−l + cxn−s + dxn−r
αxn−l + βxn−s + γxn−r

, n = 0, 1, ...

where the parameters a ; b; c; d;α ; β and γ are positive real numbers and the
initial conditions are positive real numbers.

1 Introduction

Recently there has been a lot of interest in studying the global attractivity,
the boundedness character and the periodicity nature of nonlinear difference
equations see for example [[1]-[14]].
The study of the nonlinear rational difference equations of a higher order is
quite challenging and rewarding, and the results about these equations offer
prototypes towards the development of the basic theory of the global behavior
of nonlinear difference equations of a big order, recently, many researchers have
investigated the behavior of the solution of difference equations for example: In
[4] Elabbasy et al. investigated the global stability, boundedness, periodicity
character and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
k∏
i=0

xn−i

Yalnkaya et al. [15], [16] considered the dynamics of the difference equations

xn+1 =
axn−k
b+ cxpn

, xn+1 = α+
xn−m
xkn

1
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For some related work see [[15]-[19]].
Our goal in this paper is to investigate the global stability character and the
periodicity of solutions of the recursive sequence

xn+1 = axn−k +
bxn−l + cxn−s + dxn−r
αxn−l + βxn−s + γxn−r

, n = 0, 1, ... (1)

where the parameters a ; b; c; d;α ; β and γ are positive real numbers and the
initial conditions x−t, x−t+1, ...., x−1 and x0 are positive real numbers where
t = max

{
k, l, s, r} .

Here, we recall some basic definitions and some theorems that we need in the
sequel.
Let I be some interval of real numbers and let

F : Ik+1 −→ I

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ...., x0 ∈ I , the difference equation

xn+1 = F (xn, xn−1, ...., xn−k), n = 0, 1, .... (2)

has a unique solution {xn}∞n=−k
Theorem 1.1. [9] Assume that pi ∈ R ,i = 1, 2, ..., k and k ∈ {0, 1, 2, ....}

.Then
k∑
i=1

|pi| ≤ 1 , is a sufficient condition for the asymptotic stability of the

difference equation

xn+k + p1xn+k−1 + ...+ pkxn = 0 , n = 0, 1, ....

Theorem 1.2. [10] Let g : [a, b]k+1 → [a, b] be a continuous function, where k
is a positive integer, and where [a, b] is an interval of real numbers. Consider
the difference equation

xn+1 = g(xn, xn−1, ...., xn−k), n = 0, 1, .... (3)

Suppose that g satisfies the following conditions:

1. For each integer i with 1 ≤ i ≤ k + 1 ,the function g(z1, z2, ..., zk+1) is
weakly monotonic in zi for fixed z1, z2, ..., zi−1, zi+1, ..., zk+1 .

2. If If (m,M) is a solution of the system

m = g(m1,m2, ...,mk+1) , and M = g(M1,M2, ...,Mk+1)

then m = M , where for each i = 1, 2, ..., k + 1, we set

mi =

{
m if g is non-decreasing in zi
M if g is non-increasing in zi

Mi =

{
M if g is non-decreasing in zi
m if g is non-increasing in zi

Then there exists exactly one equilibrium x of equation (3), and every
solution of equation (3) converges to x.
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2 Local Stability of the Equilibrium Point of
equation (1)

This section deals with study the local stability character of the equilibrium
point of Equation (1) .Equation (1) has equilibrium point and is given by x =
ax+ b+c+d

α+β+γ . If a ≤ 1 , then the only positive equilibrium point of equation (1)

is given by x = b+c+d
(α+β+γ)(1−a) .

f : (0,∞)4 → (0,∞) be a continuously differentiable function defined by

f(u, v, w, t) = au+
bv + cw + dt

αv + βw + γt
(4)

Therefore it follows that

∂f(u, v, w, t)

∂u
= a,

∂f(u, v, w, t)

∂v
=

(bβ − cα)w + (bγ − dα)t

(αv + βw + γt)2

∂f(u, v, w, t)

∂w
=
−(bβ − cα)v + (cγ − dβ)t

(αv + βw + γt)2

∂f(u, v, w, t)

∂t
=
−(bγ − dα)v − (cγ − dβ)w

(αv + βw + γt)2

Then we see that

∂f(x, x, x, x)

∂u
= a = −a3

∂f(x, x, x, x)

∂v
=

(bβ − cα) + (bγ − dα)

(α+ β + γ)2x̄
=

(bβ − cα) + (bγ − dα)

(α+ β + γ)2 b+c+d
(α+β+γ)(1−a)

=
[(bβ − cα) + (bγ − dα)](1− a)

(α+ β + γ)(b+ c+ d)
= −a2

∂f(x, x, x, x)

∂w
=

[−(bβ − cα) + (cγ − dβ)](1− a)

(α+ β + γ)(b+ c+ d)
= −a1

∂f(x, x, x, x)

∂t
=

[−(bγ − dα)− (cγ − dβ)](1− a)

(α+ β + γ)(b+ c+ d)
= −a0

Then the linearized equation of Equation (1) about x is

yn+1 + a3yn + a2yn−1 + a1yn−2 + a0yn−3 = 0 (5)

whose characteristic equation is

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 (6)
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Theorem 2.1. Assume that

(α+ β + γ)(b+ c+ d) > max
{
|2α(c+ d)− 2b(β + γ)|, |2γ(b+ c)− 2d(α+ β)|

, |2β(b+ d)− 2c(α+ γ)|} (7)

Then the positive equilibrium point of Equation (1) is locally asymptotically sta-
ble.

Proof. It is follows by theorem (1.1) that equation (5) is asymptotically stable
if all roots of equation (6) lie in the open disc, |λ| < 1 that is if

|a3|+ |a2|+ |a1|+ |a0| < 1

∣∣a∣∣+
∣∣ [(bβ − cα) + (bγ − dα)](1− a)

(α+ β + γ)(b+ c+ d)

∣∣
+
∣∣ [−(bβ − cα) + (cγ − dβ)](1− a)

(α+ β + γ)(b+ c+ d)

∣∣+
∣∣ [−(bγ − dα)− (cγ − dβ)](1− a)

(α+ β + γ)(b+ c+ d)

∣∣ < 1

and so ( after dividing the denominator and numerator by (1− a) gives )

|(bβ − cα) + (bγ − dα)|+ |−(bβ − cα) + (cγ − dβ)|

+|−(bγ − dα)− (cγ − dβ)| < (α+ β + γ)(b+ c+ d) (8)

Suppose that
B1 = (bβ − cα) + (bγ − dα), B2 = −(bβ − cα) + (cγ − dβ),
B3 = −(bγ − dα)− (cγ − dβ)
We consider the following cases

1. B1 > 0, B2 > 0 , and B3 > 0 . In this case we see from equation (8) that

(bβ − cα) + (bγ − dα)− (bβ − cα) + (cγ − dβ)− (bγ − dα)− (cγ − dβ)

< (α+ β + γ)(b+ c+ d)

if and only if (α+ β + γ)(b+ c+ d) > 0 which is always true.

2. B1 > 0, B2 > 0 , and B3 < 0 . It follows from equation (8) that

(bβ − cα) + (bγ − dα)− (bβ − cα) + (cγ − dβ) + (bγ − dα) + (cγ − dβ)

< (α+ β + γ)(b+ c+ d)

if and only if (α+β+γ)(b+c+d) > 2γ(b+c)−2d(α+β) which is satisfied
by Condition (7).

Also, we can prove the other cases. The proof is complete.
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3 Boundedness of Solutions of Equation (1)

Here we study the boundedness nature and persistence of solutions of Equa-
tion (1).

Theorem 3.1. Every solution of Equation (1) is bounded and persists if a < 1.

Proof. Let {xn}∞n=−t be a solution of Equation (1). It follows from Equation
(1) that

xn+1 = axn−k +
bxn−l + cxn−s + dxn−r
αxn−l + βxn−s + γxn−r

= axn−k +
bxn−l

αxn−l + βxn−s + γxn−r
+

cxn−s
αxn−l + βxn−s + γxn−r

+
dxn−r

αxn−l + βxn−s + γxn−r

Then

xn+1 ≤ axn−k +
bxn−l
αxn−l

+
cxn−s
βxn−s

+
dxn−r
γxn−r

= xn−k +
b

α
+
c

β
+
d

γ
for all n ≥ 1

By using a comparison, we see that

lim
n→∞

supxn ≤
bβγ + cαγ + dαβ

αβγ(1− a)
= M (9)

Thus the solution is bounded. Now we wish to show that there exists m > 0
such that xn ≥ m for all n ≥ 1. The transformation xn = 1

yn
will reduce

Equation (1) to the equivalent form

yn+1 =

yn−k(αyn−syn−r + βyn−lyn−r + γyn−lyn−s)

a(αyn−syn−r + βyn−lyn−r + γyn−lyn−s) + yn−k(byn−syn−r + cyn−lyn−r + dyn−lyn−s)

It follows that

yn+1 ≤
yn−k(αyn−syn−r + βyn−lyn−r + γyn−lyn−s)

yn−k(byn−syn−r + cyn−lyn−r + dyn−lyn−s)

≤ αyn−syn−r
byn−syn−r

+
βyn−lyn−r
cyn−lyn−r

+
γyn−lyn−s
dyn−lyn−s

=
α

b
+
β

c
+
γ

d

=
αcd+ βbd+ γbc

bcd
= H for all n ≥ 1

Thus we obtain

xn =
1

yn
≥ 1

H
=

bcd

αcd+ βbd+ γbc
= m for all n ≥ 1 (10)

From Equations (9) and (10) we see that m ≤ xn ≤ M for all n ≥ 1 .
Therefore every solution of Equation (1) is bounded and persists.
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Theorem 3.2. Every solution of Equation (1) is unbounded if a > 1.

Proof. Let {xn}∞n=−t be a solution of Equation (1). Then from Equation (1) we
see that

xn+1 = axn−k +
bxn−l + cxn−s + dxn−r
αxn−l + βxn−s + γxn−r

> axn−k for all n ≥ 1

We see that the right hand side can write as follows

yn+1 = ayn−k ⇒ ykn+i = anyk+i, i = 0, 1, ..., k,

and this equation is unstable because a > 1, and lim
n→∞

yn = ∞ Then by using

ratio test {xn}∞n=−t is unbounded from above.

4 Existence of Periodic Solutions

In this section we study the existence of periodic solutions of equation (1).
The following theorem states the necessary and sufficient conditions that this
equation has periodic solutions of prime period two and there is clear that there
exists a sixteen cases of the indexes s, l, k, r as we see in the following theorem
and lemmas.

Theorem 4.1. Equation (1) has positive prime period two solutions if and only
if one of the following statements holds

1. (b+d−c)(α+γ−β)(1+a)+4(aβ(b+d)+c(α+γ)) > 0,α+γ > β,b+d > c
and l, r-odd, k, s-even.

2. (c + d − b)(β + γ − α)(1 + a) + 4(aα(c + d) + b(β + γ)) > 0, β + γ > α,
c+ d > b and k, r-odd, l, s-even.

3. (b + c − d)(α + β − γ)(1 + a) + 4(aγ(b + c) + d(α + β)) > 0, α + β > γ,
b+ c > d and k, l-odd, r, s-even.

4. (b − c − d)(α − β − γ)(1 + a) + 4(ab(β + γ) + α(c + d)) > 0, α > β + γ,
b > c+ d and l-odd, k, s, r-even.

5. (c − b − d)(β − α − γ)(1 + a) + 4(ac(α + γ) + β(b + d)) > 0, β > α + γ,
c > b+ d and k-odd, l, s, r-even.

6. (d− b− c)(γ − α − β)(1 + a) + 4(ad(β + α) + γ(b+ c)) > 0 , γ > α + β,
d > b+ c and r-odd, l, k, s-even.

7. (c + d − b)(α − β − γ) − 4b(β + γ) > 0, a < 1, α > β + γ, c + d > b and
k, s, r-odd, l-even

8. (b + d − c)(β − α − γ) − 4c(α + γ) > 0, a < 1, β > α + γ, b + d > c and
l, s, r-odd, k-even.
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9. (b+ c− d)(γ − α − β)− 4d(α + β) > 0, a < 1, γ > α + β, b+ c > d and
k,s,l-odd, r-even.

10. (d − b − c)(α + β − γ) − 4γ(b + c) > 0, a < 1, α + β > γ, d > b + c and
s, r-odd, l, k-even

11. (c − b − d)(α + γ − β) − 4β(b + d) > 0, a < 1, α + γ > β, c > b + d and
s, k-odd, l, r-even.

12. (b − c − d)(β + γ − α) − 4α(c + d) > 0, a < 1, β + γ > α, b > c + d and
s, l-odd, r, k-even.

Proof. We will prove the theorem when Condition (1) is true and the proof of
the other cases are similar and so we will be omitted. First suppose that there
exists a prime period two solution ..., p, q, p, q, ..., of equation (1). We will prove
that Condition (1) holds.We see from equation (1) that

p = aq +
bp+ cq + dp

αp+ βq + γp
= aq +

ep+ cq

fp+ βq

where e = b+ d, f = α+ γ, and

q = ap+
bq + cp+ dq

αq + βp+ γq
= ap+

eq + cp

fq + βp

Then

fp2 + βpq = afpq + aβq2 + ep+ cq, (11)

fq2 + βpq = afpq + aβp2 + eq + cp, (12)

Subtracting (11) from (12) gives f(p2 − q2) = −aβ(p2 − q2) + (e − c)(p − q) .
Since p 6= q, it follows that

p+ q =
e− c
f + aβ

(13)

Again, adding (11) and (12) yields

(f − aβ)(p2 + q2) + 2(β − af)pq = (e+ c)(p+ q) (14)

It follows by (13),and (14) that

pq =
(eaβ + cf)(e− c)

(f + aβ)2(β − f)(1 + a)
(15)

Now it is clear from equation (13) and equation (15) that p and q are the two
distinct roots of the quadratic equation

(f + aβ)t2 − (e− c)t+
(eaβ + cf)(e− c)

(f + aβ)(β − f)(1 + a)
= 0, (16)

558

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.3, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

IBRAHIM 552-564



Periodicity and Global Attractivity of Difference Equation

and so (e− c)2 − 4(eaβ+cf)(e−c)
(β−f)(1+a) > 0 . Therefore Inequality (1) holds.

Conversely , suppose that Inequality (1) is true. We will show that equation (1)
has a prime period two solution. Assume that

p =
e− c+ ζ

2(f + aβ)
, and q =

e− c− ζ
2(f + aβ)

where ζ =
√

(e− c)2 − 4(eaβ+cf)(e−c)
(β−f)(1+a) . We see from Inequality (1) that

(e− c)(f − β)(1 + a) + 4(eaβ + cf) > 0, e > c, f > β,

which equivalents to (e − c)2 > 4(eaβ+cf)(e−c)
(β−f)(1+a) . Therefore p and q are distinct

real numbers. Set x−3 = p, x−2 = q, x−1 = p and x0 = q. We wish to show that
x1 = x−1 = p and x2 = x0 = q .It follows from equation (1) that

x1 = aq +
ep+ cq

fp+ βq
= a

( e− c− ζ
2(f + aβ)

)
+
e
(
e−c−ζ
2(f+aβ)

)
+ c
(
e−c−ζ
2(f+aβ)

)
f
(
e−c−ζ
2(f+aβ)

)
+ β

(
e−c−ζ
2(f+aβ)

)
Dividing the denominator and numerator by 2(f + aβ) gives

x1 = a
( e− c− ζ

2(f + aβ)

)
+

(e− c)[(e+ c) + ζ]

(f + β)(e− c) + (f − β)ζ

Multiplying the denominator and numerator of the right side by
(f + β)(e− c)− (f − β)ζ gives

x1 = a
( e− c− ζ

2(f + aβ)

)

+
(e− c)

{
2(e− c)[fc+ βe− 2(eaβ+cf)

1+a ] + 2ζ(βe− cf)
}

4(e− c)
[
βf(e− c) + (β−f)(eaβ+cf)

(1+a)

]
Multiplying the denominator and numerator of the right side by (1 + a) we
obtain

x1 =
ae− ac− aζ + (e− c)(1− a) + ζ(1 + a)

2(f + aβ)
=

e− c+ ζ

2(f + aβ)
= p.

