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Switching design for the robust stability of nonlinear uncertain

stochastic switched discrete-time systems with interval time-varying

delay

G. Rajchakit
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Maejo University, Chiangmai 50290, Thailand

Corresponding author: griengkrai@yahoo.com

Abstract

This paper is concerned with robust stability of nonlinear uncertain stochastic switched discrete

time-delay systems with interval time-varying delay. The system to be considered is subject to interval

time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not

restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust stability for

the nonlinear uncertain stochastic switched discrete time-delay system with interval time-varying delay

is designed via linear matrix inequalities.

Keywords. Switching design, nonlinear uncertain stochastic switched discrete system, time-varying delay,
robust stability, Lyapunov function, linear matrix inequality.

1 Introduction

Time delay is often a source of instability and poor performance, and is encountered in various engineering
systems, such as chemical processes and long transmission lines in pneumatic systems. Time-delay systems
have received much attention in recent years, and various topics concerning time-delay systems have been
addressed; see, e.g., [1-10], and the references cited therein. As an important class of hybrid systems,
switched systems arise in many practical processes that cannot be described by exclusively continuous or
exclusively discrete models, such as manufacturing, communication networks, automotive engineering control
and chemical processes (see, e.g., [1–3] and the references therein). On the other hand, time-delay phenomena
are very common in practical systems. A switched system with time-delay individual subsystems is called a
switched time-delay system; in particular, when the subsystems are linear, it is then called a switched time-
delay linear system. During the last decades, the stability analysis of switched linear continuous/discrete
time-delay systems has attracted a lot of attention [4–8]. The main approach for stability analysis relies on
the use of Lyapunov-Krasovskii functionals and linear matrix inequlity (LMI) approach for constructing a
common Lyapunov function [9–11]. Although many important results have been obtained for switched linear
continuous-time systems, there are few results concerning the stability of switched linear discrete systems
with time-varying delays (see, e.g., [1–3] and the references therein). It was shown in [5, 7, 12] that when
all subsystems are asymptotically stable, the switching system is asymptotically stable under an arbitrary
switching rule. The asymptotic stability for switching linear discrete time-delay systems has been studied
in [13], but the result was limited to constant delays. In [14], a class of switching signals has been identified
for the considered switched discrete-time delay systems to be stable under the average dwell time scheme.
To the best of the author’s knowledge, the stability for linear discrete-time systems with both time-varying
delays and nonlinear uncertain stochastic discrete switch system has not been fully investigated (see, e.g.,
[14–20] and the references therein), which are important in both theories and applications. This motivates
our research.
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This paper studies robust stability problem for nonlinear uncertain stochastic switched discrete-time
delay systems with interval time-varying delays. Specifically, our goal is to develop a constructive way to
design switching rule to robustly stable of the nonlinear uncertain stochastic switched discrete-time delay
systems with interval time-varying delay. By using improved Lyapunov-Krasovskii functionals combined
with LMIs technique, we propose new criteria for the robust stability of the nonlinear uncertain stochastic
switched discrete-time delay system with interval time-varying delay. Compared to the existing results, our
result has its own advantages. First, the time delay is assumed to be a time-varying function belonging to
a given interval, which means that the lower and upper bounds for the time-varying delay are available, the
delay function is bounded but not restricted to zero. Second, the approach allows us to design the switching
rule for robust stability in terms of LMIs.

The paper is organized as follows: Section 2 presents definitions and some well-known technical proposi-
tions needed for the proof of the main results. Switching rule for the robust stability is presented in Section
3.

2 Preliminaries

The following notations will be used throughout this paper. R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with the scalar product of two vectors 〈x, y〉 or xT y; Rn×r

denotes the space of all matrices of (n× r)− dimension. N+ denotes the set of all non-negative integers; AT

denotes the transpose of A; a matrix A is symmetric if A = AT .

Matrix A is semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn;A is positive definite (A > 0)
if 〈Ax, x〉 > 0 for all x 6= 0; A ≥ B means A − B ≥ 0. λ(A) denotes the set of all eigenvalues of A;
λmin(A) = min{Reλ : λ ∈ λ(A)}.

Consider a nonlinear uncertain stochastic switched discrete-time delay systems with interval time-varying
delay of the form

x(k + 1) = (Aγ + ∆Aγ(k))x(k) + (Bγ + ∆Bγ(k))x(k − d(k)) + f(k, x(k − d(k)))

+ σ(x(k), x(k − d(k)), k)ω(k), k ∈ N+, x(k) = vk, k = −d2,−d2 + 1, ..., 0,
(2.1)

where x(k) ∈ Rn is the state, γ(.) : Rn → N := {1, 2, . . . , N} is the switching rule, which is a function
depending on the state at each time and will be designed. A switching function is a rule which determines a
switching sequence for a given switching system. Moreover, γ(x(k)) = i implies that the system realization
is chosen as the ith system, i = 1, 2, ..., N. It is seen that the system (2.1) can be viewed as an autonomous
switched system in which the effective subsystem changes when the state x(k) hits predefined boundaries.
Ai, Bi, i = 1, 2, ..., N are given constant matrices.

The nonlinear perturbations f(k, x(k − d(k))) satisfies the following condition

fT (k, x(k − d(k)))f(k, x(k − d(k))) ≤ β2xT (k − d(k))x(k − d(k)), (2.2)

where β is positive constant. For simplicity, we denote f(k, x(k − d(k)) by f , respectively.

The time-varying uncertain matrices ∆Ai(k) and ∆Bi(k) are defined by:

∆Ai(k) = EiaFia(k)Hia, ∆Bi(k) = EibFib(k)Hib,

where Eia, Eib,Hia,Hib are known constant real matrices with appropriate dimensions.
Fia(k), Fib(k) are unknown uncertain matrices satisfying

FT
ia(k)Fia(k) ≤ I, FT

ib (k)Fib(k) ≤ I, k = 0, 1, 2, ..., (2.3)

where I is the identity matrix of appropriate dimention, ω(k) is a scalar Wiener process (Brownian Motion)
on (Ω,F ,P) with

E[ω(k)] = 0, E[ω2(k)] = 1, E[ω(i)ω(j)] = 0(i 6= j), (2.4)
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and σ: Rn × Rn × R → Rn is the continuous function, and is assumed to satisfy that

σT (x(k), x(k − d(k)), k)σ(x(k), x(k − d(k)), k) ≤ ρ1x
T (k)x(k) + ρ2x

T (k − d(k))x(k − d(k),

x(k), x(k − d(k) ∈ Rn,
(2.5)

where ρ1 > 0 and ρ2 > 0 are known constant scalars. The time-varying function d(k) : N+ → N+ satisfies
the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k ∈ N+

Remark 2.1. It is worth noting that the time delay is a time-varying function belonging to a given interval,
in which the lower bound of delay is not restricted to zero.

Definition 2.1. The nonlinear uncertain stochastic switched system with interval time-varying delay (2.1) is
robustly stable in the mean square if there exists a positive definite scalar function V (k, x(k) : Rn×Rn → R

and a switching rule γ(.) such that

E[∆V (k, x(k))] = E[V (k + 1, x(k + 1)) − V (k, x(k))] < 0,

along any trajectory of solution of the system (2.1) for all uncertainties which satisfy (2.3).

Definition 2.2. The system of matrices {Ji}, i = 1, 2, . . . , N, is said to be strictly complete if for every
x ∈ Rn\{0} there is i ∈ {1, 2, . . . , N} such that xT Jix < 0.

It is easy to see that the system {Ji} is strictly complete if and only if

N
⋃

i=1

αi = Rn\{0},

where
αi = {x ∈ Rn : xT Jix < 0}, i = 1, 2, ..., N.

Proposition 2.1. [22] The system {Ji}, i = 1, 2, . . . , N, is strictly complete if there exist δi ≥ 0, i =

1, 2, . . . , N,
∑N

i=1 δi > 0 such that
N

∑

i=1

δiJi < 0.

If N = 2 then the above condition is also necessary for the strict completeness.

Proposition 2.2. (Cauchy inequality) For any symmetric positive definite marix N ∈ Mn×n and a, b ∈ Rn

we have
+aT b ≤ aT Na + bT N−1b.

Proposition 2.3. [23] Let E,H and F be any constant matrices of appropriate dimensions and FT F ≤ I.

For any ǫ > 0, we have
EFH + HT FT ET ≤ ǫEET + ǫ−1HT H.
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3 Main results

Let us set

Wi(S1, S2, P,Q) =









Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44









,

Wi11 = Q − P,

Wi12 = S1 − S1Ai,

Wi13 = −S1Bi,

Wi14 = −S1 − S2Ai,

Wi22 = P + S1 + ST
1 + S1EibE

T
ibS

T
1 + HT

iaHia,

Wi23 = −S1Bi,

Wi24 = S2 − S1,

Wi33 = −Q + S2EibE
T
ibS

T
2 + HT

iaHia + HT
ibHib + ρ2I,

Wi34 = −S2Bi,

Wi44 = −S2 − ST
2 + HT

iaHia + HT
ibHib,

Ji(S1, S2, Q) = (d2 − d1)Q − S1Ai − AT
i ST

1 + S1EiaET
iaST

1

+ S1EibE
T
ibS

T
1 + S2EiaET

iaST
2 + HT

iaHia + ρ1I,

αi = {x ∈ Rn : xT Ji(S1, S2, Q)x < 0}, i = 1, 2, ..., N,

ᾱ1 = α1, ᾱi = αi \
i−1
⋃

j=1

ᾱj , i = 2, 3, . . . , N.

(3.1)

The main result of this paper is summarized in the following theorem.

Theorem 3.1. The nonlinear uncertain stochastic switched system with interval time-varying delay (2.1) is
robustly stable if there exist symmetric positive definite matrices P > 0, Q > 0 and matrices S1, S2 satisfying
the following conditions:

(i) ∃δi ≥ 0, i = 1, 2, . . . , N,
∑N

i=1 δi > 0 :
∑N

i=1 δiJi(S1, S2, Q) < 0.

(ii) Wi(S1, S2, P,Q) < 0, i = 1, 2, ..., N.

The switching rule is chosen as γ(x(k)) = i, whenever x(k) ∈ ᾱi.

Proof. Consider the following Lyapunov-Krasovskii functional for any ith system (2.1)

V (k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT (k)Px(k), V2(k) =

k−1
∑

i=k−d(k)

xT (i)Qx(i),

V3(k) =

−d1+1
∑

j=−d2+2

k−1
∑

l=k+j+1

xT (l)Qx(l),

We can verify that
λ1‖x(k)‖2 ≤ V (k). (3.2)
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Let us set ξ(k) = [x(k)x(k + 1)x(k − d(k)) fi(k, x(k − d(k)))ω(k)]T and

H =









0 0 0 0
0 P 0 0
0 0 0 0
0 0 0 0









, G =









P 0 0 0
I I 0 0
0 0 I 0
0 0 0 I









.

Then, the difference of V1(k) along the solution of the system (2.1) and taking the mathematical expectation,
we obtained

E[∆V1(k)] = E[xT (k + 1)Px(k + 1) − xT (k)Px(k)]

= E[ξT (k)Hξ(k) − 2ξT (k)GT









0.5x(k)
0
0
0









].
(3.3)

because of
ξT (k)Hξ(k) = x(k + 1)Px(k + 1),

2ξT (k)GT









0.5x(k)
0
0
0









= xT (k)Px(k).

Using the expression of system (2.1)

0 = −S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k) + S1(Bi + EibFib(k)Hib)x(k − d(k)) + S1f

+ S1σω(k),

0 = −S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k) + S2(Bi + EibFib(k)Hib)x(k − d(k)) + S2f

+ S2σω(k),

0 = −σT x(k + 1) + σT (Ai + EiaFia(k)Hia)x(k) + σT (Bi + EibFib(k)Hib)x(k − d(k)) + σT f

+ σT σω(k),

we have
E[−2ξT (k)GT

×

































0.5x(k)

[−S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k) + S1(Bi + EibFib(k)Hib)x(k − d(k)) + S1f

+S1σω(k)]

[−S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k) + S2(Bi + EibFib(k)Hib)x(k − d(k)) + S2f

+S2σω(k)]

[−σT x(k + 1) + σT (Ai + EiaFia(k)Hia)x(k) + σT (Bi + EibFib(k)Hib)x(k − d(k)) + σT f

+σT σω(k)]

































]

= E[−ξT (k)GT









0.5I 0 0 0 0
S1Ai + S1EiaFia(k)Hia −S1 S1Bi + S1EibFib(k)Hib S1 S1σ

S2Ai + S2EiaFia(k)Hia −S2 S2Bi + S2EibFib(k)Hib S2 S2σ

σT Ai + σT EiaFia(k)Hia −σT σT Bi + σT EibFib(k)Hib σT σT σ









ξ(k)
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−ξT (k)









0.5I 0 0 0 0
S1Ai + S1EiaFia(k)Hia −S1 S1Bi + S1EibFib(k)Hib S1 S1σ

S2Ai + S2EiaFia(k)Hia −S2 S2Bi + S2EibFib(k)Hib S2 S2σ

σT Ai + σT EiaFia(k)Hia −σT σT Bi + σT EibFib(k)Hib σT σT σ









T

Gξ(k)].

Therefore, from (3.3) it follows that

E[∆V1(k)] = E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia − AT
i ST

1 − HT
iaFT

ia(k)EiaST
1 ]x(k)

+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]x(k + 1)

+ 2xT (k)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S2EiaFia(k)Hia]f(k, x(k − d(k)))

+ 2xT (k)[−S1σ − σT Ai − σT EiaFia(k)Hia]ω(k)

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2x(k + 1)[S2 − S1]f(k, x(k − d(k)))

+ 2x(k + 1)[σT − S1σ]ω(k)

+ 2xT (k − d(k))[−S3Bi − S2EibFib(k)Hib]f(k, x(k − d(k)))

+ 2xT (k − d(k))[−σT Bi − σT EibFib(k)Hib]ω(k)

+ f(k, x(k − d(k)))T [−S2 − ST
2 ]f(k, x(k − d(k)))

+ 2f(k, x(k − d(k)))T (k)[−S2σ − σT ]ω(k)

+ ωT (k)[−σT σ]ω(k)].