Similarly as before one can easily show that x2 = q. Then it follows by
induction that x2n = q and x2n+1 = p for all n ≥ −1.Thus equation (1) has the
prime period two solution ..., p, q, p, q, ..., where p and q are the distinct roots of
the quadratic equation (16) and the proof is complete.

Lemma 4.2. If l, k, s, r-even. Then there exists a prime period two solutions if
and only if a = −1.
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Proof. First suppose that there exists a prime period two solution ..., p, q, p, q, ...,
then we see from equation (1) that when l, k, s, r-even

p = aq +
b+ c+ d

α+ β + γ
, (17)

q = ap+
b+ c+ d

α+ β + γ
(18)

Subtracting equation (17) from equation (18) gives p − q = −a(p − q). Since
p 6= q, it follows that a = −1. Again, adding equation (17) and equation (18)
yields p+ q = b+c+d

α+β+γ . If we take

p =
b+ c

α+ β + γ
, q =

d

α+ β + γ
, if b+ c 6= d.

Set x−s = q, x−l = p , x−k = q,...,x−2 = q, x−1 = p and x0 = q.We wish to
show that x1 = x−1 = p and x2 = x0 = q. It follows from equation (1) that
x1 = aq + bq+cq+dq

αq+βq+γq = p . Similarly as before one can easily show that x2 = q.
Then it follows by induction that x2n = q and x2n+1 = p for all n ≥ −1. Thus
equation (1) has the prime period two solution and the proof is complete.

Lemma 4.3. If l, k, r-odd, s-even. Then there exists a positive prime period
two solutions if and only if a = −1.

Lemma 4.4. If l, k, s, r-odd (or l, k, r-even, s-odd). Then there no prime period
two solution.

5 Global Attractor of the Equilibrium Point of
Equation (1)

In this section we investigate the global asymptotic stability of equation (1).

Lemma 5.1. For any values of the quotient b
α , cβ and d

γ the function f(u, v, w, t)

defined by equation (4) has the monotonicity behavior in its three arguments.

Proof. The proof follows by some computations and it will be omitted.

Remark 5.2. It follows from equation (1), when b
α = c

β = d
γ , that xn+1 =

axn−k + λ for all n ≥ −t and for some constant λ.Whenever the quotients α
A ,

β
B and γ

C are not equal, we get the following result.

Theorem 5.3. The equilibrium point x is a global attractor of equation (1) if
one of the following statements holds

(1)
b

α
≥ c

β
≥ d

γ
and d ≥ b+ c (19)

(2)
b

α
≥ d

γ
≥ c

β
and c ≥ b+ d (20)
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(3)
c

β
≥ b

α
≥ d

γ
and d ≥ b+ c (21)

(4)
c

β
≥ d

γ
≥ b

α
and b ≥ c+ d (22)

(5)
d

γ
≥ c

β
≥ b

α
and b ≥ c+ d (23)

(6)
d

γ
≥ b

α
≥ c

β
and c ≥ b+ d (24)

Proof. Let {xn}∞n=−t be a solution of equation (1) and again let f be a function
defined by equation (4). We will prove the theorem when case (1) is true and
the proof of the other cases are similar and so we will be omitted. Assume that
(19) is true, then it is easy from the equations after equation (4) to see that the
function f(u, v, w, t) is non-decreasing in u, v and non-increasing in t and it is
not clear what is going on with w. So we consider the following two cases:-
Case(1) Assume that the function f(u, v, w, t)is non-decreasing in w. Sup-
pose that (m,M) is a solution of the system M = f(M,M,M,m) and m =
g(m,m,m,M). Then from equation (1), we see that

(α+ β)(1− a)M2 + γ(1− a)Mm = (b+ c)M + dm,

(α+ β)(1− a)m2 + γ(1− a)Mm = (b+ c)m+ dM

Subtracting this two equations we obtain

(M −m)
{

(α+ β)(1− a)(M +m) + (d− b− c)
}

= 0,

under the conditions d ≥ b + c, a < 1, we see that M = m. It follows by
theorem (1.2) that x is a global attractor of equation (1) and then the proof is
complete.
Case(2) Assume that the function f(u, v, w, t)is non-increasing in w. Sup-
pose that (m,M) is a solution of the system M = f(M,M,m,m) and m =
g(m,m,M,M).Then from equation (1), we see that

M(1− a) =
bM + cm+ dm

αM + βm+ γm
, m(1− a) =

bm+ cM + dM

αm+ βM + γM

then under the conditions d ≥ b + c, a < 1, we see that M = m. It follows by
theorem (1.2) that x is a global attractor of equation (1) and then the proof is
complete.

6 Numerical examples

For confirming the results of this paper, we consider numerical examples which
represent different types of solutions to equation (1).

Example 6.1. See Fig.1, since l = 0, k = 1, s = 2, r = 1, x−2 = 3, x−1 =
0.4, x0 = 0.2, a = 0.8, b = 0.4, c = 0.8, d = 2, α = 0.1, β = 1, γ = 0.8.
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Example 6.2. See Fig.2, since l = 3, k = 0, s = 1, r = 2, x−3 = 3, x−2 =
7, x−1 = 2, x0 = 1.5, a = 1.2, b = 3, c = 5, d = 2, α = 1, β = 2.1, γ = 1.1.
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Example 6.3. See Fig.3, since l = 1, k = 0, s = 2, r = 3, x−3 = x−1 = p, x−2 =
x0 = q, a = 0.6, b = 7, c = 3, d = 9, α = 3.8, β = 0.2, γ = 1.2.
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Abstract. Let A be an algebra and X be an A-module. A quadratic mapping D : A → X is called a quadratic

derivation if

D(ab) = D(a)b2 + a2D(b)

for all a1, a2 ∈ A. We investigate the Hyers-Ulam stability of quadratic derivations from a non-Archimedean

Banach algebra A into a non-Archimedean Banach A-module.

1. Introduction

A definition of stability in the case of homomorphisms between metric groups was proposed by a problem by Ulam

[32] in 1940. In 1941, Hyers [17] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers’

Theorem was generalized by Rassias [27] for linear mappings by considering an unbounded Cauchy difference (see

[3, 4, 8, 10, 18, 19, 22, 25, 29]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic functional

equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. It is

well known that a mapping f between real vector spaces is quadratic if and only if there exits a unique symmetric

bi-additive mapping B such that f(x) = B(x, x) for all x (see [1, 20]). The bi-additive mapping B is given by

B(x, y) =
1

4
(f(x+ y)− f(x− y)).

The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings

f : A→ B, where A is a normed space and B is a Banach space (see [31]). Cholewa [6], Czerwik [7] and Grabiec

[16] have generalized the results of stability of quadratic mappings. Borelli and Forti [5] generalized the stability

result as follows (cf. [23, 24]): Let G be an Abelian group, and X a Banach space. Assume that a mapping

f : G→ X satisfies the functional inequality

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ φ(x, y)

for all x, y ∈ G, where φ : G×G→ [0,∞) is a function such that

Φ(x, y) :=

∞∑
i=0

1

4i+1
φ(2ix, 2iy) <∞

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G→ X with the property

∥f(x)−Q(x)∥ ≤ Φ(x, x)
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for all x ∈ G.

Let K be a field.

A non-Archimedean absolute value on K is a function | · | : K → R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a+ b| ≤ max{|a|, |b|}.

The condition (iii) is called the strict triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus, by induction, it

follows from (iii) that |n| ≤ 1 for each integer n. We always assume, in addition, that | · | is nontrivial, i.e., that

there is an a0 ∈ K such that |a0| ̸∈ {0, 1}.
Let X be a linear space over a scalar field K with a non-Archimedean nontrivial valuation | · |. A function

∥ · ∥ : X → R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) ∥x∥ = 0 if and only if x = 0;

(NA2) ∥rx∥ = |r|∥x∥ for all r ∈ K and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,

∥x+ y∥ ≤ max{∥x∥, ∥y∥} (x, y ∈ X).

Then (X, ∥ · ∥) is called a non-Archimedean space. It follows from (NA3) that

∥xm − xℓ∥ ≤ max{∥xȷ+1 − xȷ∥ : ℓ ≤ ȷ ≤ m− 1} (m > ℓ).

Therefore, a sequence {xm} is Cauchy in X if and only if {xm+1 − xm} converges to zero in a non-Archimedean

space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent. A

non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies ∥ab∥ ≤ ∥a∥∥b∥ for all

a, b ∈ A. A non-Archimedean Banach space X is a non-Archimedean Banach A-bimodule if X is an A-bimodule

which satisfies max{∥xa∥, ∥ax∥} ≤ ∥a∥∥x∥ for all a ∈ A, x ∈ X. For more detailed definitions of non-Archimedean

Banach algebras, we can refer to [30].

Let A be a normed algebra and let X be a Banach A-module. We say that a mapping D : A→ X is a quadratic

derivation if D is a quadratic mapping satisfying

D(x1x2) = D(x1)x
2
2 + x21D(x2) (1.2)

for all x1, x2 ∈ A.

Recently, the stability of derivations has been investigated by a number of mathematicians including [2, 11, 12,

13, 14, 15, 21, 26, 28] and references therein. More recently, Eshaghi Gordji [9] established the stability of ring

derivations on non-Archimedean Banach algebras.

In this paper, we investigate the approximately quadratic derivations on non-Archimedean Banach algebras.

2. Main results

In the following we suppose that A is a non-Archimedean Banach algebra and X is a non-Archimedean Banach

A-bimodule. Assume that |2| ̸= 1.

Theorem 2.1. Let f : A→ X be a given mapping with f(0) = 0 and let φ1 : A×A→ R+ and φ2 : A×A→ R+

be functions such that

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ φ1(x1, x2), (2.1)

||f(x+ y) + f(x− y)− 2f(x)− 2f(y)|| ≤ φ2(x, y) (2.2)

for all x1, x2, x, y ∈ A. Assume that for each x ∈ A

lim
n→∞

max

{
1

|2|2k
φ2(2

kx, 2kx)

|2|2 : 0 ≤ k ≤ n− 1

}
denoted by Ψ(x, x), exists. Suppose

lim
n→∞

φ1(2
nx1, 2

nx2)

|2|4n = lim
n→∞

φ2(2
nx, 2ny)

|2|2n = 0

for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ Ψ(x, x) (2.3)
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for all x ∈ A.

Proof. Setting y = x in (2.2), we get

∥f(2x)− 4f(x)∥ ≤ φ2(x, x) (2.4)

for all x ∈ A, and then dividing by |2|2 in (2.4), we obtain∥∥∥∥f(2x)22
− f(x)

∥∥∥∥ ≤ φ2(x, x)

|2|2 (2.5)

for all x ∈ A. Replacing x by 2x and then dividing by |2|2 in (2.5), we obtain∥∥∥∥f(22x)24
− f(2x)

22

∥∥∥∥ ≤ φ2(2x, 2x)

|2|4 . (2.6)

Combining (2.5), (2.6) and the strong triangle inequality (NA3) yields∥∥∥∥f(22x)24
− f(x)

∥∥∥∥ ≤ max

{
φ2(2x, 2x)

|2|4 ,
φ2(x, x)

|2|2

}
. (2.7)

Following the same argument, one can prove by induction that∥∥∥∥f(2nx)22n
− f(x)

∥∥∥∥ ≤ max

{
1

|2|2
φ2(2

kx, 2kx)

|2|2k : 0 ≤ k ≤ n− 1

}
. (2.8)

Replacing x by 2n−1x and dividing by |2|2(n−1) in (2.5), we find that∥∥∥∥f(2nx)22n
− f(2n−1x)

22(n−1)

∥∥∥∥ ≤ φ2(2
n−1x, 2n−1x)

|2|2n

for all positive integers n and all x ∈ A. Hence { f(2nx)

22n
} is a Cauchy sequence. Since X is complete, it follows

that { f(2nx)

22n
} is convergent. Set D(x) = limn→∞

f(2nx)

22n
. By taking the limit as n → ∞ in (2.8), we see that

∥D(x)− f(x)∥ ≤ Ψ(x, x) and (2.3) holds for all x ∈ A.

In order to show that D satisfies (1.2), replacing x1, x2 by 2nx1, 2
nx2 in (2.1), and dividing both sides of (2.1)

by |2|4n, we get ∥∥∥∥f(2nx1 · 2nx2)24n
− f(2nx1)

24n
· (2nx2)2 − (2nx1)

2.
f(2nx2)

24n

∥∥∥∥ ≤ φ1(2
nx1, 2

nxn)

|2|4n .

Taking the limit as n→ ∞, we find that D satisfies (1.2).

Replacing x by 2nx and y by 2ny in (2.2) and dividing by |2|2n, we get∥∥∥∥f(2nx+ 2ny)

22n
+
f(2nx− 2ny)

22n
− 2

f(2nx)

22n
− 2

f(2ny)

22n

∥∥∥∥ ≤ φ2(2
nx, 2ny)

|2|2n .

Taking the limit as n→ ∞, we find that D satisfies (1.1).

Now, suppose that there is another such mappingD′ : A→ X satisfyingD′(x+y)+D′(x−y) = 2D′(x)+2D′(y)

and ∥D′(x)− f(x)∥ ≤ Ψ(x, x). Then for all x ∈ A, we have

∥D(x)−D′(x)∥ = lim
n→∞

1

|2|2n ∥D(2nx)−D′(2nx)∥

≤ lim
n→∞

1

|2|2n max{∥D(2nx)− f(2nx)∥, ∥D′(2nx)− f(2nx)∥}

≤ lim
n→∞

lim
k→∞

1

|2|2 max{φ2(2
jx, 2jx)

|2|2j : n ≤ j ≤ k + n− 1} = 0.

It follows that D(x) = D′(x). �

Corollary 2.2. Let θ1 and θ2 be nonnegative real numbers, and let p be a real number such that p > 4. Suppose

that a mapping f : A→ X satisfies

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ θ1(∥x1∥p + ∥x2∥p),

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ θ2(∥x∥p + ∥y∥p)
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for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ lim
n→∞

max

{
θ2∥x∥p

|2|.|2|k(2−p)
0 ≤ k ≤ n− 1

}
for all x ∈ A.

Proof. Let φ1 : A× A → R+ and φ2 : A× A → R+ be functions such that φ1(x1, , x2) = θ1(∥x1∥p + ∥x2∥p) and

φ2(x, y) = θ2(∥x∥p + ∥y∥p) for all x1, x2, x, y ∈ A. Then we have

lim
n→∞

φ2(2
nx, 2ny)

|2|2n = lim
n→∞

θ2 · |2|n(p−2) · (∥x∥p + ∥y∥p) = 0 (x, y ∈ A),

lim
n→∞

φ1(2
nx1, 2

nx2)

|2|4n = lim
n→∞

θ1|2|pn

|2|4n (∥x1∥p + ∥x2∥p) = 0 (x1, x2 ∈ A).

Applying Theorem 2.1, we conclude the required result. �

Theorem 2.3. Let f : A→ X be a mapping and let φ1 : A×A→ R+, φ2 : A×A→ R+ be functions such that

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ φ1(x1, x2), (2.9)

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ φ2(x, y) (2.10)

for all x1, x2, x, y ∈ A. Assume that for each x ∈ A

lim
n→∞

max
{
|2|2kφ2

( x

2k+1
,
x

2k+1

)
: 0 ≤ k ≤ n− 1

}
denoted by Ψ(x, x), exists. Suppose

lim
n→∞

|2|4nφ1

(x1
2n
,
x2
2n

)
= lim

n→∞
|2|2nφ2

( x

2n
,
y

2n

)
= 0

for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ Ψ(x, x) (2.11)

for all x ∈ A.

Proof. Setting y = x in (2.10), we obtain

∥f(2x)− 4f(x)∥ ≤ φ2(x, x). (2.12)

Replacing x by x
2
in (2.12), one obtains ∥∥∥f(x)− 4f

(x
2

)∥∥∥ ≤ φ2

(x
2
,
x

2

)
. (2.13)

Again replacing x by x
2
in (2.13) and multiplying by |2|2, we obtain that∥∥∥22f (x

2

)
− 24f

( x
22

)∥∥∥ ≤ |2|2φ2

( x
22
,
x

22

)
. (2.14)

By using (2.13), (2.14) and strong triangle inequality (NA3), we get∥∥∥f(x)− 24f
( x
22

)∥∥∥ ≤ max
{
φ2

(x
2
,
x

2

)
, |2|2φ2

( x
22
,
x

22

)}
(2.15)

for x ∈ A.

Next we prove by induction that∥∥∥f(x)− 22nf
( x

2n

)∥∥∥ ≤ max
{
|2|2kφ2

( x

2k+1
,
x

2k+1

)
: 0 ≤ k ≤ n− 1

}
. (2.16)

Replacing x by x
2n−1 and multiplying by |2|2(n−1) in (2.13), we obtain∥∥∥22(n−1)f

( x

2n−1

)
− 22nf

( x

2n

)∥∥∥ ≤ |2|2(n−1)φ2

( x

2n
,
x

2n

)
(2.17)

for all x ∈ A. Hence {22nf( x
2n

)} is a Cauchy sequence. Since X is complete, it follows that {22nf( x
2n

)}
is convergent. Set D(x) = limn−→∞{22nf( x

2n
)}. By taking the limit as n → ∞ in (2.16), we see that

∥f(x)−D(x)∥ ≤ Ψ(x, x) and (2.11) holds for all x ∈ A.
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Replacing x1, x2 by x1
2n
, x2
2n

in (2.9) and multiplying by |2|4n, we get∥∥∥∥24nf (x12n · x2
2n

)
− 24nf

(x1
2n

)(x2
2n

)2

− 24n
(x1
2n

)2

f
(x2
2n

)∥∥∥∥ ≤ 24nφ1

(x1
2n
,
x2
2n

)
.

Taking the limit as n→ ∞, we find that D satisfies (1.2).

Replacing x by x
2n

and y by y
2n

in (2.10) and multiplying by |2|2n, we have∥∥∥22nf ( x

2n
+

y

2n

)
+ 22nf

( x

2n
− y

2n

)
− 22n · 2f

( x

2n

)
− 22n · 2f

( y

2n

)∥∥∥ ≤ |2|2nφ2

( x

2n
,
y

2n

)
.

Taking the limit as n→ ∞, we find that D satisfies (1.1).

Now, suppose that there is another such mapping D′ : A→ X satisfying D′(x+y)+D′(x−y) = 2D′(x)+2D′(y)

and ∥D′(x)− f(x)∥ ≤ Ψ(x, x). Then for all x ∈ A, we have

∥D(x)−D′(x)∥ = lim
n→∞

|2|2n
∥∥∥D ( x

2n

)
−D′

( y

2n

)∥∥∥
≤ lim

n→∞
|2|2n max

{∥∥∥D ( x

2n

)
− f

( x

2n

)∥∥∥ ,∥∥∥D′
( x

2n

)
− f

( x

2n

)∥∥∥}
≤ lim

n→∞
lim
k→∞

max
{
φ2

( x

2j+1
,
x

2j+1

)
: n ≤ j ≤ k + n− 1

}
= 0

and so D(x) = D′(x) for all x ∈ A. �

Corollary 2.4. Let θ1 and θ2 be nonnegative real numbers, and let p be a positive real number such that p < 2.

Suppose that a mapping f : A→ X satisfies

∥f(x1x2)− f(x1)x
2
2 − x21f(x2)∥ ≤ θ1(∥x1∥p + ∥x2∥p),

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ θ2(∥x∥p + ∥y∥p)
for all x1, x2, x, y ∈ A. Then there exists a unique quadratic derivation D : A→ X such that

∥D(x)− f(x)∥ ≤ lim
n→∞

max{θ2∥x∥p.|2|(k+1)(1−p) 0 ≤ k ≤ n− 1}

for all x ∈ A.

Proof. Let φ1 : A× A → R+ and φ2 : A× A → R+ be functions such that φ1(x1, , x2) = θ1(∥x1∥p + ∥x2∥p) and

φ2(x, y) = θ2(∥x∥p + ∥y∥p) for all x1, x2, x, y ∈ A. We have

lim
n→∞

|2|2nφ2

( x

2n
,
y

2n

)
= lim

n→∞
(|2|n(2−p))θ2(∥x∥p + ∥y∥p) = 0 (x, y ∈ A),

lim
n→∞

|2|4nφ1

(x1
2n
,
x2
2n

)
= lim

n→∞
|2|n(4−p)θ1(∥x1∥p + ∥x2∥p) = 0 (x1, x2 ∈ A).

Applying Theorem 2.4, we conclude the required result. �
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Soft q-ideals of soft BCI-algebras
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1Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea
2Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea

Abstract. The notion of soft q-ideals and q-idealistic soft BCI-algebras are introduced, and several properties of

them are investigated. Characterizations of a (fuzzy) q-ideals in BCI-algebras are considered. Relations between

fuzzy q-ideals and p-idealistic soft BCI-algebras are discussed.

1. Introduction

D. Molodtsov ([2]) introduced introduced the concept of soft set as a new mathematical tool for

dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical

applications. Y. B. Jun ([6]) applied first the notion of soft sets by Moldtsov to the theory of

BCK-algebras. Y. B. Jun and C. H. Park ([8]) dealt with the algebraic structure of BCK/BCI-

algebras by applying soft set theory. They discussed the algebraic properties of soft sets in

BCK/BCI-algebras. In [7], Y. B. Jun, K. J. Lee and J. Zhan introduced the notion of soft

p-ideals and p-idealistic soft BCI-algebras, and investigated their properties. Y. S. Hwang and

S. S. Ahn ([5]) defined the notion of vague q-ideal of a BCI-algebra and studied several properties

of them.

In this paper, we introduced the notion of soft q-ideals and q-idealistic soft BCI-algebras, and

investigate several properties of them. We also consider characterizations of a (fuzzy) q-ideals in

BCI-algebras and study relations between fuzzy q-ideals and p-idealistic soft BCI-algebras.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2,0) satisfying the following conditions:

(a1) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(a2) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(a3) (∀x ∈ X) (x ∗ x = 0),

(a4) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

02010 Mathematics Subject Classification: 06F35; 03G25.
0Keywords: Soft set; (q-idealistic) soft BCI-algebra; Soft ideal; Soft q-ideal.

∗ The corresponding author.
0E-mail: hwangyunsun@nate.com (Y. S. Hwang); sunshine@dongguk.edu (S. S. Ahn)
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In any BCI-algebra X one can define a partial order “≤” by putting x ≤ y if and only if

x ∗ y = 0.

A BCI-algebra X has the following properties:

(b1) (∀x ∈ X) (x ∗ 0 = x).

(b2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).

(b3) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)).

(b4) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y).

(b5) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).

(b6) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y).

A non-empty subset S of a BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S whenever

x, y ∈ S. A non-empty subset A of a BCI-algebra X is called an ideal of X if it satisfies:

(c1) 0 ∈ A,
(c2) (∀x ∈ X)(∀y ∈ A)(x ∗ y ∈ A ⇒ x ∈ A).

Note that every ideal A of a BCI-algebra X satisfies:

(∀x ∈ X) (∀y ∈ A) (x ≤ y ⇒ x ∈ A).

A non-empty subset A of a BCI-algebra X is called a q-ideal of X if it satisfies (c1) and

(c3) (∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ A, y ∈ A⇒ x ∗ z ∈ A).

Note that any q-ideal is an ideal, but the converse is not true in general.

We refer the reader to the book [4] for further information regarding BCI-algebras.

Molodtsov ([2]) defined the soft set in the following way: Let U be an initial set and E be a

set of parameters. Let P(U) denote the power set of U and A ⊂ E.

Definition 2.1.([2]) A pair (F , A) is called a soft set over U , where F is a mapping given by

F : A→P(U).

In other words, a soft set over U is a parameterized family of subsets of the universe U . For

ε ∈ A, F (ε) may be considered as the set of ε-approximate elements of the soft set (F , A).

Clearly, a soft set is not a set. For illustration, Molodtsov considered several examples in [2].

Definition 2.2.([3]) Let (F , A) and (G , B) be two soft sets over a common universe U . The

intersection of (F , A) and (G , B) is defined to be the soft set (H , C) satisfying the following

conditions:

(i) C = A ∩B,
(ii) (∀e ∈ C)(H (e) = F (e) or G (e), (as both are same sets)).

In this case, we write (F , A)∩̃(G , B) = (H , C).

Definition 2.3.([3]) Let (F , A) and (G , B) be two soft sets over a common universe U . The

union of (F , A) and (G , B) is defined to be the soft set (H , C) satisfying the following conditions:
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(i) C = A ∪B,
(ii) ∀e ∈ C

H (e) =


F (e) if e ∈ A\B
G (e) if e ∈ B\A
F (e) ∪ G (e) if e ∈ A ∩B.

In this case, we write (F , A)∪̃(G , B) = (H , C).

Definition 2.4.([3]) If (F , A) and (G , B) are two soft sets over a common universe U , then

“(F , A)AND(G , B)” denoted by (F , A)∧̃(G , B) is defined by (F , A)∧̃(G , B) = (H , A × B),

where H (α, β) = F (α) ∩ G (β) for all (α, β) ∈ A×B.

Definition 2.5.([3]) If (F , A) and (G , B) are two soft sets over a common universe U , then

“(F , A)OR(G , B)” denoted by (F , A)∨̃(G , B) is defined by (F , A)∨̃(G , B) = (H , A × B),

where H (α, β) = F (α) ∪ G (β) for all (α, β) ∈ A×B.

Definition 2.6.([3]) For two soft sets (F , A) and (G , B) over a common universe U , we say that

(F , A) is a soft subset of (G , B), denoted by (F , A)⊂̃(G , B), if it satisfies:

(i) A ⊂ B,

(ii) For every ε ∈ A, F (ε) and G (ε) are identical approximations.

The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed

by Zadeh ([11]).

3. Soft q-ideals

In what follows let X and A be a BCI-algebra and a nonempty set, respectively, and R will

refer to an arbitrary binary relation between an element of A and an element of X, that is, R is

a subset of A × X without otherwise specified. A set-valued function F : A → P(X) can be

defined as F (x) = {y ∈ X|(x, y) ∈ R} for all x ∈ A. The pair (F , A) is then a soft set over X.

Definition 3.1.([8]) Let S be a subalgebra of X. A subset I of X is called an ideal of X related

to S (briefly, S-ideal of X), denoted by I / S, if it satisfies:

(i) 0 ∈ I,
(ii) (∀x ∈ S)(∀y ∈ I)(x ∗ y ∈ I ⇒ x ∈ I).

Definition 3.2. Let S be a subalgebra of X. A subset I of X is called a q-ideal of X related to

S (briefly, S-q-ideal of X), denoted by I /q S, if it satisfies:

(i) 0 ∈ I,
(ii) (∀x, z ∈ S)(∀y ∈ I)(x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).
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Example 3.3. Let X := {0, 1, a, b} be a BCI-algebra ([4]) in which the ∗-operation is given by

the following table:
∗ 0 1 a b

0 0 0 a a

1 1 0 a a

a a a 0 0

b b a 1 0

Then S := {0, 1, a} is a subalgebra of X and I := {0, 1} is an S-q-ideal of X.

Note that every S-q-ideal of X is an S-ideal of X (∵ Put z := 0 in Definition 3.2(ii)). But the

converse is not true in general as seen in the following example.

Example 3.4. Let X := {0, 1, 2, a, b} be a BCI-algebra ([4]) in which the ∗-operation is given

by the following table:
∗ 0 1 2 a b

0 0 0 0 b a

1 1 0 0 b a

2 2 1 0 b a

a a a a 0 b

b b b b a 0

Then S := {0, a, b} is a subalgebra of X and {0} is an S-ideal of X, but not an S-q-ideal of X,

since a ∗ (0 ∗ b) = a ∗ a = 0 ∈ {0}, 0 ∈ {0}, and a ∗ b = b /∈ {0}.

Definition 3.5.([6]) Let (F , A) be a soft set over X. Then (F , A) is called a soft BCI-algebra

over X if F (x) is a subalgebra of X for all x ∈ A.

Definition 3.6.([8]) Let (F , A) be a soft set over X. A soft set (G , I) over X is called a soft

ideal of (F , A), denoted by (G , I)/̃(F , A) if it satisfies:

(i) I ⊂ A,

(ii) (∀x ∈ I)(G (x) /F (x)).

Definition 3.7. Let (F , A) be a soft set over X. A soft set (G , I) over X is called a soft q-ideal

of (F , A), denoted by (G , I)/̃q(F , A) if it satisfies:

(i) I ⊂ A,

(ii) (∀x ∈ I)(G (x) /q F (x)).

Example 3.8. Consider a BCI-algebra X = {0, 1, a, b} which is given in Example 3.3. Let

(F , A) be a soft set over X, where A := {0, 1, a} ⊂ X and F : A → P(X) is a set-valued

function defined by

F (x) = {0} ∪ {y ∈ X|y ∗ (y ∗ x) ∈ {0, 1, a}}
for all x ∈ A. Then F (0) = F (1) = F (a) = X, which are subalgebras of X. Hence (F , A) is a

soft BCI-algebra over X. Let I := {0, 1} and G : I → (X) be a set-valued function defined by

G (x) = {0} ∪ {y ∈ X|x ≤ y}
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for all x ∈ I. Then G (0) = {0, 1} /q F (0) and G (1) = {0, 1} /q F (1). Hence (G , I) is a soft

q-ideal of (F , A).

Note that every soft q-ideal is a soft ideal. But the converse is not true in general as seen in

the following example.

Example 3.9. Let X := {0, 1, a, b} be a BCI-algebra ([4]) in which the ∗-operation is given by

the following table:

∗ 0 1 a b

0 0 0 b a

1 1 0 b a

a a a 0 b

b b b a 0

For A = {0, 1}, define a set-valued function F (x) : A→P(X) by

F (x) = {0} ∪ {y ∈ X|y ∗ (y ∗ x) = 0}

for all x ∈ A. Then F (0) = X and F (1) = {0, a, b} are subalgebras of X. Hence (F , A) is a

soft BCI-algebra over X. For I := {0}, let G : I →P(X) be a set-valued function defined by

G (x) = {0} ∪ {y ∈ X|x ≤ y}

for all x ∈ I. Then G (0) = {0, 1}. Hence G (0)/F (0), but G (0) 6q F (0) since a∗ (0∗ b) = 0, 0 ∈
{0, 1} and a ∗ b = b /∈ {0, 1}.

Theorem 3.10. Let (F , A) be a soft BCI-algebra over X. For any soft sets, (G1, I1) and (G,I2)

over X where I1 ∩ I2 6= ∅, we have

(G1, I1)/̃q(F , A), (G2, I2)/̃q(F , A)⇒ (G1, I1)∩̃(G2, I2)/̃q(F , A).