By asumption (2.4), we have

E[∆V1(k)] = E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia − AT
i ST

1 − HT
iaFT

ia(k)EiaST
1 ]x(k)

+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]x(k + 1)

+ 2xT (k)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S2EiaFia(k)Hia]f(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2x(k + 1)[S2 − S1]f(k, x(k − d(k)))

+ 2xT (k − d(k))[−S2Bi − S2EibFib(k)Hib]f(k, x(k − d(k)))

+ f(k, x(k − d(k)))T [−S2 − ST
2 ]f(k, x(k − d(k)))

+ ωT (k)[−σT σ]ω(k)].

Applying Propositon 2.2, Propositon 2.3, condition (2.3) and asumption (2.5), the following estimations hold

−S1EiaFia(k)Hia − HT
iaFT

ia(k)ET
iaST

1 ≤ S1EiaET
iaST

1 + HT
iaHia,

−2xT (k)S1EiaFia(k)Hiax(k + 1) ≤ xT (k)S1EiaET
iaST

1 x(k) + x(k + 1)T HT
iaHiax(k + 1),

−2xT (k)S1EibFib(k)Hibx(k − d(k)) ≤ xT (k)S1EibE
T
ibS

T
1 x(k) + x(k − d(k))T HT

ibHibx(k − d(k)),

−2xT (k)S2EiaFia(k)Hiaf ≤ xT (k)S2EiaET
iaST

2 x(k) + fT HT
iaHiaf,
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−2x(k − d(k))T (k)S2EibFib(k)Hibf ≤ x(k − d(k))T (k)S2EibE
T
ibS

T
2 x(k − d(k)) + fT HT

ibHibf,

−2xT (k + 1)S1EibFib(k)Hibx(k − d(k)) ≤ xT (k + 1)S1EibE
T
ibS

T
1 x(k + 1) + x(k − d(k))T HT

ibHibx(k − d(k)),

−σT (x(k), x(k − d(k)), k)σ(x(k), x(k − d(k)), k) ≤ ρ1x
T (k)x(k) + ρ2x

T (k − d(k))x(k − d(k).

Therefore, we have

E[∆V1(k)] ≤ E[xT (k)[−P − S1Ai − AT
i ST

1 + S1EiaET
iaST

1 + S1EibE
T
ibS

T
1

+ S2EiaET
iaST

2 + HT
iaHia + ρ1I]x(k)

+ 2xT (k)[S1 − S1Ai]x(k + 1)

+ 2xT (k)[−S1Bi]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai]f(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 + S1EibE

T
ibS

T
1 + HT

iaHia]x(k + 1)

+ 2x(k + 1)[−S1Bi]x(k − d(k))

+ 2x(k + 1)[S2 − S1]f(k, x(k − d(k)))

+ xT (k − d(k))[S2EibE
T
ibS

T
3 + HT

iaHia + HT
ibHib + ρ2I]x(k − d(k))

+ 2xT (k − d(k))[−S3Bi]f(k, x(k − d(k)))

+ f(k, x(k − d(k)))T [−S2 − ST
2 + HT

iaHia + HT
ibHib]f(k, x(k − d(k)))].

(3.4)

The difference of V2(k) is given by

E[∆V2(k)] = E[

k
∑

i=k+1−d(k+1)

xT (i)Qx(i) −
k−1
∑

i=k−d(k)

xT (i)Qx(i)]

= E[

k−d1
∑

i=k+1−d(k+1)

xT (i)Qx(i) + xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k))

+
k−1
∑

i=k+1−d1

xT (i)Qx(i) −
k−1
∑

i=k+1−d(k)

xT (i)Qx(i)].

(3.5)

Since d(k) ≥ d1 we have
k−1
∑

i=k+1−d1

xT (i)Qx(i) −
k−1
∑

i=k+1−d(k)

xT (i)Qx(i) ≤ 0,

and hence from (3.5) we have

E[∆V2(k)] ≤ E[

k−d1
∑

i=k+1−d(k+1)

xT (i)Qx(i) + xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k))]. (3.6)
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The difference of V3(k) is given by

E[∆V3(k)] = E[

−d1+1
∑

j=−d2+2

k
∑

l=k+j

xT (l)Qx(l) −
−d1+1
∑

j=−d2+2

k−1
∑

l=k+j+1

xT (l)Qx(l)]

= E[

−d1+1
∑

j=−d2+2

[

k−1
∑

l=k+j

xT (l)Qx(l) + xT (k)Q(ξ)x(k)

−
k−1
∑

l=k+j

xT (l)Qx(l) − xT (k + j − 1)Qx(k + j − 1)]]

= E[

−d1+1
∑

j=−d2+2

[xT (k)Qx(k) − xT (k + j − 1)Qx(k + j − 1)]]

= E[(d2 − d1)x
T (k)Qx(k) −

k−d1
∑

j=k+1−d2

xT (j)Qx(j)].

(3.7)

Since d(k) ≤ d2, and
k−d1
∑

i=k=1−d(k+1)

xT (i)Qx(i) −
k−d1
∑

i=k+1−d2

xT (i)Qx(i) ≤ 0,

we obtain from (3.6) and (3.7) that

E[∆V2(k) + ∆V3(k)] ≤ E[(d2 − d1 + 1)xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k))]. (3.8)

Therefore, combining the inequalities (3.4), (3.8) gives

E[∆V (k)] ≤ E[xT (k)Ji(S1, S2, Q)x(k) + ψT (k)Wi(S1, S2, P,Q)ψ(k)], (3.9)

where
ψ(k) = [x(k)x(k + 1)x(k − d(k)) f(k, x(k − d(k)))]T ,

Wi(S1, S2, P,Q) =









Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44









,

Wi11 = Q − P,

Wi12 = S1 − S1Ai,

Wi13 = −S1Bi,

Wi14 = −S1 − S2Ai,

Wi14 = −S1 − S2Ai,

Wi22 = P + S1 + ST
1 + S1EibE

T
ibS

T
1 + HT

iaHia,

Wi23 = −S1Bi,

Wi24 = S2 − S1,

Wi33 = −Q + S2EibE
T
ibS

T
2 + HT

iaHia + HT
ibHib + ρ2I,

Wi34 = −S2Bi,

Wi44 = −S2 − ST
2 + HT

iaHia + HT
ibHib,

Ji(S1, S2, Q) = (d2 − d1)Q − S1Ai − AT
i ST

1 + 2S1EiaET
iaST

1 + S1EibE
T
ibS

T
1

+ S2EiaET
iaST

2 + HT
iaHia + ρ1I.
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Therefore, we finally obtain from (3.9) and the condition (ii) that

E[∆V (k)] < E[xT (k)Ji(S1, S2, Q)x(k)], ∀i = 1, 2, ...., N, k = 0, 1, 2, ....

We now apply the condition (i) and Proposition 2.1., the system Ji(S1, S2, Q) is strictly complete, and the
sets αi and ᾱi by ( 3.1) are well defined such that

N
⋃

i=1

αi = Rn\{0},

N
⋃

i=1

ᾱi = Rn\{0}, ᾱi ∩ ᾱj = ∅, i 6= j.

Therefore, for any x(k) ∈ Rn, k = 1, 2, ..., there exists i ∈ {1, 2, . . . , N} such that x(k) ∈ ᾱi. By choosing
switching rule as γ(x(k)) = i whenever x(k) ∈ ᾱi, from the condition (3.9) we have

E[∆V (k)] ≤ E[xT (k)Ji(S1, S2, Q)x(k)] < 0, k = 1, 2, ...,

which, combining the condition (3.2), and Definition 2.1., concludes the proof of the theorem in the mean
square.
Remark 3.1. Note that the results proposed in [5, 7, 12] for switching systems to be asymptotically stable
under an arbitrary switching rule. The asymptotic stability for switching linear discrete time-delay systems
studied in [13] was limited to constant delays. In [21], a class of switching signals has been identified for the
considered switched discrete-time delay systems to be stable under the averaged well time scheme.

4 Conclusion

This paper has proposed a switching design for the robust stability of nonlinear uncertain stochastic switched
discrete time-delay systems with interval time-varying delays. Based on the discrete Lyapunov functional,
a switching rule for the robust stability for the nonlinear uncertain stochastic switched discrete time-delay
system with interval time-varying delay is designed via linear matrix inequalities.
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Abstract

This paper is concerned with robust stabilization of switched discrete time-delay systems with convex

polytopic uncertainties. The system to be considered is subject to interval time-varying delays, which

allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based

on the discrete Lyapunov functional, a switching rule for the robust stabilization for the system with

convex polytopic uncertainties is designed via linear matrix inequalities.
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1 Introduction

In many physical phenomena and practical applications, such as autonomous transmission systems, com-
puter disc drivers, room temperature control, power electronics, chaos generators (see, e.g., [1–3] and the
references therein), they are governed by more than one dynamical systems (differential or difference equa-
tions) governed by switching laws to determine which subsystem will be activated on a certain time interval.
Such systems are called switched systems. On the other hand, time-delay phenomena are very common in
practical systems. A switched system with time-delay individual subsystems is called a switched time-delay
system; in particular, when the subsystems are linear, it is then called a switched time-delay linear system.
During the last decades, the stability analysis of switched linear continuous/discrete time-delay systems has
attracted a lot of attention [4–7]. The main approach for stability analysis relies on the use of Lyapunov-
Krasovskii functionals and linear matrix inequlity (LMI) approach for constructing a common Lyapunov
function [8–10]. Although many important results have been obtained for switched linear continuous-time
systems, there are few results concerning the stability of switched linear discrete systems with time-varying
delays. It was shown in [5, 7, 11] that when all subsystems are asymptotically stable, the switching system
is asymptotically stable under an arbitrary switching rule. The asymptotic stability for switching linear
discrete time-delay systems has been studied in [12], but the result was limited to constant delays. In [14],
a class of switching signals has been identified for the considered switched discrete-time delay systems to be
stable under the average dwell time scheme. To the best of our knowledge, the stabilization of discrete-time
systems with both convex polytopic uncertainties and switch system, non-differentiable time-varying delays
has not been fully studied yet (see, e.g., [1, 4–27] and the references therein), which are important in both
theories and applications. This motivates our research.

This paper studies robust stabilization problem for switched linear discrete systems with convex polytopic
uncertainties with interval time-varying delays. Specifically, our goal is to develop a constructive way to
design switching rule to robust stabilization the system. By using improved Lyapunov-Krasovskii functionals
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combined with LMIs technique, we propose new criteria for the robust stabilization of the system. Compared
to the existing results, our result has its own advantages. First, the time delay is assumed to be a time-varying
function belonging to a given interval, which means that the lower and upper bounds for the time-varying
delay are available, the delay function is bounded but not restricted to zero. Second, the approach allows us
to design the switching rule for robust stabilization in terms of of LMIs.

The paper is organized as follows: Section 2 presents definitions and some well-known technical propo-
sitions needed for the proof of the main results. Switching rule for the robust stabilization is presented in
Section 3.

2 Preliminaries

The following notations will be used throughout this paper. R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with the scalar product of two vectors 〈x, y〉 or xT y; Rn×r

denotes the space of all matrices of (n × r)− dimension. AT denotes the transpose of A; a matrix A is
symmetric if A = AT .

Matrix A is semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn;A is positive definite (A > 0)
if 〈Ax, x〉 > 0 for all x 6= 0; A ≥ B means A − B ≥ 0. λ(A) denotes the set of all eigenvalues of A;
λmin(A) = min{Reλ : λ ∈ λ(A)}.

Consider a linear switched control discrete-time systems with convex polytopic uncertainties with interval
time-varying delay of the form

x(k + 1) = Aγ(x(k))(ζ)x(k) + Bγ(x(k))(ζ)u(k), k = 0, 1, 2, ...

x(k) = vk, k = −d2,−d2 + 1, ..., 0,
(2.1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm,m ≤ n, is the control input, γ(.) : Rn → N := {1, 2, . . . , N} is the
switching rule, which is a function depending on the state at each time and will be designed. A switching
function is a rule which determines a switching sequence for a given switching system.
We consider a delayed feedback control law

u(k) = Cγ(x(k))(ζ)x(k − d(k)), k = −h2, ..., 0, (2.2)

and Cγ(x(k))(ζ) is the controller gain to be determined. Moreover, γ(x(k)) = i implies that the system

realization is chosen as the ith system, i = 1, 2, ..., N. It is seen that the system (2.1) can be viewed as an
autonomous switched system in which the effective subsystem changes when the state x(k) hits predefined
boundaries. Ai(ζ), Bi(ζ), Ci(ζ), i = 1, 2, ..., N are given constant matrices. The system matrices are subjected
to uncertainties and belong to the polytope Ω given by

Ω = {[Ai, Bi, Ci](ζ) :=
N

∑

j=1

ζj [Aij , Bij , Cij ],
N

∑

j=1

ζj = 1, ζj ≥ 0},

where Aij , Bij , Cij , i, j = 1, 2, ..., N, are given constant matrices with appropriate dimensions. The time-
varying function d(k) satisfies the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k = 0, 1, 2, ....

Remark 2.1. It is worth noting that the time delay is a time-varying function belonging to a given interval,
in which the lower bound of delay is not restricted to zero.

Applying the feedback controller (2.2) to the system (2.1), the closed-loop discrete time-delay system is

x(k + 1) = Ai(ζ)x(k) + Bi(ζ)Ci(ζ)x(k − d(k)), k = 0, 1, 2, ... (2.3)
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Definition 2.1. The system (2.1) is robustly stablilizable if there exist a switching function γ(.) and a
delayed feedback control (2.2) such that the zero solution of the system (2.3) is asymptotically stable for all
uncertainties in Ω.

Definition 2.2. The system of matrices {Ji}, i = 1, 2, . . . , N, is said to be strictly complete if for every
x ∈ Rn\{0} there is i ∈ {1, 2, . . . , N} such that xT Jix < 0.

It is easy to see that the system {Ji} is strictly complete if and only if

N
⋃

i=1

αi = Rn\{0},

where
αi = {x ∈ Rn : xT Jix < 0}, i = 1, 2, ..., N.

Proposition 2.1. [28] The system {Ji}, i = 1, 2, . . . , N, is strictly complete if there exist δi ≥ 0, i =

1, 2, . . . , N,
∑N

i=1 δi > 0 such that
N

∑

i=1

δiJi < 0.

If N = 2 then the above condition is also necessary for the strict completeness.

Proposition 2.2. For real numbers ζj ≥ 0, j = 1, 2, ..., N ,
∑N

j=1 ζj = 1, the following inequality hold

(N − 1)

N
∑

j=1

ζ2
j − 2

N−1
∑

j=1

N
∑

l=j+1

ζjζl ≥ 0.

Proof. The proof is followed from the completing the square:

(N − 1)

N
∑

j=1

ζ2
j − 2

N−1
∑

j=1

N
∑

l=j+1

ζjζl =

N−1
∑

j=1

N
∑

l=j+1

(ζj − ζl)
2 ≥ 0.

3 Main results

Let us set
‖xk‖ = sup

s∈[−d2,0]

‖x(k + s)‖,

Wijj(P,Q,R) =





Qj − Pj RT
j − AT

ijRj −RT
j BijCij

Rj − RT
j Aij Pj + Rj + RT

j −RT
j BijCij

−CT
ijB

T
ijRj −CT

ijB
T
ijRj −Qj



 ,

Wijl(P,Q,R) =





Qj − Pj RT
j − AT

ilRj −RT
j BilCil

Rj − RT
j Ail Pj + Rj + RT

j −RT
j BilCil

−CT
il B

T
il Rj −CT

il B
T
il Rj −Qj



 ,

Wilj(P,Q,R) =





Ql − Pl RT
l − AT

ijRl −RT
l BijCij

Rl − RT
l Aij Pl + Rl + RT

l −RT
l BijCij

−CT
ijB

T
ijRl −CT

ijB
T
ijRl −Ql



 ,

R =





R 0 0
0 0 0
0 0 0



 , P (ζ) =

N
∑

j=1

ζjPj , Q(ζ) =

N
∑

j=1

ζjQj , R(ζ) =

N
∑

j=1

ζjRj , λ1 = λmin(P ),
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Jijj(R,Q) := (d2 − d1)Qj − AT
ijRj − RT

j Aij ,

Jijl(R,Q) := (d2 − d1)Qj − AT
ilRj − RT

j Ail,

Jilj(R,Q) := (d2 − d1)Ql − AT
ijRl − RT

l Aij ,

αijj ={x ∈ Rn : xT Jijj(R,Q)x < 0, }, i = 1, 2, ..., N, j = 1, 2, ..., N,

αijl ={x ∈ Rn : xT Jijl(R,Q)x < 0, }, i = 1, 2, ..., N, j = 1, 2, ..., N − 1; l = j + 1, ..., N,

αijl ={x ∈ Rn : xT Jilj(R,Q)x < 0, }, i = 1, 2, ..., N, j = 1, 2, ..., N − 1; l = j + 1, ..., N,

ᾱ1jj =α1jj , ᾱijj = αijj \
i−1
⋃

i=1

ᾱijj , i = 2, 3, . . . , N, j = 1, 2, . . . , N,

ᾱ1jl =α1jl, ᾱijl = αijl \
i−1
⋃

i=1

ᾱijl, i = 2, 3, . . . , N, j = 1, 2, ..., N − 1; l = j + 1, ..., N,

ᾱ1lj =α1lj , ᾱilj = αilj \
i−1
⋃

i=1

ᾱilj , i = 2, 3, . . . , N, j = 1, 2, ..., N − 1; l = j + 1, ..., N.

(3.1)

The main result of this paper is summarized in the following theorem.

Theorem 3.1. The switched control system with convex polytopic uncertainties (2.1) is stabilizable by the
delayed feedback control (2.2) if there exist symmetric matrices Pi > 0, Qi > 0,R ≥ 0, i = 1, 2..., N and
matrix Ri, i = 1, 2..., N satisfying the following conditions

(i) ∃δi ≥ 0,
∑N

i=1 δi > 0 :
∑N

i=1 δiJijj < 0, and Jijj + R < 0, i = 1, 2, . . . , N,

j = 1, 2, . . . , N.

(ii) ∃δi ≥ 0,
∑N

i=1 δi > 0 :
∑N

i=1[δiJijl + δiJilj ] < 0, and Jijl + Jilj −
2

N−1R < 0,

i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1, l = j + 1, . . . , N.

(iii) Wijj + R < 0, i = 1, 2, ..., N, j = 1, 2, ..., N.

(iv) Wijl + Wilj −
2

N−1R < 0, i = 1, 2, ..., N, j = 1, 2, ..., N − 1; l = j + 1, ..., N.

The switching rule is chosen as γ(x(k)) = i, whenever x(k) ∈ ᾱijl.

Proof. Consider the following Lyapunov-Krasovskii functional for any ith system (2.1)

V (k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT (k)P (ζ)x(k), V2(k) =

k−1
∑

i=k−d(k)

xT (i)Q(ζ)x(i),

V3(k) =

−d1+1
∑

j=−d2+2

k−1
∑

l=k+j+1

xT (l)Q(ζ)x(l),
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We can verify that
λ1‖x(k)‖2 ≤ V (k). (3.2)

Let us set ξ(k) = [x(k)x(k + 1)x(k − d(k))]T , and

H =





0 0 0
0 P (ζ) 0
0 0 0



 , G =





P (ζ) 0 0
R(ζ) R(ζ) 0

0 0 0



 .

Then, the difference of V1(k) along the solution of the system is given by

∆V1(k) = xT (k + 1)P (ζ)x(k + 1) − xT (k)P (ζ)x(k)

= ξT (k)H(ζ)ξ(k) − 2ξT (k)GT (ζ)





0.5x(k)
0
0



 .
(3.3)

because of
ξT (k)H(ζ)ξ(k) = x(k + 1)P (ζ)x(k + 1).

Using the expression of system (2.3)

0 = −x(k + 1) + Ai(ζ)x(k) + Bi(ζ)Ci(ζ)x(k − d(k)),

we have

−2ξT (k)GT (ζ)





0.5x(k)
−x(k + 1) + Ai(ζ)x(k) + Bi(ζ)Ci(ζ)x(k − d(k))

0



 ξ(k)

= −ξT (k)GT (ζ)





0.5I 0 0
Ai(ζ) −I Bi(ζ)Ci(ζ)

0 0 0



 ξ(k) − ξT (k)





0.5I Ai(ζ)T 0
0 −I 0
0 (Bi(ζ)Ci(ζ))T 0



 G(ζ)ξ(k).

Therefore, from (3.3) it follows that

∆V1(k) = ξT (k)Wi(P (ζ), Q(ζ), R(ζ))ξ(k), (3.4)

where

Wi(P (ζ), Q(ζ), R(ζ)) =





0 0 0
0 P (ζ) 0
0 0 0



 − GT (ζ)





0.5I 0 0
Ai(ζ) −I Bi(ζ)Ci(ζ)

0 0 0





−





0.5I AT
i (ζ) 0

0 −I 0
0 (Bi(ζ)Ci(ζ))T 0



 G(ζ).

The difference of V2(k) is given by

∆V2(k) =

k
∑

i=k+1−d(k+1)

xT (i)Q(ζ)x(i) −
k−1
∑

i=k−d(k)

xT (i)Q(ζ)x(i)

=

k−d1
∑

i=k+1−d(k+1)

xT (i)Q(ζ)x(i) + xT (k)Q(ζ)x(k) − xT (k − d(k))Q(ζ)x(k − d(k))

+

k−1
∑

i=k+1−d1

xT (i)Q(ζ)x(i) −
k−1
∑

i=k+1−d(k)

xT (i)Q(ζ)x(i).

(3.5)
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Since d(k) ≥ d1 we have

k−1
∑

i=k+1−d1

xT (i)Q(ζ)x(i) −
k−1
∑

i=k+1−d(k)

xT (i)Q(ζ)x(i) ≤ 0,

and hence from (3.5) we have

∆V2(k) ≤
k−d1
∑

i=k+1−d(k+1)

xT (i)Q(ζ)x(i) + xT (k)Q(ζ)x(k) − xT (k − d(k))Q(ζ)x(k − d(k)). (3.6)

The difference of V3(k) is given by

∆V3(k) =

−d1+1
∑

j=−d2+2

k
∑

l=k+j

xT (l)Q(ζ)x(l) −
−d1+1
∑

j=−d2+2

k−1
∑

l=k+j+1

xT (l)Q(ζ)x(l)

=

−d1+1
∑

j=−d2+2

[
k−1
∑

l=k+j

xT (l)Q(ζ)x(l) + xT (k)Q(ζ)(ξ)x(k)

−
k−1
∑

l=k+j

xT (l)Q(ζ)x(l) − xT (k + j − 1)Q(ζ)x(k + j − 1)]

=

−d1+1
∑

j=−d2+2

[xT (k)Q(ζ)x(k) − xT (k + j − 1)Q(ζ)x(k + j − 1)]

= (d2 − d1)x
T (k)Q(ζ)x(k) −

k−d1
∑

j=k+1−d2

xT (j)Q(ζ)x(j).

(3.7)

Since d(k) ≤ d2, and

k−d1
∑

i=k=1−d(k+1)

xT (i)Q(ζ)x(i) −
k−d1
∑

i=k+1−d2

xT (i)Q(ζ)x(i) ≤ 0,

we obtain from (3.6) and (3.7) that

∆V2(k) + ∆V3(k) ≤ (d2 − d1 + 1)xT (k)Q(ζ)x(k) − xT (k − d(k))Q(ζ)x(k − d(k)). (3.8)

Therefore, combining the inequalities (3.4), (3.8) gives

∆V (k) ≤ xT (k)Ji(R(ζ), Q(ζ))x(k) + ξT (k)Wi(P (ζ), Q(ζ), R(ζ))ξ(k), (3.9)

where

Wi(P (ζ), Q(ζ), R(ζ)) =





Q(ζ) − P (ζ) RT (ζ) − AT
i (ζ)R(ζ) −RT (ζ)Bi(ζ)Ci(ζ)

R(ζ) − RT (ζ)Ai(ζ) P (ζ) + R(ζ) + RT (ζ) −RT (ζ)Bi(ζ)Ci(ζ)
−CT

i (ζ)BT
i (ζ)R(ζ) −CT

i (ζ)BT
i (ζ)R(ζ) −Q(ζ)



 ,

and
Ji(R(ζ), Q(ζ)) = (d2 − d1)Q(ζ) − AT

i (ζ)R(ζ) − RT (ζ)Ai(ζ).

Let us denote

Wijj(P,Q,R) =





Qj − Pj RT
j − AT

ijRj −RT
j BijCij

Rj − RT
j Aij Pj + Rj + RT

j −RT
j BijCij

−CT
ijB

T
ijRj −CT

ijB
T
ijRj −Qj



 ,
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Wijl(P,Q,R) =





Qj − Pj RT
j − AT

ilRj −RT
j BilCil

Rj − RT
j Ail Pj + Rj + RT

j −RT
j BilCil

−CT
il B

T
il Rj −CT

il B
T
il Rj −Qj



 ,

Wilj(P,Q,R) =





Ql − Pl RT
l − AT

ijRl −RT
l BijCij

Rl − RT
l Aij Pl + Rl + RT

l −RT
l BijCij

−CT
ijB

T
ijRl −CT

ijB
T
ijRl −Ql



 ,

Jijj(R,Q) := (d2 − d1)Qj − AT
ijRj − RT

j Aij ,

Jijl(R,Q) := (d2 − d1)Qj − AT
ilRj − RT

j Ail,

Jilj(R,Q) := (d2 − d1)Ql − AT
ijRl − RT

l Aij ,

(AT
i R)jl := AT

ilRj + AT
ijRl, (RT Ai)jl = RT

j Ail + RT
l Aij ,

(RT BiCi)jl = RT
j BilCil + RT

l BijCij , (CT
i BT

i R)jl = CT
il B

T
il Rj + CT

ijB
T
ijRl,

Pjl = Pj + Pl, Qjl = Qj + Ql, Rjl = Rj + Rl.

From the convex combination of the expression of P (ζ), Q(ζ), R(ζ), A(ζ), B(ζ), C(ζ), we have

Wi(P (ζ), Q(ζ), R(ζ)) =

N
∑

j=1

ζ2
j





Qj − Pj RT
j − AT

ijRj −RT
j BijCij

Rj − RT
j Aij Pj + Rj + RT

j −RT
j BijCij

−CT
ijB

T
ijRj −CT

ijB
T
ijRj −Qj





+

N−1
∑

j=1

N
∑

l=j+1

ζjζl





Qj − Pj + Ql − Pl RT
jl − (AT

i R)jl −(RT BiCi)jl

Rjl − (RT Ai)jl Pjl + Rjl + RT
jl −(RT BiCi)jl

−(CT
i BT

i R)jl −(CT
i BT

i R)jl −Qjl





=

N
∑

j=1

ζ2
j Wijj(P,Q,R) +

N−1
∑

j=1

N
∑

l=j+1

ζjζl[Wijl(P,Q,R) + Wilj(P,Q,R)].

Ji(R(ζ), Q(ζ)) =
N

∑

j=1

ζ2
j (d2 − d1)Qj − AT

ijRj − RT
j Aij

+

N−1
∑

j=1

N
∑

l=j+1

ζjζl(d2 − d1)Qjl − (AT
i R)jl − (RT Ai)jl

=

N
∑

j=1

ζ2
j Jijj(Q,R) +

N−1
∑

j=1

N
∑

l=j+1

ζjζl[Jijl(Q,R) + Jilj(Q,R)].