Proof. By Definition 2.2, we can write

(G1, I1)∩̃(G2, I2) = (G , I),

where I = I1 ∩ I2 and G (x) = G1(x) or G2(x) for all x ∈ I. Obviously, I ⊂ A and G : I →P(X)

is a mapping. Hence (G , I) is a soft set over X. Since (G1, I1)/̃q(F , A) and (G2, I2)/̃q(F , A), we

know that G (x) = G1(x)/̃qF (x) or G (x) = G2(x)/̃qF (x) for all x ∈ I. Hence

(G1, I1)∩̃(G2, I2) = (G , I)/̃q(F , A).

This completes the proof. �

Corollary 3.11. Let (F , A) be a soft BCI-algebra over X. For any soft sets, (G1, I) and (G2, I)

over X, we have

(G1, I)/̃q(F , A), (G2, I)/̃q(F , A)⇒ (G1, I)∩̃(G2, I)/̃q(F , A).
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Proof. Straightforward. �

Theorem 3.12. Let (F , A) be a soft BCI-algebra over X. For any soft sets, (G , I) and (H , J)

over X in where I ∩ J = ∅, we have

(G , I)/̃q(F , A), (H , J)/̃q(F , A)⇒ (G , I)∪̃(H , J)/̃q(F , A).

Proof. Assume that (G , I)/̃q(F , A) and (H , J)/̃q(F , A). By Definition 2.3, we can write

(G , I)∪̃(H , J) = (K , U) where U = I ∪ J and for every x ∈ U ,

K (x) =


G (x) if x ∈ I\J
H (x) if x ∈ J\I
G (x) ∪H (x) if x ∈ I ∩ J.

Since I ∩ J = ∅, either x ∈ I\J or x ∈ J\I for all x ∈ U . If x ∈ I\J , then K (x) = G (x) /q F (x)

since (G , I)/̃q(F , A). If x ∈ J\I, then K (x) = H (x) /q F (x) since (H , J)/̃q(F , A). Thus

K (x) /q F (x) for all x ∈ U , and so (G , I)(H , J) = (K , /̃q(F , A). �

If I and J are not disjoint in Theorem 3.12, then Theorem 3.12 is not true in general as seen

in the following example.

Example 3.13. Consider a BCI-algebra X = {0, 1, a, b} which is given in Example 3.3. Let

(F , A) be a soft set over X, where A := {0, 1, a} ⊂ X and F : A → P(X) is a set-valued

function defined by

F (x) = {0} ∪ {y ∈ X|y ∗ (y ∗ x) ∈ {0, 1, a}}

for all x ∈ A. Then (F , A) is a soft BCI-algebra over X (see Example 3.8). Let I := {0, 1} and

G : I → (X) be a set-valued function defined by

G (x) = {0} ∪ {y ∈ X|x ≤ y}

for all x ∈ I. Then (G , I) is a soft q-ideal of (F , A) (see Example 3.8). Let J := {0} and

H : J →P(X) be defined by

H (x) = {x, a}.

Then H (0) = {0, a} /q F (0). But G (0) ∪H (0) = {0, 1, a} 6q F (0) since b ∗ (1 ∗ 0) = a, 1 ∈
{0, 1, a} and b ∗ 0 = b /∈ {0, 1, a}.

4. q-idealistic soft BCI-algebras

Definition 4.1.([8]) Let (F , A) be a soft set over X. Then (F , A) is called an idealistic soft

BCI-algebra over X if F (x) is an ideal of X for all x ∈ A.

Definition 4.2. Let (F , A) be a soft set over X. Then (F , A) is called a q-idealistic soft

BCI-algebra over X if F (x) is a q-ideal of X for all x ∈ A.
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Example 4.3. Let X := {0, a, b, c} be a BCI-algebra ([9]) in which the ∗-operation is given by

the following table:
∗ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

Let A = X and G : A→P(X) be a set-valued function defined by

G (x) = {0, x}

for all x ∈ A. Then G (0) = {0},G (a) = {0, a} and G (c) = {0, c}, which are ideals of X. Hence

(G , A) is an idealistic soft BCI-algebra over X ([8]). Note that G (x) is a q-ideal of X for all

x ∈ A. Hence (G , A) is a q-idealistic soft BCI-algebra over X.

For any element x of a BCI-algebra X, we define the order of X, denoted by o(x), as

o(x) = min{n ∈ N|0 ∗ xn = 0}

where 0 ∗ xn = (· · · ((0 ∗ x) ∗ x) ∗ · · · ) ∗ x in which x appears n-times.

Example 4.4. Let X := {0, a, b, c, de, f, g} be a BCI-algebra ([1]) in which the ∗-operation is

given by the following table:
∗ 0 a b c d e f g

0 0 0 0 0 d d d d

a a 0 0 0 e d d d

b b b 0 0 f f d d

c c b a 0 g f e d

d d d d d 0 0 0 0

e e d d d a 0 0 0

f f f d d b b 0 0

g g f e d c b a 0

Let (F , A) be a soft set over X, where A = {a, b, c} ⊂ X and F : A → P(X) is a set-valued

function defined as follows:

F (x) = {y ∈ X|o(x) = o(y)}
for all x ∈ A. Then F (a) = F (b) = F (c) = {0, a, b, c} is an ideal of X. Hence (F , A) is an

idealistic soft BCI-algebra over X ([6]). If we take B := {a, b, d, f} ⊂ X and define a set-valued

function G : B →P(X) by

G (x) = {0} ∪ {y ∈ X|o(x) = o(y)}

for all x ∈ B, then (G , B) is not a q-idealistic soft BCI-algebra over X. In fact, since f ∗ (g ∗e) =

d, g ∈ {0, d, e, f, g} and f ∗ e = b /∈ {0, d, e, f, g}, G (d) = {0, d, e, f, g} is not a q-ideal of X.

Obviously, every q-idealistic soft BCI-algebra over X is an idealistic soft BCI-algebra over X,

but the converse is not true in general as seen in the following example.
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Example 4.5. Consider a BCI-algebra X := Y ×Z, where (Y, ∗, 0) is a BCI-algebra over X and

(Z,−, 0) is the adjoint BCI-algebra of the additive group (Z,+, 0) integers. Let F : X →P(X)

be a set-valued function defined as follows:

F (y, n) =

{
Y × N0 if x ∈ N0

{(0, 0)} otherwise

for all (y, n) ∈ X, where N0 is the set of all non-negative integers. Then (F , X) is an idealistic

soft BCI-algebra over X([8]). But it is not a q-idealistic soft BCI-algebra over X since {(0, 0)}
is not a q-ideal of X. In fact, (0, 3) ∗ ((0, 0) ∗ (0,−3)) = (0, 0) ∈ {(0, 0)} and (0, 3) ∗ (0,−3) =

(0, 6) /∈ {(0, 0)}.

Proposition 4.6. Let (F , A) and (G , B) be soft sets over X where B ⊆ A ⊆ X. If (F , A) is a

q-idealistic soft BCI-algebra over X, then so is (G , B).

Proof. Straightforward. �

The converse of Proposition 4.6 is not true in general as seen in the following example.

Example 4.7. Consider a q-idealistic soft BCI-algebra (F , A) over X which is described in

Example 4.4. If we take B := {a, b, c, d} ⊇ A = {a, b, c}, then (F , B) is not a q-idealistic soft

BCI-algebra over X since F (d) = {d, e, f, g} is not a q-ideal of X.

Theorem 4.8. Let (F , A) and (G , B) be two q-idealistic soft BCI-algebra over X. If A∩B 6= ∅,
then the intersection (F , A)∩̃(G , B) is a q-idealistic soft BCI-algebra over X.

Proof. Using Definition 2.2, we can write (F , A)∩̃(G , B) = (H , C), where C = A ∩ B and

H (x) = F (x) or G (x) for all x ∈ C. Note that H : C → P(X) is a mapping, and therefore

(H , C) is a soft set over X. Since (F , A) and (G , B) are q-idealistic soft BCI-algebras over X,

it follows that H (x) = F (x) is a q-ideal of X, or H (x) = G (x) is a q-ideal of X for all x ∈ C.

Hence (H , C) = (F , A)∩̃(G , B) is a q-idealistic soft BCI-algebra over X. �

Corollary 4.9. Let (F , A) and (G , A) be two q-idealistic soft BCI-algebra over X. Then the

intersection (F , A)∩̃(G , A) is a q-idealistic soft BCI-algebra over X.

Proof. Straightforward. �

Theorem 4.10. Let (F , A) and (G , B) be two q-idealistic soft BCI-algebra over X. If A∩B = ∅,
then the union (F , A)∪̃(G , B) is a q-idealistic soft BCI-algebra over X.

Proof. Using Definition 2.3, we write (F , A)∪̃(G , B) = (H , C), where C = A ∪B and for every

x ∈ C,

H (x) =


F (x) if x ∈ A\B
G (c) if x ∈ B\A
F (x) ∪ G (x) if x ∈ A ∩B.

Since A ∩ B = ∅, either x ∈ A\B or x ∈ B\A for all x ∈ C. If x ∈ A\B, then H (x) = F (x)

is a q-ideal of X since (F , A) is a q-idealistic soft BCI-algebra over X. If x ∈ B\A, then
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H (x) = G (x) is a q-ideal of X since (G , B) is a q-idealistic soft BCI-algebra over X. Hence

(F , A)∪̃(G , A) is a q-idealistic soft BCI-algebra over X. �

Theorem 4.11. If (F , A) and (G , B) are q-idealistic softBCI-algebra overX, then (F , A)∧̃(G , B)

is a q-idealistic soft BCI-algebra over X.

Proof. By Definition 2.4,

(F , A)∧̃(G , B) = (H , A×B),

where H (x, y) = F (x) ∩ G (y) for all (x, y) ∈ A × B. Since F (x) and G (y) are q-ideals of

X, the intersection F (x) ∩ G (y) is also a q-ideal of X. Hence H (x, y) is a q-ideal of X for all

(x, y) ∈ A×B, and therefore (F , A)∧̃(G , B) is a q-idealistic soft BCI-algebra over X. �

Definition 4.12. A q-idealistic BCI-algebra (F , A) over X is said to be trivial (resp., whole) if

F (x) = {0} (resp., F (x) = X) for all x ∈ A.

Example 4.13. Let X = {0, a, b, c} be a BCI-algebra which is given Example 4.3. Let (F , A)

be a soft set over X, where A := {a, b, c} ⊂ X, and let F : A→P(X) be a set-valued function

defined by

F (x) = {y ∈ X|o(x) = o(y)}
for all x ∈ X. Then F (a) = F (b) = F (c) = X. It is check that X /q X. Hence (F , X \ {0})
is a whole q-idealistic soft BCI-algebra over X. Let G : {0} → P(X) be a set-valued function

defined by G (x) = x for all x ∈ {0}. Then G (0) = {0}. It is check that {0} /qX. Hence (G , {0})
is a trivial q-idealistic soft BCI-algebra over X.

Definition 4.14.([10]) A fuzzy set µ in X is a fuzzy q-ideal of X if it satisfies the following

assertions:

(i) (∀x ∈ X)(µ(0) ≥ µ(x)),

(ii) (∀x, y, z ∈ X)(µ(x ∗ z) ≥ min{µ(x ∗ (y ∗ z)), µ(y)}).

Lemma 4.15. A fuzzy set µ in X is a fuzzy q-ideal of X if and only if it satisfies:

(∀t ∈ [0, 1])(U(µ; t) 6= ∅ ⇒ U(µ; t) is a q-ideal of X).

Proof. Straightforward. �

Theorem 4.16. For every fuzzy q-ideal of X, there exists a q-idealistic soft BCI-algebra (F , A)

over X.

Proof. Let µ be a fuzzy q-ideal of X. Then U(µ; t) := {x ∈ X|µ(x) ≥ t} is a q-ideal of X for all

t ∈ Im(µ). If we take A = Im(µ) and consider a set-valued function F : A → P(X) given by

F (t) = U(µ; t) for all t ∈ A, then (F , A) is a q-idealistic soft BCI-algebra over X. �

Conversely, the following theorem is straightforward.

Theorem 4.17. For any fuzzy set µ in X, if a q-idealistic soft BCI-algebra (F , A) over X is

given by A = Im(µ) and F (t) = U(µ; t) for all t ∈ A, then µ is a fuzzy q-ideal of X.
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Let µ be a fuzzy set in X and let (F , A) be a soft set over X in which A = Im(µ) and

F : A→P(X) is a set-valued function defined by

(4.1) (t ∈ A)(F (t) = {x ∈ X|µ(x) + t > 1}).
Then there exists t ∈ A such that F (t) is not a q-ideal of X as seen in the following example.

Example 4.18. For any BCI-algebra X, define a fuzzy set µ in X by µ(0) = t0 < 0.5 and

µ(x) = 1− t0 for all x 6= 0. Let A = Im(µ) and F : A→P(X) be a set-valued function given

by (4.1). Then F (1− t0) = X\{0}, which is not a q-ideal of X.

Theorem 4.19. Let µ be a fuzzy set in X and let (F , A) be a soft over X in which A = [0, 1]

and F : A→P(X) is given by (4.1). Then the following assertions are equivalent:

(1) µ is a fuzzy q-ideal of X,

(2) for every t ∈ A with F (t) 6= ∅, F (t) is a q-ideal of X.

Proof. Assume that µ is a fuzzy q-ideal of X. Let t ∈ A be such that F (t) 6= ∅. If we select

x ∈ F (t), then µ(0) + t ≥ µ(x) + t > 1, and so 0 ∈ F (t). Let t ∈ A and x, y, z ∈ X be such that

y ∈ F (t) and x ∗ (y ∗ z) ∈ F (t). Then µ(y) + t > 1 and µ(x ∗ (y ∗ z)) + t > 1. Since µ is a fuzzy

q-ideal of X, it follows that

µ(x ∗ z) + t ≥min{µ(x ∗ (y ∗ z)), µ(y)}+ t

= min{µ(x ∗ (y ∗ z)) + t, µ(y) + t}
> 1,

so that x ∗ z ∈ F . Hence F (t) is a q-ideal of X with F (t) 6= ∅.
Conversely, suppose that (2) is valid. If there exists a ∈ X such that µ(0) < µ(a), then we can

select ta ∈ A such that µ(0) + ta ≤ 1 < µ(a) + ta. It follows that a ∈ F (ta) and 0 /∈ F (ta), which

is a contradiction. Hence µ(0) ≥ µ(x) for all x ∈ X. Now, assume that

µ(a ∗ c) < min{µ(a ∗ (b ∗ c)), µ(b)}

for some a, b, c ∈ X. Then

µ(a ∗ c) + s0 ≤ 1 < min{µ(a ∗ (b ∗ c)), µ(b)}+ s0,

for some s0, which implies a ∗ (b ∗ c) ∈ F (s0) and b ∈ F (s0), but a ∗ c ∈ F (s0). This is a

contradiction. Therefore

µ(x ∗ z) ≥ min{µ(x ∗ (y ∗ z)), µ(y)},
for all x, y, z ∈ X, and thus µ is a fuzzy q-ideal of X. �

Corollary 4.20. Let µ be a fuzzy set in X such that µ(x) > 0.5 for some x ∈ X, and let (F , A)

be a soft set over X in which

A := {t ∈ Im(µ)|t > 0.5}
and F : A → P(X) is given by (4.1). If µ is a fuzzy q-ideal of X, then (F , A) is a q-idealistic

soft BCI-algebra over X.

Proof. Straightforward. �
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Theorem 4.21. Let µ be a fuzzy set in X and let (F , A) be a soft set over X in which A = (0.5, 1]

and F : A→P(X) is defined by

(∀t ∈ A)(F (t) = U(µ; t)).