Then the conditions (i)-(iv) give

Wi(P (ζ), Q(ζ), R(ζ)) < −
N

∑

j=1

ζ2
j R +

2

N − 1

N−1
∑

j=1

N
∑

l=j+1

ζjζlR ≤ 0,

Ji(R(ζ), Q(ζ)) < −
N

∑

j=1

ζ2
j R +

2

N − 1

N−1
∑

j=1

N
∑

l=j+1

ζjζlR ≤ 0,

because of Proposition 2.2:

(N − 1)

N
∑

j=1

ζ2
j − 2

N−1
∑

j=1

N
∑

l=j+1

ζjζl =

N−1
∑

j=1

N
∑

l=j+1

(ζj − ζl)
2 ≥ 0.
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Therefore, we finally obtain from (3.9) and the condition (iii), (iv) that

∆V (k) < xT (k)Ji(R(ζ), Q(ζ))x(k), ∀i = 1, 2, ...., N, k = 0, 1, 2, ....

We now apply the condition (i), (ii), and Proposition 2.1., the system Ji(R(ζ), Q(ζ)) is strictly complete,
and the sets αijl and ᾱijl by ( 3.1) are well defined such that

N
⋃

i=1

αijl = Rn\{0},

N
⋃

i=1

ᾱijl = Rn\{0}, ᾱijl ∩ ᾱtjl = ∅, i 6= t.

Therefore, for any x(k) ∈ Rn, k = 0, 1, 2, ...., there exists i ∈ {1, 2, . . . , N} such that x(k) ∈ ᾱijl. By choosing
switching rule as γ(x(k)) = i whenever x(k) ∈ ᾱijl, from the condition (3.9) we have

∆V (k) ≤ xT (k)Ji(R(ζ), Q(ζ))x(k) < 0, k = 1, 2, ...,

which, combining the condition (3.2) and the Lyapunov stability theorem [29], concludes the proof of the
theorem.

Remark 3.1. Note that theresult sproposed in [4,5,6] for switching systems to be asymptotically sta-
ble under an arbitrary switching rule. The asymptotic stability for switching linear discrete time-delay
systems studied in [9] was limited to constant delays. In [10], a class of switching signals has been identified
for the considered switched discrete-time delay systems to be stable under the averaged well time scheme.

4 Conclusion

This paper has proposed a switching design for the robust stabilization of switched linear discrete-time sys-
tems with convex polytopic uncertainties with interval time-varying delays. Based on the discrete Lyapunov
functional, a switching rule for the robust stabilization for the system with convex polytopic uncertainties
is designed via linear matrix inequalities.
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Abstract

A new preconditioner for the numerical solution of block two-by-two symmetric indefi-
nite matrices is presented in this paper. The proposed preconditioner is constructed as the
product of two fairly simple preconditioners: one is the famous block Jacobi preconditioner,
and the other is the popular constraint preconditioner. Here, we call it the product precon-
ditioner. Results concerning the eigenvalue distribution and form of the eigenvectors of the
product preconditioned matrix are analyzed. Numerical experiments are used to illustrate
the efficiency of the proposed product preconditioner.

Key words: Product preconditioner; Symmetric indefinite matrices; Krylov subspace
method
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1 Introduction

Recently, a large amount of work has been devoted to the problem of solving linear systems in
saddle point form. Here, our concern is to construct a new preconditioner for the numerical
solution of block two-by-two symmetric indefinite matrices whose (1,1) and (2,2) block are
nonsingular. Often this kind of linear systems in saddle point form is likely to generate from a
wide range of applications, such as the Helmholtz equation{

∆u+ (2π)2u = f(x, y), (x, y) ∈ Ω ∪ ℜ+
2 ,

u = 0, (x, y) ∈ ∂(Ω ∪ ℜ+
2 ),

(1)

with radiation boundary condition

lim
r→∞

r(
∂u

∂η
− ı2πu) = 0, (2)

where Ω = [0, 1]× [−1, 0] is a unit square domain, ℜ+
2 denotes the upper half-space and ı is the

imaginary unit in (2), see [1, 2] for details.
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By using a finite difference discretization to the Helmholtz equation (1) on the uniform grid
of Ω, we obtain the linear system in saddle point form

Au =

(
A B
BT −C

)(
x
y

)
=

(
f
g

)
= b, (3)

where A ∈ Rn×n and C ∈ Rm×m are nonsingular, B ∈ Rn×m, u = [xT, yT]T ∈ Rn+m and
b = [fT, gT]T ∈ Rn+m, with x, f ∈ Rn and y, g ∈ Rm, are the unknown and given right-hand
side vectors, respectively. Then the coefficient matrix A ∈ R(n+m)×(n+m) is a nonsingular,
symmetric and possibly indefinite matrix, and our main aim is to solve the linear system (3) of
n+m linear equations with n+m unknowns.

Iterative procedure is a convenient numerical solution method for computing the linear sys-
tem (3). Often we have Uzawa’s algorithms [3, 4] and multigrid methods [5, 6]. In particular,
Krylov subspace methods have become more and more popular for solving the linear system (3),
such as the conjugate gradient (CG) and biconjugate gradient stabilized (Bi-CGSTAB) methods,
minimal residual method (MINRES), generalized minimal residual (GMRES) and quasi-minimal
residual (QMR) methods which have been considered in [7–14].

However, these iterative methods are all likely to suffer from slow convergence for some
large linear systems which come from many practical applications like the computational fluid
dynamics and structural mechanics. Thus it is necessary to use the idea of preconditioning
such that the preconditioned matrix has a tightly clustered eigenvalues, see [1, 15–22] and the
references therein.

More precisely, we see that a kind of triangular preconditioner has been proposed by Elman
and Silvester [14] and Elman [23] when the (2,2) block matrix C = 0. These triangular pre-
conditioners were extended by Kay, Loghin and Wathen [24], Cao [25] and Simoncini [26] to
the case where C is symmetric positive or negative semidefinite. In addition, Keller, Gould and
Wathen [18] presented a constraint preconditioner for the case C = 0, in which they discussed
the eigenvalue distribution and form of the eigenvectors of the constraint preconditioned matrix
and its minimal polynomial. Thereafter, Dollar and Wathen [19] and Dollar [22] studied an ap-
proximation factorization constraint preconditioner by combining with the conjugate gradient
method, and extended the idea of [18] by allowing the matrix C to be symmetric and positive
semidefinite. Furthermore, we found block diagonal, triangular and constraint preconditioners
had been discussed by Siefert and De Sturler [17], Murphy, Golub and Wathen [15], De Sturler
and Liesen [16], and Cao [20, 21] for the numerical solution of nonsymmetric or generalized
saddle point problems. More preconditioning techniques for solving the linear system in saddle
point form can be found in an excellent survey written by Benzi, Golub and Liesen [1].

In this paper, we are concerned with investigating a new preconditioner for the symmetric
indefinite linear system (3). The proposed preconditioner is constructed as the product of two
fairly simple preconditioners: one is the famous block Jacobi preconditioner, and the other is
the popular constraint preconditioner [22]. We call it the product preconditioner. The idea used
to develop the product preconditioner can trace back to [27]. Benzi has used the idea in [27] to
solve Markov chain problems, see [28, 29]. Results concerning the eigenvalue distribution and
form of the eigenvectors of the product preconditioned matrix are given in this paper. Numerical
experiments with preconditioned GMRES method [30] on certain problem serve to illustrate the
efficiency and stability of the proposed product preconditioner.

The remainder of this paper is organized as follows. In Section 2, we first briefly introduce
the background material on stationary iterations and matrix splittings, and then construct the
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product preconditioner. In Section 3, we analyze the eigensolution distribution of the product
preconditioned matrix. Numerical experiments with various preconditioned GMRES methods
are presented in Section 4. Finally, conclusions are made in Section 5.

2 Background and product preconditioner

In this section, we first briefly introduce the background material on stationary iterations and
matrix splittings from [27, 28, 31], and then construct the product preconditioner.

2.1 Stationary iterations and matrix splittings

Consider the solution of a large sparse linear system of the form Au = b, where A is a square
and nonsingular, symmetric indefinite matrix, and b is the given right-hand vector. Stationary
iterative method is likely to be an attractive method by using a splitting of the coefficient matrix
A, denoted as

A =M −N,

whereM is a nonsingular matrix. Then the splitting gives rise to the stationary iterative method

uk+1 = Tuk + c, k = 0, 1, · · · , (4)

where T = M−1N is called the iterative matrix, c = M−1b, and u0 is a given initial guess. It
is well known that the iterative method (4) converges for any initial guess u0 if and only if its
spectral radius ρ(T ) < 1 [31].

Recently, Benzi and Szyld have defined a related approach by the alternating iterations{
uk+1/2 =M−1

1 N1uk +M−1
1 b,

uk+1 =M−1
2 N2uk+1/2 +M−1

2 b,
k = 0, 1, · · · , (5)

in an excellent paper [27], where A =M1 −N1 =M2 −N2 are splittings of A, both M1 and M2

matrices are nonsingular, and u0 is defined as above. Not only the existence and uniqueness of
splittings for stationary iterative methods with applications to alternating methods were proved,
but also the convergence theory of some alternating iterations were analyzed in [27]. In addition,
Benzi and Szyld have constructed a splitting A =M −N based on the nonsingular matrix M1

and M2. The splitting is given by (see Eq. (10) in [27])

M−1 =M−1
2 (M1 +M2 −A)M−1

1 . (6)

Evidently, the matrix M1 +M2 −A must be nonsingular for (6) to be well defined.

2.2 Product preconditioner

Now, we construct the product preconditioner as the multiplication of two fairly simple precon-
ditioners from the derivation of the alternating iterations in [27]. The first preconditioner is the
famous block Jacobi preconditioner

Mbj =

(
A O
O −C

)
. (7)
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Note that Mbj is nonsingular since both A and C are invertible.
The second preconditioner is the popular nonsingular constraint preconditioner

Msc =

(
G B
BT −C

)
(8)

discussed in [22], where G ∈ Rn×n is an approximation of A, but is not equal to A. In practice,
G is often taken to be the diagonal matrix formed with the diagonal entries of A, i.e., G =
diag(diag(A)). Note that the Schur complement matrices −(C+BTA−1B) and −(C+BTG−1B)
are nonsingular since matrix A in (3) and Msc in (8) are nonsingular (proof can be found in
[20]).

According to the alternating iterations (5) and equation (6), the product preconditionerMps

is given by

M−1
ps =M−1

sc (Mbj +Msc −A)M−1
bj , (9)

where the matrix

Mbj +Msc −A =

(
G O
O −C

)
is invertible. Hence,M−1

ps is well defined. From equation (9), we have the product preconditioner

Mps =Mbj(Mbj +Msc −A)−1Msc =

(
A AG−1B
BT −C

)
. (10)

Also, we can rewrite

Mps =

(
A AG−1B
BT −C

)
=

(
I O

BTA−1 I

)(
A AG−1B
O −(C +BTG−1B)

)
,

then, we have

M−1
ps =

(
A−1 −G−1B(C +BTG−1B)−1BTA−1 G−1B(C +BTG−1B)−1

(C +BTG−1B)−1BTA−1 −(C +BTG−1B)−1

)
.

Finally, the product preconditioned matrix M−1
ps A can be expressed as

M−1
ps A =

(
I A−1B −G−1B(C +BTG−1B)−1(C +BTA−1B)
O (C +BTG−1B)−1(C +BTA−1B)

)
. (11)

3 Properties of the preconditioned matrix M−1
ps A

In this section, we focus on analyzing the eigenvalue distribution and form of the eigenvectors
of the product preconditioned matrix M−1

ps A.

3.1 Eigenvalue distribution

In this section, we consider the eigenvalue distribution of the product preconditioned matrix
M−1

ps A. It is well known that the convergence of an iterative method has close relation to the
distribution of the eigenvalues of the coefficient matrix for symmetric matrix systems. Hence,
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a desired eigenvalue distribution is wished to obtain by the applications of preconditioning
techniques. We prove a result of this type as follows.

Theorem 1. Let A ∈ R(n+m)×(n+m) defined in (3) be a nonsingular and symmetric indefinite
matrix. Preconditioning A by the product preconditioner

Mps =

(
A AG−1B
BT −C

)
,

where G ∈ Rn×n is an approximation of A, G ̸= A, A ∈ Rn×n and C ∈ Rm×m are nonsingular,
B ∈ Rn×m. Then the product preconditioned matrix M−1

ps A has

• an eigenvalue at 1 with multiplicity n;

• m eigenvalues which are defined by the generalized eigenvalue problem (C +BTA−1B)y =
λ(C +BTG−1B)y.

Proof. Suppose λ is the eigenvalue of M−1
ps A, and [xT, yT]T ̸= 0 is the corresponding

eigenvector. Besides, from (11), we have the preconditioned matrix

M−1
ps A =

(
I A−1B −G−1B(C +BTG−1B)−1(C +BTA−1B)
O (C +BTG−1B)−1(C +BTA−1B)

)
,

where A−1B − G−1B(C + BTG−1B)−1(C + BTA−1B) is irrelevant to the results in Theorem
1. Hence, by making use of the related knowledge in linear algebra, we obtain the results in
Theorem 1 immediately. �

3.2 Eigenvector distribution

To our knowledge, the termination of a Krylov subspace method is not only related to the dis-
tribution of eigenvalues of the preconditioned matrix, but also to the number of corresponding
linearly independent eigenvectors. Hence, for completeness of this paper, we establish the rela-
tionship between eigenvalues and eigenvectors of the preconditioned matrix M−1

ps A and discuss
its eigenvector distribution. The following analysis is similar to the discussions in [4, 18, 22].

We start this part from the generalized eigenvalue problem(
A B
BT −C

)(
x
y

)
= λ

(
A AG−1B
BT −C

)(
x
y

)
, (12)

where λ is the eigenvalue of M−1
ps A, and [xT, yT]T ̸= 0 is the corresponding eigenvector. By

calculations, we obtain
Ax+By = λAx+ λAG−1By (13)

and
BTx− Cy = λ(BTx− Cy). (14)

From (14), we obtain (1− λ)(BTx−Cy) = 0. Hence, either λ = 1 or BTx−Cy = 0 holds true.
In the former case, we have

By = AG−1By. (15)

Evidently, equation (15) is satisfied by y = 0, and thus there are n linearly independent eigen-
vectors of the form (xT, 0T)T associated with the unit eigenvalue. On the other hand, there

34

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

CHUN WEN ET AL 30-41



Chun Wen, Ting-Zhu Huang

may exist y ̸= 0 which satisfies (15). Then, without loss of generality, we suppose that there are
i (0 ≤ i ≤ m) linearly independent eigenvectors of the form [xT, yT]T, where the components y
result from the eigenvalue problem By = AG−1By.

Now, suppose λ ̸= 1, then we have BTx − Cy = 0, which implies y = C−1BTx since C is
nonsingular. Substituting this into equation (13), we get the generalized eigenvalue problem

(A+BC−1BT)x = λ(A+AG−1BC−1BT)x, (16)

where x is impossible to be equal to a zero vector. Since if x = 0, then we have y = 0,
which is conflict with the known condition [xT, yT]T ̸= 0. Therefore, we suppose there exist
j (0 ≤ j ≤ n) linearly independent eigenvectors of the form [xT, yT]T, where components x arise
from the eigenvalue problem (16) with y = C−1BTx.

We conclude this subsection with the following theorem.

Theorem 2. Let A ∈ R(n+m)×(n+m) defined in (3) be a nonsingular and symmetric indefinite
matrix. Preconditioning A by the product preconditioner

Mps =

(
A AG−1B
BT −C

)
,

where G ∈ Rn×n is an approximation of A, G ̸= A, A ∈ Rn×n and C ∈ Rm×m are nonsingular,
B ∈ Rn×m. Then the product preconditioned matrix M−1

ps A has n +m eigenvalues as given in
Theorem 1 and n+ i+ j linearly independent eigenvectors. There are

• n eigenvectors of the form [xT, 0T]T that correspond to case λ = 1;

• ∃ i (0 ≤ i ≤ m) eigenvectors of the form [xT, yT]T, where the components y construct a
basis of the generalized eigenvalue problem By = AG−1By and λ = 1;

• ∃ j (0 ≤ j ≤ n) eigenvectors of the form [xT, yT]T that correspond to case λ ̸= 1.

Proof. According to the analysis above, we have obtained the specific form of the eigenvec-
tors of the preconditioned matrixM−1

ps A. Now, our aim is to prove that the n+i+j eigenvectors
are linearly independent, that is, we need to show that

(
x
(1)
1 · · · x

(1)
n

0 · · · 0

) a
(1)
1
...

a
(1)
n

+

(
x
(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

) a
(2)
1
...

a
(2)
i



+

(
x
(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

)
a
(3)
1
...

a
(3)
j

 =

 0
...
0

 (17)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Multiplying (17) by the preconditioned
matrix M−1

ps A, and recalling that the first matrix in (17) arises from the case λk = 1 (k =
1, · · · , n), the second matrix from the case λk = 1 (k = 1, · · · , i), where the components y are
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basis vectors of the generalized eigenvalue problem By = λAG−1By, and the last matrix from
the case λk ̸= 1 (k = 1, · · · , j). We have

(
x
(1)
1 · · · x

(1)
n

0 · · · 0

) a
(1)
1
...

a
(1)
n

+

(
x
(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

) a
(2)
1
...

a
(2)
i



+

(
x
(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

)
λ
(3)
1 a

(3)
1

...

λ
(3)
j a

(3)
j

 =

 0
...
0

 . (18)

Subtracting (17) from (18), we obtain

(
x
(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

)
(λ

(3)
1 − 1)a

(3)
1

...

(λ
(3)
j − 1)a

(3)
j

 =

 0
...
0

 .

Since the components x
(3)
k (k = 1, · · · , j) are linearly independent eigenvectors which arise

from the generalized eigenvalue problem (16) and y
(3)
k = C−1BTx

(3)
k (k = 1, · · · , j). Thus we

have
(λk − 1)a

(3)
k = 0, k = 1, · · · , j.

As a result of the eigenvalues λk (k = 1, · · · , j) are nonunit. We obtain a
(3)
k = 0 (k = 1, · · · , j).

In addition, we know the components y
(2)
k (k = 1, · · · , i) are basis vectors of the equation

By = AG−1By, which implies that y
(2)
k (k = 1, · · · , i) are linearly independent. Thus we have

a
(2)
k = 0 (k = 1, · · · , i).

Therefore, substituting a
(2)
k = 0 (k = 1, · · · , i) and a

(3)
k = 0 (k = 1, · · · , j) into (17), then

equation (17) simplifies to

(
x
(1)
1 · · · x

(1)
n

0 · · · 0

) a
(1)
1
...

a
(1)
n

 =

 0
...
0

 .

Clearly, a
(1)
k = 0 (k = 1, · · · , n) follows from the linear independence of x

(1)
k (k = 1, · · · , n).

Summarizing the discussions above, we obtain a(k) = 0 (k = 1, 2, 3). �

4 Numerical experiments

In this section, we report on numerical results obtained with a Matlab 7. 0.1 implementation
on a Window-XP with 2.93GHz 64-bit processor and 2GB memory. The main goal is to test
the product preconditioner (PS) defined in (10) and to compare it with the block diagonal
preconditioner (BD)

Mbd =

(
G O
O −(C +BTG−1B)

)
, (19)
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presented in [16, 17, 24, 25], the block triangular preconditioner (BT)

Mbt =

(
G B
O −(C +BTG−1B)

)
, (20)

considered in [11, 16, 23–26] and the constraint (SC) preconditioners given in (8) by the com-
puting time (CPU), iteration step (IT) and relative residual error (RES).

There are various strategies to choose G in PS, SC, BD and BT preconditioners. In our
computations, we not only take G to be the diagonal matrix formed with the diagonal entries
of A, i.e., G = diag(diag(A)), but also to be the tridiagonal matrix of the (1,1) block matrix of
A, that is, G = tridiag(A). As a representative iterative solver we used GMRES [30] with the
right preconditioning in our experiments. All iterations are started from the zero vector, and
terminated when RES = ∥b−Au∥2/∥b∥2 ≤ 10−9.

The test problem is the Helmholtz equation (1), together with radiation boundary condition
(2), see [2, 9] for details. By using a finite difference discretization to equation (1) on the uniform
grid of Ω, we obtain the nonsingular and symmetric indefinite linear system (3), where A ∈ Rn×n

and C ∈ Rm×m are nonsingular, B ∈ Rn×m. To be more precise, we have matrix

A = K ⊗ I + I ⊗K + I ⊗D, B = −(I ⊗ en), C = I − hT,

with K = tridiag(−1, 2,−1) ∈ Rp×p, D = −4π2h2I, I ∈ Rp×p an identity matrix, en =
[0, 0, · · · , 0, 1]T ∈ Rp, h = 1/(p + 1), and T ∈ Rp×p a Toeplitz matrix which results from
the generating function f(θ) = 2|θ|(θ2− 1). Hence, we have n = p2, m = p, and the order of the
coefficient matrix A is n+m. Moreover, we choose the right-hand vector b = [fT, gT]T ∈ Rn+m

such that the exact solution of system (3) is [xT, yT]T = [1, 1, · · · , 1]T, and GMRES(50) with at
most 50 restarts is used in our experiments thus the number 2500 in Table 1 and Table 2 means
that the corresponding preconditioned GMRES method does not converge in 2500 iterations.

h 1/32 1/48 1/64 1/80 1/90

n+m 992 2256 4032 6320 8010

BD IT 123 325 794 530 1108
CPU 0.4530 2.5470 10.7350 12.6410 33.2660
RES 8.4763e-10 9.7414e-10 9.7214e-10 9.9784e-10 9.9993e-10

BT IT 98 165 554 785 731
CPU 0.3440 1.3750 7.7040 18.0790 22.9220
RES 6.9060e-10 9.6006e-10 9.6952e-10 9.8453e-10 9.9223e-10

SC IT 98 217 341 850 976
CPU 0.3280 1.5930 4.4210 17.6250 27.5470
RES 7.4747e-10 9.4590e-10 9.7868e-10 9.9417e-10 9.9499e-10

PS IT 8 9 10 10 10
CPU 0.1250 0.4530 1.2650 2.7180 4.0620
RES 9.2136e-10 4.2030e-10 9.2256e-11 1.5617e-10 1.9037e-10

Table 1: IT, CPU and RES of the BD, BT, SC and PS preconditioned GMRES methods for
this Helmholtz equation when G = tridiag(A).
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h 1/32 1/48 1/64 1/80 1/90

n+m 992 2256 4032 6320 8010

BD IT 261 615 1085 1316 2500
CPU 0.4220 2.0320 5.8590 11.6560 28.7190
RES 8.7031e-10 9.9129e-10 9.9364e-10 9.9653e-10 8.1554e-09

BT IT 211 603 969 2003 1403
CPU 0.3280 2.0160 5.2500 18.4530 16.2660
RES 9.5016e-10 9.7251e-10 9.9961e-10 9.9769e-10 9.9885e-10

SC IT 200 410 1115 1025 1470
CPU 0.3430 1.3900 6.3750 9.5320 18.0310
RES 9.8438e-10 9.6321e-10 9.9669e-10 9.9912e-10 9.9463e-10

PS IT 9 9 10 10 10
CPU 0.0780 0.1720 0.3430 0.5320 0.7190
RES 6.2956e-11 6.5957e-10 1.2888e-10 2.1624e-10 2.6212e-10

Table 2: IT, CPU and RES of the BD, BT, SC and PS preconditioned GMRES methods for
this Helmholtz equation when G = diag(diag(A)).

Figure 1: Comparisons of the eigenvalue distribution of the BD, BT, SC and PS preconditioned matrices
for this Helmholtz equation when G = tridiag(A) and n+m = 992.
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Figure 2: Comparisons of the eigenvalue distribution of the BD, BT, SC and PS preconditioned matrices
for this Helmholtz equation when G = diag(diag(A)) and n+m = 992.

Table 1 supplies the IT, CPU and RES of the BD, BT, SC and PS preconditioned GMRES
methods for this Helmholtz equation when G = tridiag(A). As we have seen from Table 1, the
PS preconditioned GMRES method has given the best iteration counts. For the BD, BT and
SC preconditioned GMRES methods, their iteration counts have been reduced by around 96%.
In terms of the computing time, the PS preconditioned GMRES method costs much less than
these of the BD, BT and SC preconditioned GMRES methods. In addition, the precision of the
relative residual error for the PS preconditioned GMRES method is higher than these of the
BD, BT and SC preconditioned GMRES methods, except for the case that n+m = 992.

Table 2 provides the IT, CPU and RES of the BD, BT, SC and PS preconditioned GMRES
methods for this Helmholtz equation when G = diag(diag(A)). From Table 2, it is not difficult
to find that, for this approximate (1,1) block matrix G, all the iteration counts, computing time
and the relative residual error of the PS preconditioned GMRES method are better than these
of the BD, BT and SC preconditioned GMRES methods.

Both the numerical results in Table 1 and Table 2 have shown that the PS preconditioned
GMRES method is superior to the BD, BT and SC preconditioned GMRES methods in obtain-
ing a considerable reduction of iteration counts. These results have confirmed our theoretical
analysis in previous sections. That is, the convergence of a Krylov subspace method under
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preconditioning has relation to the spectral properties of the preconditioned matrix.
For obtaining an intuitive comparison, Figure 1 and Figure 2 have plotted the eigenvalue

distribution of the BD, BT, SC and PS preconditioned matrices for G = tridiag(A) and G =
diag(diag(A)) with the chosen order of the nonsingular and symmetric indefinite linear system
(3) is 992, respectively.

5 Conclusions

We have proposed and investigated a new preconditioner for the numerical solution of block two-
by-two symmetric indefinite matrices whose (1,1) and (2,2) blocks are nonsingular. As we have
seen in this paper, the proposed preconditioner is constructed as the product of two fairly simple
preconditioners: one is the famous block Jacobi preconditioner, and the other is the popular
constraint preconditioner. Here, we call it the product preconditioner, and denote it as PS
preconditioner. Results concerning the eigenvalue distribution and form of the eigenvectors of
the preconditioned matrixM−1

ps A are discussed in Section 3, respectively. Numerical experiments
with preconditioned GMRES method on the problem (1) are used to illustrate the efficiency and
stability of the proposed product preconditioner. Moreover, we have confirmed our theoretical
analysis by comparing the IT, CPU and RES of the BD, BT, SC and PS preconditioned GMRES
methods in Table 1 and Table 2.
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HYERS-ULAM STABILITY OF A GENERAL DIAGONAL SYMMETRIC

FUNCTIONAL EQUATION

CHOONKIL PARK AND HAMID REZAEI∗

Abstract. Using the direct method and the fixed point method, we prove the Hyers-Ulam

stability for the symmetric functional equation f(φ1(x, y, z)) = φ2(f(x), f(y), f(z)) in Ba-

nach spaces. As a consequence, we obtain some stability results in the sense of Hyers-Ulam-

Rassias.

1. Introduction

The stability theory of functional equations originated from the well-known Ulam’s problem

[15], concerning the stability of homomorphisms in metric groups. Hyers [7] gave a first

affirmative partial answer to the question of Ulam for Banach spaces. Let X1 and X2 be

Banach spaces. Assume that f : X1 → X2 satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ ε

for all x, y ∈ X1 and some ε > 0. Then there exists a unique additive mapping T : X1 → X2

such that ∥f(x)− T (x)∥ ≤ ε for all x ∈ X1. Hyers’ Theorem was generalized by Aoki [1] for

additive mappings and by Th.M. Rassias [14] for linear mappings, considering the Cauchy

difference to be unbounded.

Theorem 1.1. ([14]) Let X1 be a normed space and X2 a Banach space. Let f : X1 → X2

satisfy the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p) (1.1)

for all x, y ∈ X1, where θ > 0 and p ∈ [0, 1). Then there exists a unique additive mapping

A : X1 → X2 such that ∥f(x)−A(x)∥ ≤ 2θ
2−2p ∥x∥

p for all x ∈ X1.

A generalization of the Th.M. Rassias theorem was obtained by Gǎvruta [6] by replacing

the unbounded Cauchy difference by a general control function in the spirit of the Th.M.