Then F (t) is a q-ideal of X for all t ∈ A with F (t) 6= ∅ if and only if the following assertions

are valid:

(1) (∀x ∈ X)(max{µ(0), 0.5} ≥ µ(x)),

(2) (∀x, y, z ∈ X)(max{µ(x ∗ z), 0.5} ≥ min{µ((x ∗ (y ∗ z)), µ(y)}).

Proof. Assume that F (t) is a q-ideal of X for all t ∈ A with F (t) 6= ∅. If there exists x0 ∈ X such

that max{µ(0), 0.5} < µ(x0), then we can select t0 ∈ A such that max{µ(0), 0.5} < t0 ≤ µ(x0).

It follows that µ(0) < t0, so that x0 ∈ F (t0) and 0 /∈ F (t0). This is a contradiction, and so (1)

is valid. Suppose that there exist a, b, c ∈ X such that

max{µ(a ∗ c), 0.5} < min{µ(a ∗ (b ∗ c)), µ(b)}.

Then

max{µ(a ∗ c), 0.5} < u0 ≤ min{µ(a ∗ (b ∗ c)), µ(b)}.
for some u0 ∈ A. Thus a ∗ (b ∗ c) ∈ F (u0) and b ∈ F (u0), but a ∗ c /∈ F (u0). This is a

contradiction, and so (2) is valid.

Conversely, suppose that (1) and (2) are valid. Let t ∈ A with F (t) 6= ∅. For any x ∈ F (t),

we have

max{µ(0), 0.5} ≥ µ(x) ≥ t > 0.5

and so µ(0) ≥ t, i.e., 0 ∈ F (t). Let x, y, z ∈ X be such that y ∈ F (t) and x ∗ (y ∗ z) ∈ F (t).

Then µ(y) ≥ t and µ(x ∗ (y ∗ z)) ≥ t. It follows from the second condition that

max{µ(x ∗ z), 0.5} ≥ min{µ(x ∗ (y ∗ z)), µ(y)} ≥ t > 0.5,

so that µ(x ∗ z) ≥ t, i.e., x ∗ z ∈ F (t). Therefore F (t) is a q-ideal of X for all t ∈ A with

F (t) 6= ∅. �
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Convergence of parallel multisplitting USAOR methods for block H−matrices
linear systems

Xue-Zhong Wang
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Abstract: In this paper, We present parallel multisplitting blockwise relaxation methods for solving the large sparse
blocked linear systems, which come from the discretizations of many discrential equations, and study the conver-
gence of our methods associated with USAOR multisplitting when the coefficient matrices of the blocked linear
systems are block H-matrices. A lot of numerical experiments show that our methods are applicable and efficient.

Key words: Block matrix multisplitting; Blockwise relaxation parallel multisplitting method; Convergence; Block
H-matrix.,
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1. Introduction

For the linear system
Ax =b , (1.1)

where A is an n× n square matrix, and x and b are n-dimensional vectors. O’Leary and White [6]invented the ma-
trix multisplitting method in 1985 for solving parallely the large sparse linear systems on the multiprocessor sys-
tems and was further studied by many authors. For example, Neumann and Plemmons [5] developed some more
refined convergence results for one of the cases considered in [6], Elsner [7] established the comparison theorems
about the asymptotic convergence rate of this case, Frommer and Mayer [8] discussed the successive overrelax-
ation (SOR) method in the sense of multisplitting, White [9,10] studied the convergence properties of the above
matrix multisplitting methods for the symmetric positive definite matrix class, as well as matrix multisplitting
methods as preconditioners, respectively, Bai [4] established the convergence theory of a class of asynchronous
multisplitting blockwise relaxation methods, Zhang, Huang, et, al. [3] present local relaxed parallel multisplitting
method and global relaxed parallel multisplitting method for H-matrices and so on. On the other hand, Since the
finite element or the finite difference discretizations of many partial differential equations usually result in the
large sparse systems of linear equations of regularly blocked structures, recently, [1,4] further generalized the ma-
trix multisplitting concept of O’Leary and White [6] to a blocked form and proposed a class of parallel matrix mul-
tisplitting blockwise relaxation methods. This class of methods, besides enjoying all the advantages of the existing
pointwise parallel matrix multisplitting methods discussed in [6,12], possesses better convergence properties and
robuster numerical behaviours. Therefore, the parallel matrix multisplitting blockwise relaxation methods for the
solution of large and sparse nonsingular blocked linear system have become more and more obvious.

In the following, we recall the mathematical descriptions of the blocked linear system and the BMM introduced
in [1,4].

Let N (≤ n ) and n i (≤ n )(i = 1, 2, . . . , N ) be given positive integers satisfying
∑N

i=1 n i = n , and denote

Vn (n 1, . . . , n N ) = {x ∈Rn |x = (x T
1 , . . . ,x T

N )
T ,x i ∈Rn i },

Ln (n 1, . . . , n N ) = {A ∈Rn×n |A = (A i j )N×N , A i j ∈Rn i×n j },
When the context is clear we will simply use Ln for Ln (n 1, . . . , n N ) and Vn for Vn (n 1, . . . , n N ). Then, the blocked
linear system to be solved can be expressed as the form

Ax =b , A ∈Ln , x ,b ∈Vn (1.2)
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Convergence of parallel multisplitting USAOR methods for block H−matrices linear systems

where A ∈ Ln is nonsingular and b ∈ Vn are general known coefficient matrix and right-hand vector, respectively,
and x ∈Vn is the unknown vector.

If blocked matrices M k , Nk , Ek ∈Ln (k = 1, 2, . . . ,α) satisfy
1. A =M k −Nk , M k nonsingular, k = 1, 2, . . . ,α,
2. Ek = d i a g (E (k )11 , . . . , E (k )N N ), k = 1, 2, . . . ,α,

3.
∑α

k=1 ||E
(k )
i i ||= 1, i = 1, 2, . . . , N ,

then we call the collection of triples (M k , Nk , Ek )(k = 1, 2, . . . ,α) is a BMM of the blocked matrix A ∈Ln , where || · ||
denotes the consistent matrix norm.

Suppose that we have a multiprocessor with α processors connected to a host processor, that is, the same
number of processors as splittings, and that all processors have the last update vector x k , then the k th processor
only computes those entries of the vector

M−1
k Nk x k +M−1

k b ,

which correspond to the block diagonal entries E (k )i i of the blocked matrix Ek . The processor then scales these
entries so as to be able to deliver the vector

EK (M−1
k Nk x k +M−1

k b )

to the host processor, performing the parallel multisplitting scheme

x m+1 =
α∑

k=1

EK M−1
k Nk x m +

α∑

k=1

EK M−1
k b =Hx m +G b , m = 0, 1, 2, . . .

Under reasonable restrictions on the relaxation parameters and the multiple splittings, we establish local par-
allel multisplitting blockwise relaxation method, global parallel multisplitting blockwise relaxation method and
global nonstationary parallel multisplitting blockwise relaxation method for solving the large sparse blocked lin-
ear systems and study the convergence of our methods associated with USAOR multisplitting when the coefficient
matrices of the blocked linear systems are block H-matrices.

2. Establishments of the methods

Given a positive integer α(α ≤ N ), we separate the number set {1, 2, . . . N } into a nonempty subsets Jk (k =
1, 2, . . . ,α) such that Jk ⊆ {1, 2, . . . , N } and

⋃α
k=1 Jk = {1, 2, . . . , N }.

Note that there may be overlappings among the subsets J1, J2, . . . , Jα. Corresponding to this separation, we
introduce matrices

D =diag(A11, . . . , AN N )∈Ln ,

L k = (L (k )i j )∈Ln , L (k )i j =

¨
L(k )i j for i , j ∈ Jk and i > j ,
0 otherwise,

Uk = (U (k )i j )∈Ln , U (k )i j =

¨
U (k )i j for i , j ,
0 otherwise,

Ek =diag(E (k )11 , . . . , E (k )N N )∈Ln , E (k )i i =

¨
E (k )i i for i ∈ Jk ,
0 otherwise,

i , j = 1, 2, . . . , N ; k = 1, 2, . . . ,α.

Obviously, D is a blocked diagonal matrix, L k (k = 1, 2, . . . ,α) are blocked strictly lower triangular matrices,
Uk (k = 1, 2, . . . ,α) are general blocked matrices, and Ek (k = 1, 2, . . . ,α) are blocked diagonal matrices. If they satisfy

1. D is nonsingular;
2. A =D − L k −Uk , k = 1, 2, . . . ,α;
3.
∑α

k=1 Ek = I ,
then the collection of triples (D − L k ,Uk , Ek ) and (D −Uk , L k , Ek ) (k = 1, 2, . . . ,α) are BMM of the blocked matrix
A ∈Ln . Here, I denotes the identity matrix of order n ×n .

We will present local parallel multisplitting blockwise relaxation USAOR method (LBUSAOR) and global paral-
lel multisplitting blockwise relaxation USAOR method (GBUSAOR).
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Algorithm 2.1. (local parallel multisplitting blockwise relaxation method)
Given the initial vector
For m = 0, 1, 2, . . . repeat (I) and (II), until convergence.

(I) For k = 1, 2, . . . ,α, (parallel) solving yk :

M k yk =Nk x m +b.

(II) Computing

x m+1 =
α∑

k=1

Ek yk .

Algorithm 2.1 associated with LBUSAOR method can be written as

x m+1 =HLBUSAOR x m +GLBUSAORb , m = 0, 1, · · · , (2.1)

where
HLBUSAOR =

∑α
k=1 Ek Uω2r2 (k )Lω1r1 (k ),

Uω2r2 (k ) = (D − r2Uk )−1{(1−ω2)D +(ω2− r2)Uk +ω2L k },
Lω1r1 (k ) = (D − r1L k )−1{(1−ω1)D +(ω1− r1)L k +ω1Uk },

GLBUSAOR =
∑α

k=1 Ek (D − r2Uk )−1{(ω1+ω2−ω1ω2)D +ω2(ω1− r1)L k

+ω1(ω2− r2)Uk }(D − r1L k )−1

(2.2)

By using a suitable positive relaxation parameter β , we will establish global parallel multisplitting blockwise
relaxation USAOR method which is based on Algorithm 2.1.

Algorithm 2.2. (global parallel multisplitting blockwise relaxation method)
Given the initial vector
For m = 0, 1, 2, . . . repeat (I) and (II), until convergence.

(I) For k = 1, 2, . . . ,α, (parallel) solving yk :

M k yk =Nk x m +b.

(II) Computing

x m+1 =β
α∑

k=1

Ek yk +(1−β )x m .

Algorithm 2.2 associated with GBUSAOR method can be written as

x m+1 =HG BUSAOR x m +βGLBUSAORb , m = 0, 1, · · · , (2.3)

where HG BUSAOR =βHLBUSAOR +(1−β )I .

In the standard multisplitting method each local approximation is updated exactly once using the same previ-
ous iterate x m . On the other hand, it is possible to update the local approximations more than once, using different
iterates computed earlier. In this case, we call this method a nonstationary multisplitting method [15,16,17]. The
main idea of the nonstationary method is that at the mth iteration each processor k solves the system q (m , k )
times, using in each time the new calculated vector to update the right-hand side; i.e., we have the following algo-
rithm:

Algorithm 2.3. (global nonstationary parallel multisplitting blockwise relaxation method)
Given the initial vector
For m = 0, 1, 2, . . . repeat (I) and (II), until convergence.

(I) For i = 1, 2, . . . ,q (m , k ), (parallel) solving y (i )k :

M k y (i )k =Nk y (i−1)
k +b.
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(II) Computing

x m+1 =β
α∑

k=1

Ek y q (m ,k )
k +(1−β )x m .

Algorithm 2.3 associated with GNBUSAOR method can be written as

x m+1 =HG N BUSAOR x m +βGG N BUSAORb , m = 0, 1, · · · , (2.4)

where
HG N BUSAOR = β

∑α
k=1 Ek (PωrQξη)q (m ,k )+(1−β )I

Pωr = (D − rk Uk )−1{(1−ωk )D +(ωk − rk )Uk +ωk L k }=M−1
r Nωr ,

Qξη = (D −ηk L k )−1{(1−ξk )D +(ξk −ηk )L k +ξk Uk }=M−1
η Nξη,

GG N BUSAOR = β
∑α

k=1 Ek

∑q (m ,k )−1
i=1 (MηM r )−1(Nωr Nξη)i (MηM r )−1ωkξk .

(2.5)

It follows that when q (m , k ) = 1, ωk =ω2, rk = r2, ξk =ω1 and ηk = r1 for 1 < k < α, m = 0, 1, 2...., Algorithm
2.3 reduces to Algorithm 2.2.

3. Preliminaries

We shall use the following notations and lemmas. A matrix A = (a i j ) is called a Z -matrix if for any i , j , a i j ≤ 0.
A Z -matrix is a nonsingular M -matrix if A is nonsingular and if A−1 ≥ 0. Additionally, we denote the spectral radius
of A by ρ(A). It is well-known that if A ≥ 0 and there exists a vector x > 0 such that Ax <αx , then ρ(A)<α. Let

Ln ,I (n 1, . . . , n N ) = {M = (M i j )∈Ln |M i i ∈Rn i×n i nonsingular, i = 1, . . . , N }.

We will review the concepts of strictly block diagonally dominant matrix and the block H-matrix. Let A ∈Ln ,I .
Then its block comparison matrix 〈A〉 is defined by

〈A〉i j =

¨
‖A−1

i j ‖−1, i = j ,
−‖A i j ‖, i , j ,

i , j = 1, . . . , N

where ‖ · ‖ is a consistent matrix norm. If

‖A−1
i i ‖−1 >

∑

i,j

‖A i j ‖, j = 1, 2, . . . , N .

Then A is said to be a strictly block diagonally dominant matrix [13], if there exists a positive diagonally matrix X
such that AX is a strictly block diagonally dominant matrix, then A is said to be a block H-matrix [14]. Clearly, a
strictly block diagonally dominant matrix is certainly a block H-matrix.

Definition 3.1 [1]. Let M ∈ Ln . We call [M ] = (‖M i j ‖) ∈ RN×N the block absolute value of the blocked matrix
M . The block absolute value [x ]∈RN of a blocked vector x ∈Vn is defined in an analogous way.

These kinds of block absolute values have the following important properties.

Lemma 3.1 [1]. Let L, M ∈Ln , x , y ∈Vn and r ∈R1. Then
1. |[L]− [M ]| ≤ [L+M ]≤ [L]+ [M ] (|[x ]− [y ]| ≤ [x + y ]≤ [x ]+ [y ]);
2. [LM ]≤ [L][M ] ([x y ]≤ [x ][y ]);
3. [r M ]≤ |r |[M ] ([r x ]≤ |r |[x ]);
4. ρ(M )≤ρ(|M |)≤ρ([M ]) (here, ‖ · ‖ is either ‖ · ‖∞ or ‖ · ‖1).

Lemma 3.2 [1]. Let M ∈Ln ,I be a strictly block diagonally dominant matrix, then
1. M is nonsingular;
2. [(M )−1]≤ 〈M 〉−1;
3. ρ(J (〈M 〉))< 1.
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4. Convergence

For Algorithms 1, 2 and 3, we give convergence theorems for block diagonally dominant matrices and block
H−matrices.

Theorem 4.1. Let A be a strictly block diagonally dominant matrix, and the collection of triples (D−L k ,Uk , Ek )
and (D −Uk , L k , Ek ) (k = 1, 2, . . . ,α) are BMM of the blocked matrix A ∈Ln . Assume that

〈A〉= 〈D〉− [L k ]− [Uk ] = 〈D〉− [B ], k = 1, 2, . . . ,α, 0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then LBUSAOR method converges for any initial vector x 0 ∈VN , where ρ =ρ(J (〈A〉)) =ρ(〈D〉−1[B ]).