Rassias’ approach. J.M. Rassias [13] followed the innovative approach of the Th.M. Rassias

Theorem [14] in which he replaced the factor ∥x∥p + ∥y∥p by ∥x∥p∥y∥q for p, q ∈ R with

p + q = 1. The stability problems of several functional equations have been extensively

investigated by a number of authors and there are many interesting results concerning this

problem (see [3, 5, 8, 9]).

In this paper, we introduce the following functional equation

f(φ1(x, y, z)) = φ2(f(x), f(y), f(z)). (1.2)

MSC(2010): Primary: 39B12; 39B52; Secondary: 47H10; 39B72.

Keywords: functional equation, Hyers-Ulam-Rassias stability, fixed point.
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Using the direct method and the fixed point method, we prove the Hyers-Ulam stability of

the functional equation (1.2) in Banach spaces.

2. Hyers-Ulam stability of (1.2): direct method

In this section, we prove the Hyers-Ulam stability of the functional equation (1.2), where

φi : Xi ×Xi ×Xi → Xi, i = 1, 2, are mappings such that

φi(φi(x, x, x), φi(y, y, y)) = φi(φi(x, y, z), φi(x, y, z), φi(x, y, z)). (2.1)

Let us call such mappings diagonal symmetric on Xi. For example

(1) Let X be a vector space, and φ : X ×X ×X → X be a function that

φ(λx, λy, λz) = λφ(x, y, z) (x, y, z ∈ X)

for every scalar λ and φ(x, x, x) = αx for some scalar α, then φ is diagonal symmetric on X.

(2) Let X be a vector space, and φ : X×X×X → X defined by φ(x, y, z) = ax+by+cz+d,

where a, b, c, d are scalars and x, y, z ∈ X. Then it is easy to check that φ is diagonal

symmetric.

Theorem 2.1. Assume that X1 is a normed space and X2 is a Banach space and that

φ1, φ2 are continuous diagonal symmetric mappings on X1, X2, respectively. Put Ti(x) :=

φi(x, x, x) for i = 1, 2 and suppose that T2 is an invertible bounded linear operator on X2. Let

β : X1×X1×X1 → [0,+∞) be a function with this property that there exists some 0 < λ < 1

such that

∥T−1
2 ∥β(T1x, T1y, T1z) ≤ λβ(x, y, z)

for all x, y, z ∈ X1. If f : X1 → X2 is a mapping satisfying

∥f(φ1(x, y, z))− φ2(f(x), f(y), f(z))∥ < β(x, y, z) (2.2)

for all x, y, z ∈ X1, then there exists a unique mapping A : X1 → X2 such that

∥f(x)−A(x)∥ ≤ ∥T−1
2 ∥β(x, x, x)

1− λ
, (2.3)

A(φ1(x, y, z)) = φ2(A(x), A(y), A(z)) (2.4)

for all x, y, z ∈ X1.

Proof. Letting z = y = x (2.2), we get

∥fT1(x)− T2f(x)∥ ≤ β(x, x)

for all x ∈ X1. It follows from (2.1) that

φi(Tix, Tiy, Tiz) = Ti(φi(x, y, z)) (2.5)

for all x, y, z ∈ Xi and i = 1, 2. Let qn(x) := T−n
2 f(Tn

1 x) for all n ≥ 1 and all x ∈ X1. Then

∥qn+1(x)− qn(x)∥ = ∥T−n−1
2 f(Tn+1

1 x)− T−n
2 f(Tn

1 x)∥
≤ ∥T−n−1

2 ∥∥fT1(Tn
1 x)− T2f(T

n
1 x)∥

≤ ∥T−1
2 ∥n+1β(Tn

1 x, T
n
1 x) ≤ ∥T−1

2 ∥λnβ(x, x, x).
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Here, in the last inequality, the contractive property of β is used. Hence

∥qn+1(x)− qn(x)∥ ≤ ∥T−1
2 ∥λnβ(x, x, x),

and so the sequence {qn(x)} is a Cauchy sequence for each x. Since X2 is complete, there

exists a limit mapping A(x) := limn→∞ qn(x). Now by induction on n, we prove that

∥qn(x)− f(x)∥ ≤
n−1∑
i=0

∥T−1
2 ∥λiβ(x, x, x) (2.6)

for all n ∈ N and all x ∈ X1. Fix x ∈ X1. Note that

∥q1(x)− f(x)∥ = ∥T−1
2 f(T1(x))− f(x)∥

≤ ∥T−1
2 ∥∥f(T1(x))− T2(f(x))∥ ≤ ∥T−1

2 ∥β(x, x, x).

Now suppose (2.6) holds for a fixed n. Then

∥qn+1(x)− f(x)∥ ≤ ∥qn+1(x)− qn(x)∥+ ∥qn(x)− f(x)∥

≤ ∥T−1
2 ∥λnβ(x, x) +

n−1∑
i=0

∥T−1
2 ∥λiβ(x, x, x)

=

n∑
i=0

∥T−1
2 ∥λiβ(x, x, x).

Letting n→ +∞ in (2.6), we get

∥A(x)− f(x)∥ ≤ ∥T−1
2 ∥β(x, x, x)

1− λ

for all x ∈ X1.

Now we prove that A satisfies (2.4). Replacing x, y, z in (2.2) with Tn
1 x, T

n
1 y, T

n
1 z, respec-

tively, we get

∥f(φ1(T
n
1 x, T

n
1 y, T

n
1 y))− φ2(f(T

n
1 x), f(T

n
1 y), f(T

n
1 z))∥ (2.7)

≤ β(Tn
1 x, T

n
1 y, T

n
1 z).

It follows from (2.5) that

φ1(T
n
1 x, T

n
1 y, T

n
1 z) = Tn

1 (φ1(x, y, z)) (2.8)

for all x, y, z ∈ X1, and

φ2(T
n
2 x, T

n
2 y, T

n
1 z) = Tn

2 (φ2(x, y, z))

for all x, y, z ∈ X2. Replacing x, y, z by T−n
2 x, T−n

2 y, Tn
1 z, respectively, in the last above

relation, we get

φ2(x, y, z) = Tn
2 (φ2(T

−n
2 x, T−n

2 y, T−n
2 z))

and then replacing x, y, z by f(Tn
1 x), f(T

n
1 y), f(T

n
1 z), respectively, we get

φ2(f(T
n
1 x), f(T

n
1 y), f(T

n
1 z)) = Tn

2 (φ2(T
−n
2 (f(Tn

1 x)), T
−n
2 (f(Tn

1 y)), T
−n
2 (f(Tn

1 z)))).

By the definition of qn, we obtain

φ2(f(T
n
1 x), f(T

n
1 y), f(T

n
1 z)) = Tn

2 (φ2(qn(x), qn(y), qn(z))). (2.9)
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It follows from (2.7), (2.8) and (2.9) that

∥qn(φ1(x, y, z))− φ2(qn(x), qn(y), qn(z))∥
= ∥T−n

2 f(Tn
1 φ1(x, y, z))− φ2(qn(x), qn(y), qn(z))∥

≤ ∥T−1
2 ∥n∥f(Tn

1 φ1(x, y, z))− Tn
2 φ2(qn(x), qn(y), qn(z))∥

= ∥T−1
2 ∥n∥f(φ1(T

n
1 x, T

n
1 y, T

n
1 z))− φ2(f(T

n
1 x), f(T

n
1 y), f(T

n
1 z))∥

≤ ∥T−1
2 ∥nβ(Tn

1 x, T
n
1 y, T

n
1 z)

≤ λnβ(x, x, x).

Therefore,

∥qn(φ1(x, y, z))− φ2(qn(x), qn(y), qn(z))∥ ≤ λnβ(x, x, x)

for all x, y ∈ X1 and all n ∈ N. Applying the continuity of φ, considering 0 < λ < 1, and

letting n→ +∞ in the last inequality, we obtain (2.4).

Now we prove that A is a unique mapping satisfying (2.3) and (2.4). Assume that there

exists another mapping A′ : X → X satisfying (2.3) and (2.4). Letting y = x in (2.4), we get

AT1(x) = T2A(x) and A
′T1(x) = T2A

′(x) and more generally

ATn
1 (x) = Tn

2 A(x) and A
′Tn

1 (x) = Tn
2 A

′(x).

Hence

A(x) = T−n
2 A(Tn

1 (x)) and A
′(x) = T−n

2 A′(Tn
1 (x))

for all x ∈ X and n ∈ N. By the triangle inequality, (2.3) and (2.10), we obtain

∥A(x)−A′(x)∥ = ∥T−n
2 A(Tn

1 x)− T−n
2 A′(Tn

1 x)∥
≤ ∥T−1

2 ∥n∥A(Tn
1 x)−A′(Tn

1 x)∥
≤ ∥T−1

2 ∥n(∥A(Tn
1 x)− f(Tn

1 x)∥+ ∥f(Tn
1 x)−A′(Tn

1 x)∥)

≤ ∥T−1
2 ∥n

(
2
∥T−1

2 ∥β(Tn
1 x, T

n
1 x)

1− λ

)
≤ 2∥T−1

2 ∥
(∥T−1

2 ∥nβ(Tn
1 x, T

n
1 x)

1− λ

)
≤ 2∥T−1

2 ∥λ
nβ(x, x)

1− λ

for all x ∈ X1 and all n ∈ N. Letting n→ +∞, we get A(x) = A′(x) for all x ∈ X1. �

The proof of the following theorem is similar and we omit it:

Theorem 2.2. Assume that X1 is a normed space and X2 is a Banach space and that φ1, φ2

are continuous diagonal symmetric mappings on X1, X2, respectively. Put Ti(x) := φi(x, x, x)

for i = 1, 2 and suppose that T2 is a bounded linear operator on X2 and T1 is invertible on

X1. Let β : X1 ×X1 ×X1 → [0,+∞) be a function with this property that there exists some

0 < λ < 1 such that

∥T2∥β(T−1
1 x, T−1

1 y, T−1
1 z) ≤ λβ(x, y, z)

for all x, y, z ∈ X1. If f : X1 → X2 is a mapping satisfying

∥f(φ1(x, y, z))− φ2(f(x), f(y), f(z))∥ < β(x, y, z)
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for all x, y, z ∈ X1, then there exists a unique mapping A : X1 → X2 such that

∥f(x)−A(x)∥ ≤ ∥T−1
1 ∥β(x, x, x)

1− λ

A(φ1(x, y, z)) = φ2(A(x), A(y), A(z))

for all x, y, z ∈ X1.

Corollary 2.3. Assume that X1 is a normed space and X2 is a Banach space and that φ1, φ2

are continuous diagonal symmetric mappings on X1, X2, respectively. Put Ti(x) := φi(x, x, x)

for i = 1, 2 and suppose that T2 is an invertible bounded linear operator on X2. Let f : X1 →
X2 be a mapping for which there exist some θ1, θ2 > 0, and p ≥ 0 such that

∥f(φ1(x, y, z))− φ2(f(x), f(y), f(z))∥ < θ1(∥x∥p + ∥y∥p + ∥z∥p) + θ2(∥x∥p/3∥y∥p/3∥z∥p/3)

for all x, y, z ∈ X1. If ∥T−1
2 ∥∥T1∥p < 1, then there exists a unique mapping A : X1 → X2

such that

∥f(x)−A(x)∥ ≤ θ∥T−1
2 ∥ (2θ1 + θ2)∥x∥p

1− ∥T−1
2 ∥∥T1∥p

,

A(φ1(x, y, z)) = φ2(A(x), A(y), A(z))

for all x, y, z ∈ X1.

Proof. Let

β(x, y, z) := θ1(∥x∥p + ∥y∥p + ∥z∥p) + θ2(∥x∥p/3∥y∥p/3∥z∥p/3)
for x, y ∈ X1, and λ := ∥T−1

2 ∥∥T1∥p. Then

∥T−1
2 ∥β(T1x, T1y) ≤ λβ(x, y, z)

for all x, y, z ∈ X1. This completes the proof. �

Consider the following choices of φ1, φ2, T1 and T2:

(1) φ1(x, y, z) = φ2(x, y, z) =
x+y+z

2 and T1(x) = T2(x) =
3x
2 ;

(2) φ1(x, y, z) = xyz, φ2(x, y, z) = x+ y + z,T1(x) = x3 and T2(x) = 3x;

to deduce the following corollary:

Corollary 2.4. The following functional equations has Hyers-Ulam stability in the sense of

Theorem 2.1 and 2.2:

(i) 2f(x+y+z
2 ) = f(x) + f(y) + f(z), f : X1 → X2 where X1 is a vector space and X2 is a

Banach space.

(ii) f(xyz) = f(x) + f(y) + f(z), f : X1 → X2 where X1 is any abelian semigroup and X2

is a Banach space.

Let A be a C∗-algebra and a ∈ A a self-adjoint element, i.e., a = a∗. Then a is said to

be positive if it is of the form a = bb∗ for some a ∈ A. The set of positive elements of A is

denoted by A+.

Note that A+ is a closed convex cone (see [4]).

It is well-known that for a positive element a and a positive integer n there exists a unique

positive element x ∈ A+ such that a = xn. We denote x by n
√
a. Then the functional
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equation (1.1) is Hyers-Ulam stable in the sense of Theorem 2.1 and 2.2 when the mapping

φ : A+ ×A+ ×A+ → A+ is one of the following choices:

(1) φ(x, y, z) = n
√
ax2 + by2 + cz2 where a+ b+ c > 1,

(2) φ(x, y, z) = n
√
xn + yn + zn,

3. Hyers-Ulam stability of (1.2): fixed point method

We now introduce one of the fundamental results of the fixed point theory.

For a nonempty set X, we introduce the definition of the generalized metric on X. A

function d : X ×X → [0,∞] is called a generalized metric on X if and only if d satisfies

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) for all x, y ∈ X,

• d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X.

Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation

(1.2) in Banach spaces.

Theorem 3.1. ([10]) Let (X , d) be a generalized complete metric space. Assume that Λ :

X → X is a strictly contractive operator with the Lipschitz constant L < 1, i.e.,

d(Λg,Λh) ≤ Ld(g, h)

for all g, h ∈ X . If there exists a nonnegative integer n0 such that d(Λn0+1f,Λn0f) < +∞ for

some f ∈ X , then the following statements are true:

(1) The sequence {Λnf} converges to a fixed point A of Λ;

(2) A is the unique fixed point of Λ in X ∗ = {g ∈ X : d(Λn0f, g) < +∞};

(3) If g ∈ X∗, then

d(g,A) ≤ 1

1− L
d(Λg, g).

Radu [12] proved the Hyers-Ulam stability of the additive Cauchy equation (1.1) by using

fixed point method (see [2]).

In the following, Theorem 2.1 is proved by the fixed point method.

Theorem 3.2. Let X1, X2, φ1, φ2, T1, T2, β be given as in Theorem 2.1. If f : X1 → X2 is a

mapping satisfying (2.2), then there exists a unique mapping A : X1 → X2 satisfying (2.3)

and AT1(x) = T2A(x) for all x ∈ X1.

Proof. Letting y = x in (2.2), we get

∥fT1(x)− T2f(x)∥ ≤ β(x, x, x)

for all x ∈ X1. Consider the set X := {f : f : X1 → X2 is a function } and define the

generalized metric on X by

d(g, h) = inf
{
µ ∈ (0,+∞) : ∥g(x)− h(x)∥ ≤ µβ(x, x) for all x ∈ X1}.
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where, as usual, inf = +∞. It is easy to show that (X , d) is complete (see [11]). Now we

consider the linear mapping Λ : X → X such that

Λg(x) = T−1
2 g(T1x)

for all x ∈ X1. For given g, h ∈ X ,

∥Λg(x)− Λf(x)∥ = ∥T−1
2 g(T1x)− T−1

2 h(T1x)∥ ≤ ∥T−1
2 ∥β(T1x, T1x, T1x) ≤ λβ(x, x, x)

for all x ∈ X1. By the definition of d,

d(Λf,Λg) ≤ λd(f, g).

Note that

∥f(x)− Λf(x)∥ = ∥f(x)− T−1
2 f(T1x)∥

≤ ∥T−1
2 ∥∥T1f(x)− f(T1x)∥ ≤ ∥T−1

2 ∥β(x, x, x)

for all x ∈ X1, and so d(Λf, f) ≤ ∥T−1
2 ∥ < +∞. By the preceding theorem, there exists a

mapping A : X1 → X2 satisfying the following conditions:

(1) A is a fixed point of Λ, i.e., T−1
2 AT1 = ΛA = A whence A(T1(x)) = T2(A(x)) for all

x ∈ X1. Moreover, A is a unique fixed point of Λ in the set X ∗ := {g ∈ X : d(f, g) < +∞}
which implies that

∥f(x)−A(x)∥ ≤ µβ(x, x, x).

(2) d(Λnf,A) → 0 as n→ +∞, i.e., A(x) = limn T
−n
2 f(Tn

1 x).

(3) By (3) of the preceding theorem, we conclude that

d(f,A) ≤ 1

1− λ
d(f,Λf) <

1

1− λ
∥T−1

2 ∥,

and so

∥f(x)−A(x)∥ ≤ ∥T−1
2 ∥β(x, x, x)

1− λ
,

as desired. In order to prove that A satisfies (2.4), we can proceed exactly as in the proof of

Theorem 2.2 to show that A : X1 → X2 is indeed a mapping satisfying (2.4). �
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GENERAL DECAY OF SOLUTIONS FOR A SINGULAR NONLOCAL

VISCOELASTIC PROBLEM WITH NONLINEAR DAMPING AND SOURCE

YUN SUN, GANG LI, AND WENJUN LIU

Abstract. This paper deals with a singular nonlocal viscoelastic problem with nonlinear damp-
ing and source terms. We establish a general decay rate result without imposing any restrictive
growth assumption on the damping term.

1. Introduction

In this paper, we investigate the following one-dimensional viscoelastic equation

utt −
1

x
(xux)x +

∫ t

0
g(t− s)

1

x
(xux(x, s))xds+ h(ut) = b|u|p−2u, x ∈ (0, ℓ), t ∈ (0,∞),

u(ℓ, t) = 0,

∫ ℓ

0
xu(x, t)dx = 0 t ∈ [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, ℓ],

(1.1)

where ℓ <∞, b > 0, p > 2, g and h are specific functions which will be given later.

This type of evolution problems are generally encountered when the data on the boundary

can not be measured directly, but their average values are known. For the case of singular type,

we can refer to [8, 9, 10, 11, 14] for the existence, uniqueness and blow-up results. Here, it

is worth mentioning that many results concerning decay have been extensively studied for the

case of classical conditions. Under the condition −ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), the exponential

or polynomial decay results were obtained in [3, 4, 5, 6]. Later, some authors relaxed these

conditions by considering only g′(t) ≤ −ξg(t) or g′(t) ≤ −ξgr(t) , for all t ≥ 0 and some ξ > 0

(see [1, 2, 15]). In [12, 13], the condition has been replaced by g′(t) ≤ −ξ(t)g(t), where ξ(t) is a
positive function. This allows the authors to obtain general rates of decay than just exponential

or polynomial type.

Motivated by [11, 13], we study problem (1.1) in this paper and intend to establish a general

decay result under certain conditions, without imposing any restrictive growth assumption on

the damping term. The paper is organized as follows. In Section 2 we present some assumptions

and known results needed for our work. Section 3 is devoted to the proof of some lemmas and

the decay result: Theorem 2.4 .

2. Preliminaries and main result

In this section we first introduce some functional spaces and present some assumptions and

known results which will be used throughout this paper, and then state our main result.

Let Lp
x = Lp

x(0, ℓ) be the weighted Banach space equipped with the norm ∥u∥p =
(∫ ℓ

0 x|u|
pdx
) 1

p
.

In particular, when p = 2, we denote H = L2
x(0, ℓ) to be the weighted Hilbert space of square

2010 Mathematics Subject Classification. 35B35; 35B40; 35L20.
Key words and phrases. nonlocal viscoelastic problem; general decay; nonlinear damping.
This paper was supported by the JSPS Innovation Program (CXLX12 0490).
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integrable functions having the finite norm ∥u∥H =
(∫ ℓ

0 xu
2dx
) 1

2
. We take V = V 1,1

x (0, ℓ)

to be the weighted Hilbert space equipped with the norm ∥u∥V =
(
∥u∥2H + ∥ux∥2H

) 1
2 , and

V0 = {v ∈ V such that v(ℓ) = 0}.
For the functionals g and h we give the following assumptions as in [13]:

(H1) g(t) : R+ → R+ is a C1 function such that

g(0) > 0, 1−
∫ ∞

0
g(s)ds = l > 0,

and there exists a nondecreasing differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), t ≥ 0 and

∫ +∞

0
ξ(t)dt = ∞

(H2) h : R 7→ R is a nondecreasing C0 function such that there exists a strictly increasing

function h0 ∈ C1([0,+∞)), with h0(0) = 0, and positive constants c1, c2, and ϵ such that

h0(|s|) ≤ |h(s)| ≤ h−1
0 (s), ∀ |s| ≤ ϵ, (2.1)

c1|s| ≤ |h(s)| ≤ c2|s|, ∀ |s| ≥ ϵ. (2.2)

Remark 1. Hypothesis (H2) implies that sh(s) > 0, for all s ̸= 0.

Lemma 2.1. ([11]) For any v in V0, we have∫ ℓ

0
x(v(x))2dx ≤ C∗

∫ ℓ

0
x (vx(x))

2 dx.

Lemma 2.2. ([11]) For any v in V0, 2 < p < 4, we have∫ ℓ

0
x(v(x))pdx ≤ Cp∥vx∥pH ,

where Cp is a constant depending on p only.

Lemma 2.3. ([11, Theorem 2.3]) Suppose that 2 < p < 3 and (H1) and (H2) hold. Then for

any u0 in V0 and u1 in H, problem (1.1) has a unique local solution

u ∈ C(0, t∗;V0) ∩ C1(0, t∗;H)

for t∗ > 0 small enough.

Now we introduce the functionals for I(t) and E(t):

I(t) := I(u(t)) =
(
1−

∫ t

0
g(s) ds

)∫ ℓ

0
xu2xdx+ (g ◦ ux)(t)− b

∫ ℓ

0
x|u(t)|pdx, (2.3)

E(t) := E(u(t)) =
1

2

(
1−

∫ t

0
g(s) ds

)∫ ℓ

0
xu2xdx+

1

2
(g ◦ ux)(t)

− b
p

∫ ℓ

0
x|u(t)|pdx+

1

2

∫ ℓ

0
xu2tdx, (2.4)

where

(g ◦ ux)(t) =
∫ ℓ

0

∫ t

0
xg(t− s)|ux(x, t)− ux(x, s)|2dsdx.

Remark 2. Multiplying Eq. (1.1) by xut and integrating over (0, ℓ), we can easily get

E′(t) =
1

2
(g′ ◦ ux)(t)−

1

2
g(t)

∫ ℓ

0
xu2x(x, t)dx−

∫ ℓ

0
xuth(ut)dx ≤ 0, ∀ t ≥ 0. (2.5)

Our main result of this paper reads as follows.
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Theorem 2.4. Suppose that (H1) and (H2) hold, 2 < p < 3, if (u0, u1) ∈ V0 ×H such that

β =
bCp

l

(
2p

(p− 2)l
E(u0, u1)

) p−2
2

< 1, I(u0) > 0. (2.6)

Then, there exists a constant C > 0 such that, for t large, the solution of (1.1) satisfies

E(t) ≤ C

(
H−1

0

(
1∫ t

0 ξ(s)ds

))2

where H0(s) = sh0(s). (2.7)

Moreover, if we define J(s) = h0(s)
s , which is strictly increasing with J(0) = 0, then we can

improve (2.7) to the following estimate:

E(t) ≤ C

(
h−1
0

(
1∫ t

0 ξ(s)ds

))2

. (2.8)

For the proof of the above theorem, we use the following lemma.

Lemma 2.5. ([7]) Let E : R+ → R+ be a nonincreasing function and σ : R+ → R+ be a

strictly increasing C1 function, with σ(t) → +∞ as t → +∞. Assume that there exist p, q ≥ 0

and c > 0 such that∫ ∞

S
σ′(t)E(t)1+pdt ≤ cE(s)1+p +

cE(s)

σq
, 1 ≤ S < +∞.

Then there exist positive constants κ and ω such that

E(t) ≤ κe−ωσ(t) ∀ t ≥ 1, ifp = q = 0

E(t) ≤ κ

σ(t)
1+q
p

∀ t ≥ 1, ifp > 0.

3. General decay of solutions

In this section we prove our main result. For this purpose we establish several lemmas.

Lemma 3.1. ([11, Lemma 4.1 and Lemma 4.2]) Under the assumptions of Theorem 2.4,

we conclude that I(u(t)) > 0,∀ t > 0 and the solution is global and bounded. Furthermore, the

following inequality holds

l

∫ µ

0
xu2xdx ≤

(
2p

p− 2

)
E(u0, u1), ∀t > 0. (3.1)

Lemma 3.2. For all u ∈ V0, there exists C∗ > 0 such that∫ ℓ

0
x

(∫ t

0
g(t− s)(u(t)− u(s))ds

)2

dx ≤ (1− l)C∗(g ◦ ux)(t).

Proof. Using Cauchy-Schwarz’s inequality, (H1) and Lemma 2.1, we can easily obtain the

result.

We define the following functionals

L(t) := N1E(t) +N2K(t) + χ(t), (3.2)

where

K(t) := −
∫ ℓ

0
xut

∫ t

0
g(t− s)(u(t)− u(s))dsdx,

χ(t) :=

∫ ℓ

0
xuutdx,

N1 and N2 are positive constants to be chosen later.
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Lemma 3.3. Suppose that (H1) holds and p > 2. Let u be the solution of problem (1.1).

Then there exist positive constants α1, α2 > 0 such that

α1E(t) ≤ L(t) ≤ α2E(t). (3.3)

Proof. Straightforward computations, Young’s inequality and Lemma 3.2 lead to

L(t) ≤
[
N1

2

(
1−

∫ t

0
g(s)ds

)
+
C∗
2

] ∫ ℓ

0
xu2xdx+

(
N1

2
+
N2

2
+

1

2

)∫ ℓ

0
xu2tdx

+

[
N1

2
+
N2

2
(1− l)C∗

]
(g ◦ ux)(t)−

bN1

p

∫ ℓ

0
x|u|pdx

≤α1

(∫ ℓ

0
xu2xdx+

∫ ℓ

0
xu2tdx+ (g ◦ ux)(t)−

b

p

∫ ℓ

0
x|u|pdx

)
, (3.4)

for some α1 > 0. On the other hand,

L(t) ≥1

2
(N1l − C∗)

∫ ℓ

0
xu2xdx+

1

2
(N1 −N2 − 1)

∫ ℓ

0
xu2tdx

+
1

2
[N1 −N2(1− l)C∗] (g ◦ ux)(t)−

bN1

p

∫ ℓ

0
x|u|pdx. (3.5)

Choose N2 > 1 and then take N1 satisfying

N1 > max

{
C∗
l
, N2 + 1, N2(1− l)C∗

}
. (3.6)

Then we completes the proof.