Proof. By Lemma 3.1, we know ρ(HLBUSAOR ) ≤ ρ(|HLBUSAOR |) ≤ ρ([HLBUSAOR ]), and then, the iteration (2)
converges for any initial vector x 0 ∈ VN if and only if ρ([HLBUSAOR ]) < 1. Let B = L k +Uk , by (7), we know that
[B ] = [L k ] + [Uk ], clearly, D − r L k (k = 1, 2, . . . ,α) are strictly block diagonally dominant matrix for r > 0, and
〈D〉 − r [B ], (k = 1, 2, . . . ,α) are strictly block diagonally dominant matrix for 0 < r < 2

1+ρ which follow from A is

a strictly block diagonally dominant matrix. Since 〈D〉 − r [B ] ≤ 〈D〉 − r [Uk ] ≤ 〈D〉 for 0 < r < 2
1+ρ , k = 1, 2, . . . ,α,

and 〈A〉 is a strictly diagonally dominant matrix, we have 〈D〉 − r [B ] and 〈D〉 are strictly diagonally dominant M -
matrices, for 0 < r < 2

1+ρ , k = 1, 2, . . . ,α. Therefore, 〈D〉 − r [Uk ] are strictly diagonally dominant M -matrices, and

then D − rUk are strictly block diagonally dominant matrices, for 0< r < 2
1+ρ , k = 1, 2, . . . ,α.

Let L̄ k =D−1L k and Ūk =D−1Uk , then I−r L̄ k and I−rŪk are also strictly block diagonally dominant matrices,
for 0< r < 2

1+ρ , k = 1, 2, . . . ,α. Thus, by Lemma 3.1 and (7), we have

[(I − r1L̄ k )−1]≤ (〈I − r1L̄ k 〉)−1 = (I − r1[L̄ k ])−1,

[(I − r2Ūk )−1]≤ (〈I − r2Ūk 〉)−1 = (I − r2[Ūk ])−1.

From (3), we have

[Uω2r2 (k )] = [(D − r2Uk )−1{(1−ω2)D +(ω2− r2)Uk +ω2L k }]
= [(I − r2Ūk )−1{(1−ω2)I +(ω2− r2)Ūk +ω2L̄ k }]
≤ (I − r2[Ūk ])−1{|1−ω2|I +(ω2− r2)[Ūk ]+ω2[L̄ k ]}
= I +(I − r2[Ūk ])−1{(|1−ω2| −1)I +ω2([Ūk ]+ [L̄ k ])}.

Since L̄ k =D−1L k and Ūk =D−1Uk , we have [L̄ k ]≤ 〈D〉−1[L k ] and [Ūk ]≤ 〈D〉−1[Uk ]which follow from Lemma 3.1
and Lemma 3.2, and then

[Ūk ]+ [L̄ k ]≤ 〈D〉−1[Uk + L k ] = 〈D〉−1[B ] = J (〈A〉), k = 1, 2, . . . ,α.

Therefore, we have
[Uω2r2 (k )]≤ I − (I − r2[Ūk ])−1(I −T (ω2)),

where T (ω2) = |1−ω2|I +ω2 J (〈A〉). Note that (I − r2[Ūk (k )])−1 ≥ I , k = 1, 2, . . . ,α, and then

[Uω2r2 (k )]≤ I − (I −T (ω2)) = T (ω2).

Similar to the above proving process, we have

[Lω1r1 (k )]≤ I − (I −T (ω1)) = T (ω1),

where T (ω1) = |1−ω1|I +ω1 J (〈A〉).
Let e denotes the vector e = (1, 1, . . . , 1)T ∈ VN and Jε(〈A〉) = J (〈A〉) + εe e T , since J (〈A〉) is nonnegative, the

matrix Jε(〈A〉) has only positive entries and irreducible for any ε > 0. By the Perron-Frobenius theorem for any
ε> 0, there is a vector xε > 0 such that

Jε(〈A〉)xε =ρ(Jε(〈A〉))xε =ρεxε,
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where ρε = ρ(Jε(〈A〉)). Moreover, if ε > 0 is small enough, we have ρε < 1 by continuity of the spectral radius.
Thus, we can get

|1−ωi |+ωiρε < 1 for 0<ωi <
2

1+ρ , i = 1, 2,

and then
[HLBUSAOR ]xε ≤

∑α
k=1[Ek ][Uω2r2 (k )][Lω1r1 (k )]xε ≤

∑α
k=1[Ek ]T (ω2)T (ω1)xε

≤ (|1−ω2|I +ω2 Jε(〈A〉))(|1−ω1|I +ω1 Jε(〈A〉))xε
= (|1−ω1|+ω1ρε)(|1−ω2|+ω2ρε)xε
< xε,

then [HLBUSAOR ]xε < xε and ρ([HLBUSAOR ])< 1. �

Theorem 4.2. Let A be a block H-matrix, and the collection of triples (D − L k ,Uk , Ek ) and (D −Uk , L k , Ek )
(k = 1, 2, . . . ,α) are BMM of the blocked matrix A ∈Ln . Assume that

〈A〉= 〈D〉− [L k ]− [Uk ] = 〈D〉− [B ], k = 1, 2, . . . ,α, 0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then LBUSAOR method converges for any initial vector x 0 ∈VN , where ρ =ρ(J (〈A〉)) =ρ(〈D〉−1[B ]).

Proof. Since A is a block H-matrix, then, there exists a positive diagonally matrix X such that AX is a strictly
block diagonally dominant matrix. Let HLBUSAOR (A) denote the iteration matrix of local parallel multisplitting
blockwise relaxation method for blocked matrix A and HLBUSAOR (AX ) denote the iteration matrix of local par-
allel multisplitting blockwise relaxation method for blocked matrix AX , respectively. By simple calculation, we
have HLBUSAOR (A) and HLBUSAOR (AX ) are similar. Since similar matrices have the same eigenvalues, it follows that
ρ(HLBUSAOR (A)) =ρ(HLBUSAOR (AX ))< 1. �

Using GBUSAOR method, we can also get the following convergence results.

Theorem 4.3. Let A be a strictly block diagonally dominant matrix, and the collection of triples (D−L k ,Uk , Ek )
and (D −Uk , L k , Ek ) (k = 1, 2, . . . ,α) are BMM of the blocked matrix A ∈Ln . Assume that

〈A〉= 〈D〉− [L k ]− [Uk ] = 〈D〉− [B ], k = 1, 2, . . . ,α,

if

0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β <

2

1+θ 2
,

then GBUSAOR method converges for any initial vector x 0 ∈VN , where ρ =ρ(J (〈A〉)) =ρ(〈D〉−1[B ]) and

θ =m a x {|1−ω1|+ω1ρ, |1−ω2|+ω2ρ}.

Proof. Since ρ(HG BUSAOR ) ≤ ρ(|HG BUSAOR |) ≤ ρ([HG BUSAOR ]), the iteration (4) converges for any initial vector
x 0 ∈VN if and only if ρ([HG BUSAOR ])< 1. Let

θε =m a x {|1−ω1|+ω1ρε, |1−ω2|+ω2ρε},

similar to the proof of Theorem 4.1, we have

[HG BUSAOR ]xε ≤ β [{|1−ω2|I +ω2 Jε(〈A〉)}{|1−ω1|I +ω1 Jε(〈A〉)}]xε+ |1−β |xε
= β (|1−ω1|+ω1ρε){|1−ω2|I +ω2 Jε(〈A〉)}xε+ |1−β |xε
= β (|1−ω1|+ω1ρε)(|1−ω2|+ω2ρε)xε+ |1−β |xε
≤ (βθ 2+ |1−β |)xε
= (βθ 2

ε + |1−β |)xε
< xε
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then [HG BUSAOR ]xε < xε and ρ([HG BUSAOR ])< 1. �

Theorem 4.4. Let A be a block H-matrix, and the collection of triples (D − L k ,Uk , Ek ) and (D −Uk , L k , Ek )
(k = 1, 2, . . . ,α) are BMM of the blocked matrix A ∈Ln . Assume that

〈A〉= 〈D〉− [L k ]− [Uk ] = 〈D〉− [B ], k = 1, 2, . . . ,α, (4.1)

if

0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β <

2

1+θ 2
,

then GBUSAOR method converges for any initial vector x 0 ∈VN , where ρ =ρ(J (〈A〉)) =ρ(〈D〉−1[B ]) and

θ =m a x {|1−ω1|+ω1ρ, |1−ω2|+ω2ρ}.

Proof. Similar to the proof of Theorem 4.2, we can prove Theorem 4.4. �

Remark. As some special case, for local parallel multisplitting blockwise relaxation USAOR method (LBUSAOR)
and global parallel multisplitting blockwise relaxation USAOR method (GBUSAOR)(see Table 1), we also have the
corresponding convergence results, whenω1 =ω2, r1 = r2,ω1 =ω2 = r1 = r2 and so on.

Theorem 4.5. Let A be a block H-matrix, and the collection of triples (D − L k ,Uk , Ek ) and (D −Uk , L k , Ek )
(k = 1, 2, . . . ,α) are BMM of the blocked matrix A ∈Ln . Assume that

〈A〉= 〈D〉− [L k ]− [Uk ] = 〈D〉− [B ], k = 1, 2, . . . ,α,

if

0<ωk ,ξk <
2

1+ρ
, 0≤ rk ≤ωk , 0≤ηk ≤ ξk , 0<β <

2

1+σ2
,

then GNBUSAOR method converges for any initial vector x 0 ∈ VN , where ρ = ρ(J (〈A〉)) = ρ(〈D〉−1[B ]), q (m , k ) ≥ 1,
k = 1, 2, . . . ,α, m = 0, 1, 2, . . . and

σ= max
1≤k≤α

{|1−ωk |+ωkρ, |1−ξk |+ξkρ}.

Proof. We only need show ρ([HG N BUSAOR ]< 1), when A is a strictly block diagonally dominant matrix. By the
proof of Theorem 4.1, we know that

[(I − rk L̄ k )−1]≤ (〈I − rk L̄ k 〉)−1 = (I − rk [L̄ k ])−1,

[(I −ηk Ūk )−1]≤ (〈I −ηk Ūk 〉)−1 = (I −ηk [Ūk ])−1.

From (6), we have
[Pωr ]≤ |1−ωk |I +ωk Jε(〈A〉

and
[Qξη]≤ |1−ξk |I +ξk Jε(〈A〉).

Let
σε = max

1≤k≤α
{|1−ωk |+ωkρε, |1−ξk |+ξkρε}.

Similar to the above proving process, we get

[HG N BUSAOR ]xε ≤ β [
∑α

k=1 Ek (PωrQξη)q (m ,k )]xε+ |1−β |xε
≤ β

∑α
k=1[Ek ]([Pωr ][Qξη])q (m ,k )xε+ |1−β |xε

≤ β (|1−ωk |+ωkρε)(|1−ξk |+ξkρε)xε+ |1−β |xε
= (βσ2+ |1−β |)xε
< xε,

then [HG N BUSAOR ]xε < xε and ρ([HG N BUSAOR ])< 1. �
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Convergence of parallel multisplitting USAOR methods for block H−matrices linear systems

5. Numerical example

We consider the blocked linear system [1,4]

Ax =b , A ∈Ln , b ∈Vn , (5.1)

with n 1 = n 2 = . . .= n N ≡N , and n =N 2, where

A =




B −I
−I B −I

...
...

...
−I B −I

−I B




, B =




4 −1
−1 4 −1

...
...

...
−1 4 −1

−1 4




and the right hand side vector b is chosen as

b T = (1,
1

4
, . . . ,

1

n 2
)∈Vn .

Take α= 2 and two positive integers m1 and m2 satisfying 1<m2 <m1 <N . Then, corresponding to the number
sets J1 = {1, 2, . . . , m1} and J2 = {m2, m2+1, . . . , N }, we determine BMM (D−L k ,Uk , Ek ) and (D−Uk , L k , Ek ), k = 1, 2,
of the blocked matrix A in accordance with the following way:

D =diag(B , B , . . . , B )∈Ln ,

L 1 = (L (1)i j )∈Ln , L (1)i j =

¨
I for j = i −1 and 2≤ i ≤m1,
0 otherwise,

U1 = (U (1)i j )∈Ln , U (1)i j =





I for j = i −1 and m1+1≤ i ≤N ,
I for j = i +1 and 1≤ i ≤N −1,
0 otherwise,

L 2 = (L (2)i j )∈Ln , L (2)i j =

¨
I for j = i −1 and m2 ≤ i ≤N ,
0 otherwise,

U2 = (U (2)i j )∈Ln , U (2)i j =





I for j = i −1 and 2≤ i ≤m2−1,
I for j = i +1 and 1≤ i ≤N −1,
0 otherwise,

Ek =diag(E (k )11 , E (k )22 . . . , E (k )N N )∈Ln , k = 1, 2, E (1)i i =





I for 1≤ i ≤m2,
1
2

I for m2 ≤ i ≤m1,
0 for m1 < i ≤N .

E (2)i i =





0 for ≤ i ≤m2,
1
2

I for m2 ≤ i ≤m1,
I for m1 < i ≤N .

In particular, we select the positive integer pair (m1, m2) to be
(a )m1 =Int( 2N

3
), m2 =Int(N

3
);

(b )m1 =Int( 4N
5
), m2 =Int(N

5
),

then we can get two kinds of concrete cases of the weighting matrices E1 and E2, here, Int(·) denotes the integer
part of the corresponding real number.

In our numerical experiment, the initial approximation x 0 is taken as

x 0 = (0.5, . . . , 0.5)T ∈Vn .

Let the convergence criterion be ‖x k+1− x k ‖∞ ≤ 10−6. In Table 2 and Table 3, we report the number of iterations
by I T .

From Table 2 and Table 3, we easily see that the multisplitting blockwise relaxation USAOR methods discussed
in this paper substantially have better numerical behaviours than the multisplitting blockwise relaxation AOR
methods studied in [1], which shows that our new methods are applicable and efficient.
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Table 1: The iterations of LBUSAOR method for N=15
r1 1 1.05 1.1 [0.92,1.1] 1.1 1.1 1.2
r2 1.1 1.1 1.1 1.1 [1.0789,1.0881] 1.088 1.2
ω1 1.406 1.406 1.6 [1.796,1.825] 1.8 1.8 1.9
ω2 1.2 1.1 1.1 1.1 1.1 [1.096,1.1] 1.15

IT(a) 42 37 36 35 30 30 55
IT(b) 41 37 36 34 31 31 55

Table 2: The iterations of GBUSAOR method for N=15
r1 1 1.05 1.1 [0.92,1.1] 1.1 1.1 1.2
r2 1.1 1.1 1.1 1.1 [1.0789,1.0881] 1.088 1.2
ω1 1.406 1.406 1.6 [1.796,1.825] 1.8 1.8 1.9
ω2 1.2 1.1 1.1 1.1 1.1 [1.096,1.1] 1.15
β 0.8 1 1.05 1.1 1.2 [1.24,1.26] 1.3

IT(a) 51 37 35 27 25 24 90
IT(b) 52 37 35 28 26 25 64
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The properties and iterative algorithms of circulant matrices ∗
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Abstract

In this paper we investigate the structure and the iterative algorithms of circulant matrices.

Firstly, we show that the reduced form of a circulant matrix A is an H-matrix if the matrix A be

a circulant H-matrix, moreover, we can derive that the matrix A is a circulant H-matrix if some

conditions are imposed on the reduced form of the matrix A. Secondly, by using the properties

of the circulant matrix A, we present two new splittings of circulant M -matrices and obtain some

efficacious iterative algorithms for solving a linear system Ax = b.

Key words: Circulant matrix; H-matrix; M-matrix; reduced form; splitting; iterative algo-

rithm

1. Introduction

Patterned matrices just like circulant matrices, symmetric matrices, Jacobi matrices, cen-

trosymmetric matrices etc. arise in many areas of physics, electromagnetics, signal processing,

statistics and applied mathematics for the investigation of problems with periodicity properties.

Also, the numerical solutions of certain types of elliptic and parabolic partial differential equa-

tions with periodic boundary conditions often involve the linear systems Ax = b with a patterned

matrix A [1-3]. The properties of patterned matrices have been extensively investigated [4-6].

For recent years many authors have paid attention to developing iteration algorithms for solving

the linear systems with patterned matrices [7-9]. Circulant matrix is a kind of very important

patterned matrices.

In this paper we investigate the structure and the iterative algorithms of circulant matrices.

Firstly, we discuss the properties of the circulant matrix. We prove that the reduced form of a

circulant matrix A is an H-matrix if the matrix A be a circulant H-matrix. Moreover, we derive

that the matrix A is a circulant H-matrix if some conditions are imposed on the reduced form of

A. Secondly, by means of the properties of the circulant matrix A, we present two new splittings of

circulant M -matrices and obtain some efficacious iterative algorithms for solving a linear system

Ax = b. This paper is organized as follows. In next section, we review some basic definitions

and notations. In section 3, we show some properties of circulant matrices. In section 4, a new

splitting scheme is constructed, which can be deprived from a random convergent splitting of a

circulant matrix A, and two new splittings of the circulant M -matrix and H-matrix are presented.

The convergence of the corresponding iterative sequences is also discussed. Finally, on the basis

of the opposite triangular splittings and GMRES algorithm, we give three iterative algorithms

to solve the linear system Ax = b.

∗The work is supported by Natural Science Foundation of China (11171137), Zhejiang Provincial Natural

Science Foundation of China (LY13A010008).
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2. Preliminaries

In this section we will review some basic notations which frequently used in the following.

Let a ∈ Rn and a = (a0, a1, · · · , an−1)T . In a circulant matrix

Cir(a) :=



a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
...

a1 a2 · · · a0


each row is a cyclic shift of the row above to the right. Cir(a) is a special case of a Toeplitz

matrix. It is evidently determined by its first row (or column).

Definition 2.1 A matrix A = (ai,j)n×n is called an Z-matrix, if ai,j ≤ 0(i 6= j); an M-matrix

if A is an Z-matrix and A−1 ≥ 0. Let 〈A〉 = (αi,j)n×n, if αi,i = |ai,i|, αi,j = −|ai,j |(i 6= j), then

〈A〉 is called a comparision matrix of A. A matrix A is called an H-matrix, if its comparison

matrix 〈A〉 is an M -matrix.

Let A = M − N . Then the pairs of matrices (M,N) of A is called: a splitting of A if

det(M) 6= 0; a convergent splitting if ρ(M−1N) < 1, where ρ(M−1N) denote the spectral radius

of the matrix M−1N ; a regular splitting of A if M−1 ≥ 0 and N ≥ 0; a weak regular splitting of

A if M−1 ≥ 0 and M−1N ≥ 0.

Lemma 2.2[2] Let A = M −N be a weak regualr splitting of A, then ρ(M−1N) < 1 if and

only if A−1 ≥ 0.

Now consider the circulant matrices.

Lemma 2.3[1] (1) Let A ∈ Rn×n be a circulant matrix, then 〈A〉 is a circulant matrix.

Furthermore, if A is nonsingular, then A−1 is a circulant matrix; (2) AT is a circulant matrix;

(3) Let B ∈ Rn×n be a circulant matrix, then A±B and AB are also circulant matrices.

Let G = Cir(0, 1, 0, · · · , 0) ∈ Rn×n.

Lemma 2.4 A ∈ Rn×n is a circulant matrix if and only if GTAG = A.

All the formulas become slightly more complicated when n is odd. For simplicity, in this

paper, when n = 2m+ 1 we restrict the circulant matrix A to be symmetric, that is

A = Cir((a0, a1, a2, · · · , am, am, · · · , a1)T ). (2.1)

Using the partition of the matrix, the circulant matrix can be described as follows.

(i) For the case n = 2m, a circulant matrix can be written as the form:

A =

 B C

C B

 , (2.2)

where each of the block matrices B and C is an m×m matrix.

(ii) For the case n = 2m+ 1, a symmetric circulant matrix can be partitioned into the form:

A =


B Jma JmCJm

aTJm β aT

C a JmBJm

 , (2.3)

2
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where Jm = (em, em−1, · · · , e1), ei denotes the unit vector with ith entry 1, B,C ∈ Rm×m, a ∈
Rm×1 and β is a scalar.

Lemma 2.5 Let A be a circulant matrix, then A is orthogonal similar to a block diagonal

matrix. The block diagonal matrix can be described as follows.

(i) For n = 2m, let

P =

√
2

2

 Im Im

−Im Im

 ,

then

PTAP =

 B − C

B + C

 , (2.4)

where Im is a mth unit matrix.

(ii) In terms of (2.1) if n = 2m+ 1, we select the orthogonal matrix

P =

√
2

2


Im Im

√
2

−Jm Jm

 ,

then

PTAP =


B − JmC

β
√

2aTJm
√

2Jma B + JmC

 . (2.5)

We call the matrix of the right side of (2.4) or (2.5) the reduced form of the circulant matrix

A, corresponding to (2.2) or (2.3) respectively.

Lemma 2.6 Let A and C be M-matrices, if A ≤ B ≤ C, then B is also an M -matrix.

Lemma 2.7[3] Let A−1 ≥ 0 and

A = M̃1 − Ñ1 = M̃2 − Ñ2

be weak regular splittings. In either of the following cases

a) Ñ1 ≤ Ñ2

b) M̃−11 ≥ M̃−12 , N1 ≥ 0

c) M̃−11 ≥ M̃−12 , N2 ≥ 0

the inequality

ρ(M̃−11 Ñ1) ≤ ρ(M̃−12 Ñ2)

holds.

Lemma 2.8[4] Let A be nonsingular and A−1 ≥ 0, A = Ml − Nl(l = 1, 2, · · · , k) are k

weak regualar splittings of A. Then for any qualified El(l = 1, 2, · · · , k), ρ(W ) < 1, where

W =
∑k
l=1ElM

−1
l Nl,

∑k
l=1El = I.

Lemma 2.9[4] Let A be an H-matrix, A = Ml −Nl(l = 1, 2, · · · , k) are k splittings of A and

〈A〉 = 〈Ml〉−|Nl|, diag(Ml) = diag(A), then ρ(W ) < 1, where W =
∑k
l=1ElM

−1
l Nl,

∑k
l=1El =

I.

3
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3. Some properties of circulant matrices

In this section we will give some new properties of the reduced form of some special circulant

matrices which consist in the original matrices. The following theorem is evident.

Theorem 3.1 The reduced form of a circulant matrix A is nonsingular or positive definite,

respectively, if and only if A itself is nonsingular or positive definite, respectively.

Theorem 3.2 The reduced form of a circulant matrix A is an H-matrix, if the matrix A is

a circulant H-matrix.

Proof Let A be a circulant H-matrix. Then, for the case of n = 2m we will prove that both

B + C and B − C are also H-matrices.

From

〈B〉 − |C| ≤ 〈B − C〉 ≤ |D| (3.1)

and

〈B〉 − |C| ≤ 〈B + C〉 ≤ |D| (3.2)

where |D| is the diagonal part of the matrix |B|+ |C|, we obtain that 〈B〉 − |C| is an M -matrix.

Since A is an H-matrix, according to the properties of the H-matrices, the comparison matrix

〈A〉 is an M -matrix, and 〈B〉 is an M -matrix too. By Lemma 2.1, 〈A〉 can be represented as

〈A〉 =

 〈B〉 −|C|

−|C| 〈B〉

 . (3.3)

Let us consider the block Gauss-Seidel splitting of the matrix 〈A〉:

〈A〉 =

 〈B〉 0

−|C| 〈B〉

−
 0 |C|

0 0

 . (3.4)

In terms of  〈B〉 0

−|C| 〈B〉


−1

=

 〈B〉−1 0

〈B〉−1|C|〈B〉−1 0

 ≥ 0

and

 0 |C|

0 0

 ≥ 0, it follows that the formula (3.4) is a regular splitting. By Lemma 2.2, the

above splitting of the matrix 〈A〉 is convergent, thus

ρ


 〈B〉 0

−|C| 〈B〉


−1 0 |C|

0 0


 = ρ


 0 〈B〉−1|C|

0 (〈B〉−1|C|)2




= ρ2(〈B〉−1|C|) < 1.

It is evident that ρ(〈B〉−1|C|) < 1. We obtain that

(〈B〉 − |C|)−1 = (I − 〈B〉−1|C|)−1〈B〉−1 ≥ 0.

According to the definition of M -matrix, 〈B〉 − |C| is an M -matrix. By Lemma 2.6, 〈B −C〉
and 〈B+C〉 are M -matrices, by the definition of H-matrix, both B−C and B+C are H-matrices.

4
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Now we show that for the case of n = 2m+ 1, both matrix B − JmC and β
√

2aTJm
√

2Jma B + JmC


are H-matrices.

On the base of (2.3) we get that

〈A〉 =


〈B〉 −Jm|a| −Jm|C|Jm

−|aT |Jm |β| −|aT |

−|C| −|a| Jm〈B〉Jm

 . (3.5)

As A is an H-matrix, both 〈A〉 and 〈B〉 are M -matrices. It is easy to verify that |β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|

 ≤
 |β| −

√
2|aT |Jm

−
√

2Jm|a| 〈B + Jm|C|〉

 ≤
 |β|

|D|


where |D| is the diagonal part of the matrix |B|+ Jm|C|.

Using the equivalence conditions of M -matrices ([2]), we can easily prove that there exists a

positive vector x ∈ R2m+1 such that 〈A〉x > 0. Partitioning x in the form of (2.3), denoted by

(yT , γ, (Jmy)T )T , then 〈A〉x > 0 implies that
〈B〉 −Jm|a| −Jm|C|Jm

−|aT |Jm |β| −|aT |

−|C| −|a| Jm〈B〉Jm




y

γ

Jmy

 > 0

Then

(〈B〉 − Jm|C| − (2/|β|)Jm|a||aT |Jm)y > 0.

Using the equivalence of an M -matrix again, we have that (〈B〉 − Jm|C| − (2/|β|)Jm|a||aT |Jm)

is an M -matrix.

By

(〈B〉 − Jm|C| − (2/|β|)Jm|a||aT |Jm) ≤ 〈B〉 − Jm|C| ≤ |D|,

using Lemma 2.6, we find that 〈B〉 − Jm|C| is an M -matrix.

It follows from (3.5) that

PT 〈A〉P =


〈B〉+ Jm|C|

|β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|

 .

As 〈A〉 is an M -matrix, all the real eigenvalues of 〈A〉 are positive, thus all the real eigenvalues

of the matrix  |β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|


5
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are positive too. According to the equivalence conditions of M -matrices, the above matrix is an

M -matrix, we obtain that  β
√

2aTJm
√

2Jma B + JmC


is an H-matrix. We have completed the proof.

Note that converse of Theorem 3.2 does not hold in general. For example, the circulant matrix

A =



5 3 1 2

2 5 3 1

1 2 5 3

3 1 2 5


is not an H-matrix, but its reduced form (2.4)

4 1 0 0

−1 4 0 0

0 0 6 5

0 0 5 6


is an H-matrix.

By the above example, we find that reduced form of the circulant matrix A is an H-matrix

does not imply that A is an H-matrix itself. However, if some conditions are imposed on the

matrices B and C in the reduced form of A, then we can derive that the matrix A is a circulant

H-matrix.

Theorem 3.3 Let A be an n× n circulant matrix.

(i) For n = 2m, if 〈B〉 − |C| is an M -matrix, then A is an H-matrix.

(ii) For n = 2m+1, if

 |β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|

 is an M -matrix, then A is an H-matrix.

Proof First consider the case of n = 2m. From the assumption that 〈B〉 − |C| is an m×m
M -matrix, and

〈B〉 − |C| ≤ 〈B〉 ≤ D〈B〉,

where D〈B〉 denotes the diagonal part of the matrix 〈B〉, by Lemma 2.6, we find that the matrix

〈B〉 is an M -matrix.

Since 〈B〉 is an M -matrix, according to the definition of regular splitting, then 〈B〉 − |C| is

a regular splitting of the M -matrix (〈B〉 − |C|), there holds ρ(〈B〉−1|C|) < 1. By means of the

proof of Theorem 3.2, the bolck Gauss-Seidel splitting of

〈A〉 =

 〈B〉 0

−|C| 〈B〉

−
 0 |C|

0 0
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is a regular splitting. Note that

ρ


 〈B〉 0

−|C| 〈B〉


−1 0 |C|

0 0


 = ρ2(〈B〉−1|C|) < 1.

It is well known, a Z-matrix is an M -matrix if and only if it has a convergent regular splitting,

so the matrix 〈A〉 is an M -matrix, and thus A is an H-matrix.

We now turn to consider the case n = 2m+ 1. From the hypothesis, we have that the matrix |β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|


is an M -matrix. Therefore, the matrices 〈B〉 − Jm|C|, 〈B〉, 〈B − JmC〉 and 〈B + JmC〉 are all

M -matrices too. Moreover, the Schur complement of the matrix |β| −
√

2|aT |Jm

−
√

2Jm|a| 〈B〉 − Jm|C|


is (〈B〉 − Jm|C| − (2/|β|)Jm|a||aT |Jm), which is still an M -matrix by using the property of the

Schur complement of an M -matrix. Utilizing the equivalence of an M -matrix again, there exist

a positive vector y such that

(〈B〉 − Jm|C| − (2/|β|)Jm|a||aT |Jm)y > 0,

that is,

(〈B〉 − Jm|C|)y > (2/|β|)(|aT |Jmy)Jm|a|.

Select a positive scalar α such that

(〈B〉 − Jm|C|)y > αJm|a| > (2/β)(|aT |Jmy)Jm|a|,

we obtain that 
〈B〉 −Jm|a| −Jm|C|Jm

−|aT |Jm |β| −|aT |

−|C| −|a| Jm〈B〉Jm




y

α

Jmy

 > 0,

which mean that the matrix 〈A〉 is an M -matrix. Thus we yield the desired results.

4. The iterative methods for circulant matrices

4.1 Construction of an arithmetic mean splitting

We will give a new splitting scheme of a circulant matrix A, which is called the arithmetic

mean splitting. Let the circulant matrix A = M − N be a random convergent splitting of the

matrix A. An iterative sequence derived from the splitting is defined by

xk+1 = M−1Nxk +M−1b. (4.1.1)

7
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Since A = GTAG, we can get another convergent iterative sequence:

xk+1 = GTM−1NGxk +GTM−1Gb. (4.1.2)

In terms of (4.1.1) and (4.1.2), we can obtain a new iterative sequence:

xk+1 =
1

2
(M−1N +GTM−1NG)xk +

1

2
(M−1 +GTM−1G)b. (4.1.3)

Denote F = 1
2 (M−1 + GTM−1G) and H = 1

2 (M−1N + GTM−1NG), then (4.1.3) can be

written as

xk+1 = Hxk + Fb. (4.1.4)

If det(F) 6= 0, a new splitting of A can be expressed as

A = F−1 − F−1H. (4.1.5)

(4.1.5) is called the arithmetic mean splitting of the matrix A. By (4.1.3) we can derive a

splitting from a random convergent splitting of the circulant matrix A.

Theorem 4.1.1 Let A be a circulant matrix and

A = M −N

be a weak regular splitting, then

A = GTAG = GTMG−GTNG

is also a weak regular splitting.

Proof Since A = M −N is a weak regular splitting, there holds M−1 ≥ 0 and M−1N ≥ 0.

Consider that G is a permutation matrix and use the fact G−1 = GT , then

(GTMG)−1 = GTM−1G ≥ 0,

and

(GTMG)−1(GTNG) = GTM−1NG ≥ 0,

Therefore A = GTMG−GTNG is a weak regular splitting.

According to Lemma 2.8 and Theorem 4.1.1, we can get the following iterative convergent

theorem.

Theorem 4.1.2 Let A be a circulant M-matrix, and A = M − N be a weak regular of A,

then the iterative sequence

xk+1 =
1

2
(M−1N +GTM−1NG)xk +

1

2
(M−1 +GTM−1G)b

is convergent.

Using Lemma 2.9 we can get the following result.

Theorem 4.1.3 Let A be a circulant H-matrix, A = F −Q be a splitting of the matrix A

and 〈A〉 = 〈F 〉 − |Q|, then the iterative sequence

xk+1 =
1

2
(F−1J +GTF−1JG)xk +

1

2
(F−1 +GTF−1G)b

is convergent.

8
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4.2 Two new splittings of circulant M-matrices

Now we will present two new splittings of the circulant matrix A and investigate their con-

vergence.

(1) Opposite triangular splitting I:

(i) For n = 2m, A = F1 −Q1, where

F1 =

 B̂1 Ĉ1

Ĉ1 B̂1

 , Q1 =

 B∗1 C∗1

C∗1 B∗1

 ,

here B̂1 and Ĉ1 is the left lower triangular matrix of B and C respectively, and B∗1 and C∗1 is the

strictly right upper triangular matrix of −B and −C respectively.

(ii) For n = 2m+ 1, A = F2 −Q2, where

F2 =


B̂2 Jma JmĈ2Jm

0 β 0

Ĉ2 a JmB̂2Jm

 , Q2 =


B∗2 0 JmC

∗
2Jm

−aTJm 0 −aT

C∗2 0 JmB
∗
2Jm

 ,

here B̂2 is the left lower triangular matrix of B, Ĉ2 is the left upper triangular matrix of C, B∗2
is the strictly right upper triangular matrix of −B, and C∗2 is the strictly right lower triangular

matrix of −C.

(2) Opposite triangular splitting II:

(i) For n = 2m, A = R1 − V1, where

R1 =

 E1 H1

H1 E1

 , V1 =

 E∗1 H∗1

H∗1 E∗1

 ,

here E1 and H1 is the right upper triangular matrix of B and C respectively, and E∗1 and H∗1 is

the strictly left lower triangular matrix of −B and −C respectively.

(ii) For n = 2m+ 1,A = R2 − V2, where

R2 =


E2 0 JmH2Jm

aTJm β aT

H2 0 JmE2Jm

 , V2 =


E∗2 −Jma JmH

∗
2Jm

0 0 0

H∗2 −a JmE
∗
2Jm

 ,

here E2 is the right upper triangular matrix of B, H2 is the right lower triangular matrix of C,

E∗2 is the strictly left lower triangular matrix of −B, and H∗2 is the strictly left upper triangular

matrix of −C.

In terms of the opposite triangular splitting I, we can get the following two SOR iterative

sequences [5], at the same time, we can also get the similar conclusion by means of the opposite

triangular splitting II.

(i) For n = 2m,

(a) Global SOR sequence

F1xk+1 = ((1− ω)F1 + ωQ1)xk + ωb. (4.2.1)

9
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(b) Part SOR sequence

F1xk+1 = Q1xk + b. (4.2.2)

Thus we have

PTF1PP
Txk+1 = PTQ1PP

Txk + PT b, (4.2.3)

F̂1 = PTF1P =

 B̂1 − Ĉ1 0

0 B̂1 + Ĉ1

 =

 T̂1 0

0 T̂2

 ,

Ĝ1 = PTQ1P =

 B∗1 − C∗1 0

0 B∗1 + C∗1

 =

 Ĥ1 0

0 Ĥ2

 ,

where T̂1 = B̂1 − Ĉ1 and T̂2 = B̂1 + Ĉ1 are m×m left lower triangular matrices, Ĥ1 = B∗1 − C∗1
and Ĥ2 = B∗1 + C∗1 are m×m strictly right upper triangular matrices.

Let PTxk+1 = yk+1, P
Txk = yk, P

T b = b̂, then (4.2.3) becomes T̂1 0

0 T̂2


 y

(1)
k+1

y
(2)
k+1

 =

 Ĥ1 0

0 Ĥ2


 y

(1)
k

y
(2)
k

+

 b̂(1)

b̂(2)

 .

Thus  T̂1y
(1)
k+1 = Ĥ1y

(1)
k + b̂1,

T̂2y
(2)
k+1 = Ĥ2y

(2)
k + b̂2.

(4.2.4)

From (4.2.4), we can get Part SOR sequence: T̂1y
(1)
k+1 = ((1− ω1)T̂1 + ω1Ĥ1)y

(1)
k + ω1b̂1,

T̂2y
(2)
k+1 = ((1− ω2)T̂2 + ω2Ĥ2)y

(2)
k + ω1b̂2.

(4.2.5)

(ii) For n = 2m+ 1

(aa) Global SOR sequence

F2xk+1 = ((1− ω)F2 + ωQ2)xk + ωb. (4.2.6)

(bb) Part SOR sequence

F2xk+1 = Q2xk + b. (4.2.7)

We can get the similar Part SOR iterative sequence: T ∗1 y
(1)
k+1 = ((1− ω1)T ∗1 + ω1H

∗
1 )y

(1)
k + ω1b

∗
1,

T ∗2 y
(2)
k+1 = ((1− ω2)T ∗2 + ω2H

∗
2 )y

(2)
k + ω1b

∗
2,

(4.28)
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where T ∗1 = B̂2 − JmĈ2 and T ∗2 =

 β 0

√
2Jma B̂2 + JmĈ2

 are m × m left lower triangular

matrices, H∗1 = B∗2 − JmC
∗
2 and H∗2 =

 0 −
√

2aTJm

0 B∗2 + JmC
∗
2

 are m × m strictly right upper

triangular matrices.

Now we will discuss the convergence of the two splittings of circulant matrices and the SOR

iterative sequence above.

Theorem 4.2.1 Let A be a circulant M -matrix, and A = F − Q be opposite triangular

splitting I or II of the matrix A, then ρ(F−1Q) < 1.

Proof It can easily get that

A ≤ F ≤ |D|,

where D is the diagonal part of the matrix A. By Lemma 2.6, F is also an M -matrix, then

F−1 ≥ 0. On the other hand, it is evident that Q ≥ 0. By the definition of the regular splitting,

A = F −Q is a regular splitting of the matrix A. Using Lemma 2.2 we have ρ(F−1Q) < 1.

Theorem 4.2.2 Let A be a circulant M -matrix, and A = F1 − Q1 be opposite triangular

splitting I of A, then

(1) if ω ∈
(

0, 2
1+ρ(F−1

1 Q1)

)
; Global SOR sequence is convergent,

(2) if ω1 ∈
(

0, 2
1+ρ(T̂−1

1 Ĥ1)

)
, ω2 ∈

(
0, 2

1+ρ(T̂−1
2 Ĥ2)

)
, Part SOR sequence is convergent.

Proof (1) By Theorem 4.2.1, ρ(F−11 Q1) < 1. Using Lemma 6 in [6], when ω ∈
(

0, 2
1+ρ(F−1

1 Q1)

)
,

ρ(H(ω)) < 1, where H(ω) = (1− ω)I + ωF−11 Q1 is the iterative matrix of global SOR sequence.

(2) Since ρ(F−11 Q1) < 1, then ρ(F̂−11 Q̂1) < 1. From (4.2.3), ρ(T̂−11 Ĥ1) < 1, and ρ(T̂−12 Ĥ2) <

1. By Lemma 6 of [6], when ω1 ∈
(

0, 2
1+ρ(T̂−1

1 Ĥ1)

)
and ω2 ∈

(
0, 2

1+ρ(T̂−1
2 Ĥ2)

)
, the Part SOR

sequence is convergent. Similarly, (4.2.7) and (4.2.8) are convergent.

It is easy to find that the proof of the case of n = 2m+ 1 is similar to above.

Using the same methods, we can obtain the related results of the splitting II. We will make

a comparison of convergence rate of the iterative sequences. From Lemma 2.10, we can get the

following two theorems.

Theorem 4.2.3 Let A be a circulant M -matrix, A = D − (L + U) be Jacobi
′
s splitting of

A and A = F −Q be opposite triangular splitting I of A, then ρ(F−1Q) ≤ ρ(D−1(L+ U)).

Proof It can easily get that A−1 ≥ 0, A = F − Q and A = D − (L + U) are the regular

splittings of the matrix A and 0 ≤ Q ≤ L+ U , then by Lemma 2.7 there holds

ρ(F−1Q) ≤ ρ(D−1(L+ U)).

Example 4.2.4 Consider the circulant M -matrix

A =



2 −1 −0.5 0

0 2 −1 −0.5

−0.5 0 2 −1

−1 −0.5 0 2


.
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The iterative matrices of Jacobi
′
s splitting and the opposite triangular splitting I of the matrix

A can be expressed by GJ and GI , respectively. We have ρ(GJ) = 0.7500 and ρ(GI) = 0.4444.

Thus ρ(GI) < ρ(GJ).

Theorem 4.2.5 Let A be a circulant M -matrix, A = D−(L+U) and A = R−V be Jacobi
′
s

splitting and opposite triangular splitting II of the matrix A respectively, then ρ(R−1V ) ≤
ρ(D−1(L+ U)).

Proof The proof is similar to that of Theorem 4.2.3.

Example 4.2.6 Consider the circulant M -matrix

A =



8 −1 −2 −4

−4 8 −1 −2

−2 −4 8 −1

−1 −2 −4 8


.

Let GII be the iterative matrix of opposite triangular splitting II. We get ρ(GJ) = 0.8750,

and ρ(GII) = 0.6944. Thus ρ(R−1V ) ≤ ρ(D−1(L+ U)).

Example 4.2.7 Consider the circulant M-matrix

A =



8 −1 −2 −3

−3 8 −1 −2

−2 −3 8 −1

−1 −2 −3 8


.

Let the iterative matrix of Gauss-Seidel splitting be GG. We get ρ(GG) = 0.5111, and

ρ(GI) = ρ(GII) = 0.4444. Then ρ(F−11 J1) = ρ(F−12 J2) ≤ ρ(D − L)−1U), which mean that in

this example, the opposite triangular splitting I and II have a better convergence rate than that

of Gauss-Seidel splitting.

In fact, we can get the similar conclusion for the case of n = 2m+ 1.

4.3 Several splittings of circulant H-matrices

In this subsection, we also give two new splittings which are similar to those in Subsection

4.2. Now we only discuss their convergence, their costs of computation and store are analogous

with those of Subsection 4.2.

Theorem 4.3.1 Let A be a circulant H-matrix, A = F −Q be opposite triangular splitting

I(II) of the matrix A, then ρ(F−1Q) < 1.

Proof There holds 〈A〉 = 〈F 〉 − |Q|, by Lemma 2.9, thus we get ρ(F−1Q) < 1.

Theorem 4.3.2 Let A be a circulant H-matrix, A = F −Q be opposite triangular splitting

I(II) of A, then

(1) if ω ∈
(

0, 2
1+ρ(F−1

1 Q1)

)
, then Global SOR sequence is convergent;

(2) if ω1 ∈
(

0, 2
1+ρ(T̂−1

1 Ĥ1)

)
, ω2 ∈

(
0, 2

1+ρ(T̂−1
2 Ĥ2)

)
, then Part SOR sequence is convergent.

Proof The proof is similar to Theorem 4.2.2.
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4.4 Three algorithms for the solution of Ax = b

Finally, we will construct three algorithms for the linear system Ax = b. The following al-

gorithms 1 and 2 are based on the opposite triangular splittings in Subsections 4.2 and 4.3, and

GMRES(m) algorithm is applied when the matrix A is very large and sparse.

Algorithm 1 (opposite triangular splitting I)

Step 1: Select an arbitrary starting point x0 and a stopping criteria ε.

Step 2: Let A = F − Q be the opposite triangular splitting I. Its iterative sequence is

Fxk = Qxk−1 + b, where A is a circulant M -matrix or a circulant H-matrix. By Lemma 2.5,

there exists an orthogonal matrix P such that

PTFPPTxk+1 = PTQPPTxk + PT b.

It is easy to know that F̂ = PTFP and Q̂ = PTQP are a left lower triangular matrix and a

right strictly upper triangular matrix, respectively. Let

x̂k = PTxk = (x̂k,1x̂k,2, · · · , x̂k,n)T ,

b̂ = PT b = (b̂1b̂2, · · · , b̂n)T .

Step 3: For k = 1, 2, · · · , and for j = 1 to n, construct

x̂k,i =
1

F̂i,i

(
b̂i −

i−1∑
s=1

F̂i,sx̂k,s +
n∑

s=i+1

Q̂i,sx̂k−1,s

)
.

Step 4: If ‖x̂k − x̂k−1‖ < ε, then stop, let x = Px̂k, which is an approximate solution to the

linear system Ax = b; Otherwise set k = k + 1 and return to step 3.

Algorithm 2 (opposite triangular splitting II)

Step 1: Select an arbitrary starting point x0 and a stopping criteria ε.

Step 2: Let A = R− V be the opposite triangular splitting II and its iterative sequence be

Rxk = V xk−1 + b, where A is a circulant M -matrix or a circulant H-matrix. By Lemma 2.5,

there exists an orthogonal matrix P :

PTRPPTxk+1 = PTV PPTxk + PT b.

It is easy to know that R̂ = PTRP and V̂ = PTV P are an right upper triangular matrix and

a strictly left lower triangular matrix respectively. Let

x̂k = PTxk = (x̂k,1x̂k,2, · · · , x̂k,n)T ,

b̂ = PT b = (b̂1b̂2, · · · , b̂n)T .

Step 3: For k = 1, 2, · · · , and for j = 1 to n, construct

x̂k,i =
1

R̂i,i

(
b̂i +

i−1∑
s=1

V̂i,sx̂k−1,s −
n∑

s=i+1

R̂i,sx̂k,s

)
.

Step 4: If ‖x̂k − x̂k−1‖ < ε, then stop, let x = Px̂k, which is an approximate solution to

the linear system Ax = b; Otherwise set k = k + 1 and return to step 3.
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When the circulant matrix A is very large and sparse, the GMRES(m) algorithm is very

useful to solve the linear system Ax = b. Using the circulant property of the matrix A, we can

reduce a large of the cost of computation and store by means of GMRES(m) algorithm.

Algorithm 3 (GMRES(m) algorithm)

Step 1: Reduce the linear system Ax = b to

PTAPPTx = PT b.

Let Ã = PTAP, x̃ = PTx, and b̃ = PT b.

Step 2: Choose x̃0 ∈ Rn, calculate r0 = b̃− Ãx̃0 and v1 = r0/‖r0‖2.

Step 3: Choose an appropriate m, obtain {vi}mi=1 and H̃m by the Arnoldi process.

Step 4: Calculate ym = miny∈Rk‖βe1 − H̃my‖2.

Step 5: Obtain x̃m = x̃0 + Vmym.

Step 6: Calculate ‖rm‖ = ‖b̃− Ãx̃m‖. For a given ε > 0, if ‖rm‖ < ε, then stop, and we can

obtain the approximate solution: x = Px̃.

Step 7: Otherwise let x̃0 = x̃m, and v1 = rm/‖rm‖2, return to step 3.
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