Lemma 3.4. Suppose that (H1) and (H2) hold and p > 2, let (u0, u1) ∈ V0 ×H be given. If

u is the solution of (1.1), then we have

χ′(t) ≤ − l

2

∫ ℓ

0
xu2xdx+

∫ ℓ

0
xu2tdx+ C(g ◦ ux)(t) + C

∫ ℓ

0
xh2(ut)dx+ b

∫ ℓ

0
x|u|pdx. (3.7)

Proof. By exploiting problem (1.1) and integrating by parts, we get

χ′(t) =

∫ ℓ

0
xu2tdx−

∫ ℓ

0
xu2xdx+

(∫ t

0
g(s)ds

)∫ ℓ

0
xu2xdx

+

∫ ℓ

0
xux

∫ t

0
g(t− s) (ux(s)− ux(t)) dsdx−

∫ ℓ

0
xuh(ut)dx+ b

∫ ℓ

0
x|u|pdx. (3.8)

Using Young’s and Poincaré’s inequalities and Lemma 3.2, we obtain∫ ℓ

0
xux

∫ t

0
g(t− s) (ux(s)− ux(t)) dsdx

≤δ
∫ ℓ

0
xu2xdx+

1

4δ

∫ ℓ

0
x

(∫ t

0
g(t− s) (ux(s)− ux(t)) ds

)2

dx

≤δ
∫ ℓ

0
xu2xdx+

C

δ
(g ◦ ux)(t), (3.9)

−
∫ ℓ

0
xuh(ut)dx ≤ δ

∫ ℓ

0
xu2dx+

1

4δ

∫ ℓ

0
xh2(ut)dx ≤ δC∗

∫ ℓ

0
xu2xdx+

1

4δ

∫ ℓ

0
xh2(ut)dx. (3.10)

Combining (3.8)-(3.10), and choosing δ small enough such that δ ≤ l
2(1+C∗)

, then (3.7) is ob-

tained.
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Lemma 3.5. Under the assumptions (H1) and (H2), suppose 2 < p < 3, then the functional

K satisfies, along the solution, the estimate

K ′(t) ≤−
(∫ t

0
g(s)ds− δ

)∫ ℓ

0
xu2tdx+

(
δ +

δl2

bCp

)∫ ℓ

0
xu2xdx+

(
C +

C

δ

)
(g ◦ ux)(t)

− C

δ
(g′ ◦ ux)(t) + C

∫ ℓ

0
xh2(ut)dx, ∀ 0 < δ < 1. (3.11)

Proof. By direct computations and (1.1), we get

K ′(t) =

(
1−

∫ t

0
g(s)ds

)∫ ℓ

0
xux

∫ t

0
g(t− s) (ux(t)− ux(s)) dsdx

+

∫ ℓ

0
x

(∫ t

0
g(t− s) (ux(t)− ux(s)) ds

)2

dx−
∫ ℓ

0
xut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx

−
(∫ t

0
g(s)ds

)∫ ℓ

0
xu2tdx+

∫ ℓ

0
xh(ut)

∫ t

0
g(t− s)(u(t)− u(s))dsdx

− b

∫ ℓ

0
x|u|p−2u

∫ t

0
g(t− s)(u(t)− u(s))dsdx. (3.12)

By Young’s inequality and Lemma 3.2, we have(
1−

∫ t

0
g(s)ds

)∫ ℓ

0
xux

∫ t

0
g(t− s) (ux(t)− ux(s)) dsdx ≤ δ

∫ ℓ

0
xu2xdx+

C

δ
(g ◦ ux)(t), (3.13)

∫ ℓ

0
x

(∫ t

0
g(t− s) (ux(t)− ux(s)) ds

)2

dx ≤ C(g ◦ ux)(t), (3.14)

−
∫ ℓ

0
xut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx ≤ δ

∫ ℓ

0
xu2tdx− C

δ
(g′ ◦ ux)(t), (3.15)

∫ ℓ

0
xh(ut)

∫ t

0
g(t− s)(u(t)− u(s))dsdx ≤ C

∫ ℓ

0
xh2(ut)dx+ C(g ◦ ux)(t), (3.16)

As for the sixth term, using Lemma 2.2, (2.6) and (3.1), we get

− b

∫ ℓ

0
x|u|p−2u

∫ t

0
g(t− s)(u(t)− u(s))dsdx

≤bδ
∫ ℓ

0
x|u|2p−2dx+

C

2δ
(g ◦ ux)(t) ≤ bδCp

(∫ ℓ

0
xu2xdx

)p−2(∫ ℓ

0
xu2xdx

)
+
C

2δ
(g ◦ ux)(t)

≤bδCp

[
2pE(u0, u1)

(p− 2)l

]p−2(∫ ℓ

0
xu2xdx

)
≤ δl2

bCp

∫ ℓ

0
xu2xdx+

C

2δ
(g ◦ ux)(t). (3.17)

Combining (3.12)-(3.17), the assertion of the lemma is established.

Now select N1, N2 large so that (3.3) remains valid and l

4N2

(
1+ l2

bCp

) ≤ l
2(1+C∗)

. Set g0 =∫ t0
0 g(s)ds for some fixed t0 > 0. By combining (2.5), (3.2), (3.7) and (3.11), we take δ =

l

4N2

(
1+ l2

bCp

) and obtain, for all t ≥ t0,

L′(t) ≤− l

4

∫ ℓ

0
xu2xdx−

(
N2g0 −

l

4
− 1

)∫ ℓ

0
xu2tdx+

4CN2
2

(
1 + l2

bCp

)
l

+ C

 (g ◦ ux)(t)

+

1

2
N1 −

4CN2
2

(
1 + l2

bCp

)
l

 (g′ ◦ ux)(t) + (CN2 + C)

∫ ℓ

0
xh2(ut)dx+ b

∫ ℓ

0
x|u|pdx.
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At this point, since N2 large enough, so we can have k := N2g0 − l
4 − 1 > 0, then N1 large

enough so that (3.6) remains valid and 1
2N1 −

4CN2
2

(
1+ l2

bCp

)
l > 0. Thus, using (H1), it turns out

that

L′(t) ≤ − l

4

∫ ℓ

0
xu2xdx− k

∫ ℓ

0
xu2tdx+ C(g ◦ ux)(t) + C

∫ ℓ

0
xh2(ut)dx+ b

∫ ℓ

0
x|u|pdx,

which implies

E(t) ≤ −mL′(t) + C(g ◦ ux)(t) + C

∫ ℓ

0
xh2(ut)dx, ∀ t ≥ t0. (3.18)

Proof of Theorem 2.4. (Sketch) Define ϕ(t) = 1 +
∫ t
1

1
h0( 1

s )
ds, ∀ t ≥ 1 and σ(t) =

ϕ−1
(∫ t

0 ξ(s)ds
)
, for ∀ t ≥ t1 ≥ t0. Then continue as that of [13, Theorem 3.5] we can com-

plete the proof.
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Measuring fuzziness of generalized fuzzy rough

sets induced by pseudo-operations
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Abstract: Rough sets is a new mathematical tool to handle imprecision, vagueness and uncertainty in
data analysis. But, in Pawlak’s rough set model, equivalence relation is a key and primitive notion and
this equivalence relation seems to be a very stringent condition that limited the application domain of
the rough sets. Various fuzzy generalizations of rough approximations have been made over the years.
In this paper, we consider pseudo-operation of the following form: x⊕ y = g−1(g(x) + g(y)), where g is a
positive strictly monotone generating function and g−1 is its pseudo-inverse. Using this type of pseudo-
operation, the pseudo-generalized fuzzy rough sets are presented and some properties of the pseudo fuzzy
rough approximation operators are investigated. Moreover, we define a measure of fuzziness based on
pseudo-generalized fuzzy rough sets with the new pseudo-lower and pseudo-upper approximations.
Keywords: Fuzzy sets; Rough sets; Pseudo-operations; Approximation operators

1. Introduction

The theory of rough set was originally proposed by Pawlak [1] as a mathematical approach to

handle imprecision, vagueness and uncertainty in data analysis. By using the concepts of lower

and upper approximations in rough set theory, knowledge hidden in information systems may be

unraveled and expressed in the form of decision rules. However, in Pawlak’s rough set model,

an equivalence relation is a key and primitive notion. This equivalence relation, however, seems

to be a very stringent condition that may limit the application domain of the rough set model.

Generalizations of rough set theory were considered by scholars in order to deal with complex

practical problems [2-7].

There are at least two approaches for the development of definitions of lower and upper ap-

proximation operators, namely, the constructive and axiomatic approaches. In the constructive

approach, some authors have extended equivalence relation to tolerance relations [8], similarity

relations [9], ordinary binary relations [7,10], and others [11-13]. Meanwhile, some authors have

relaxed the partition of universe to the covering and obtain the covering-based rough sets [4,14-

20]. In addition, generalizations of rough sets to the fuzzy environment have also been made

[2,5,21-26]. By introducing the lower and upper approximations in fuzzy set theory, Dubois and

∗ Corresponding author. E-mail Address: szh780323@163.com (Z.H. Shi); zt-gong@163.com (Z.T. Gong)
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Prade [27] formulated rough fuzzy sets and fuzzy rough sets, they constructed a pair of lower and

upper approximation operators for fuzzy sets with respect to fuzzy similarity relation by using the

t-norm Min and its dual conorm Max. By using a residual implication (for short, R-implication)

to define the lower approximation operator, Morsi and Yakout [28] generalized the fuzzy rough

sets in the sense of Dubois and Prade. Later, Radzikowska and Kerre [29] proposed a more general

approach to the fuzzification of a rough set. This approach is based on a border implication I
(not necessarily a R-implication) and a triangular norm T . Recently, Mi et al. [30] presented the

generalized fuzzy rough sets determined by a triangular norm, Ouyang et al. [31] discussed fuzzy

rough sets based on tolerance relations.

In the axiomatic approaches, a set of axioms is used to characterize the approximations. Lin

and Liu [32] proposed six axioms on a pair of abstract operators on the power set of universe in the

framework of topological spaces. Under these axioms, there exists an equivalence relation such that

the lower and upper approximations are the same as the abstract operators. The most important

axiomatic studies for crisp rough sets were made by Yao [7,10,33]. Recently, the research of the

axiomatic approach has also been extended to approximation operators in the fuzzy environment

[28,30,34-37].

In some problems with uncertainty in the theory of probabilistic metric spaces, fuzzy logics

and fuzzy measures, the pseudo-operations such as pseudo-additions and pseudo-multiplications

are used [38-40]. Pseudo-analysis [38-47] has been applied in different fields, e.g., measure theory,

integration, convolution, Laplace transform, optimization, nonlinear differential and difference

equations, economics, game theory, etc. Interestingly, by using the Aczel’s theorem [48], the

pseudo-additions and pseudo-multiplications could be transferred into the corresponding results of

reals such as the addition operator and multiplication operator. This can bring us the convenience

of calculation.

We note that there are some literatures about pseudo integrals [7,8,10,25,35], but little liter-

atures about rough set model based on pseudo-operations. The main purpose of this paper is

to present a general framework for the study of fuzzy rough approximation operators based on

pseudo-operations. By using the pseudo-operations, the pseudo-lower and pseudo-upper approx-

imation operators are defined. Meanwhile, some properties of the proposed pseudo fuzzy rough

approximation operators are investigated. Connections between the new and the existing fuzzy

rough approximation operators are also discussed. Compared with the previous rough set models

based on triangular norms [28-30,37], the pseudo-generalized fuzzy rough set proposed in this

paper has its advantage to calculate its lower and upper approximations conveniently.

The remainder of this paper is organized as follows. In section 2, we recall some basic concepts

of fuzzy sets, fuzzy relation, rough sets and pseudo-operations. In section 3, the pseudo-generalized

fuzzy rough sets are presented. Some properties of the proposed pseudo fuzzy rough approximation

operators are also investigated in this section. In section 4, the fuzziness of pseudo-generalized

fuzzy rough sets is given. Section 5 presents conclusions.

2. Preliminaries

2.1 Fuzzy sets
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Let U be a universe. Fuzzy set A is a mapping from U into the unit interval [0, 1]:

A : U → [0, 1],

where for each x ∈ U , we call A(x) the membership degree of x in A. If U = {x1, x2, · · · , xn},
then the fuzzy set A on U can be expressed by

n∑
i=1

A(xi)/xi. Additionally, the fuzzy power set,

i.e., the set of all fuzzy sets in the universe U is denoted by F(U) [49].

For fuzzy sets A,B ∈ F(U),

A ⊆ B ⇔ A(x) ≤ B(x);

(A ∩B)(x) = A(x) ∧B(x) = min{A(x), B(x)};
(A ∪B)(x) = A(x) ∨B(x) = max{A(x), B(x)};
(∼ A)(x) = 1− A(x), where ∼ A is the complement of A.

2.2 Fuzzy relation

Let U and W be two nonempty sets. The Cartesian product of U and W is denoted by U ×W.

A fuzzy relation R from U to W is a fuzzy subset of U ×W , i.e., R ∈ F(U ×W ), and R(x, y) is

called the degree of relation between x and y. In particular, if U = W , we call R a fuzzy relation

on U . Usually, a fuzzy relation can be expressed by a fuzzy matrix.

2.3 Rough sets

In traditional Pawlak rough set theory, the pair (U,R) is called an approximation space (it is

also called Pawlak approximation space), where U is a finite and non-empty set called the universe

and R is an equivalence relation on U , i.e., R is reflexive, symmetrical and transitive. The relation

R decomposes the set U into a disjoint class in such a way that two elements x and y are in the

same class iff (x, y) ∈ R. Suppose R is an equivalence relation on U . With respect to R, we can

define an equivalence class of an element x in U as follows:

[x]R = {y|(x, y) ∈ R}.

The quotient set of U by the relation R is denoted by U/R, and

U/R = {X1, X2, · · · , Xm}.

where Xi (i = 1, 2, · · · ,m) is an equivalence class of R.

Given an arbitrary set X ⊆ U , it may not be possible to describe X precisely in the approxima-

tion space (U,R). One may characterize X by a pair of lower and upper approximations defined

as follows:

RX = {x ∈ U |[x]R ⊆ X} = ∪{Y ∈ U/R|Y ⊆ X};
RX = {x ∈ U |[x]R ∩X 6= φ} = ∪{Y ∈ U/R|Y ∩X 6= φ}.

The pair (RX, RX) is referred to as a rough set of X.

2.4 Pseudo-operations

Throughout this paper, we only consider the case of pseudo-addition and present the fuzzy

generalized rough sets using pseudo-addition. For the case of pseudo-multiplication, the discussion

can be given similarly.
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Definition 2.1 An operation ⊕ : [0,∞]2 → [0,∞] is called a pseudo-addition if it satisfies the

following axioms:

(1) Associativity: a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ [0,∞].

(2) Monotonicity: a⊕ b ≤ c⊕ d whenever 0 ≤ a ≤ c ≤ ∞, 0 ≤ b ≤ d ≤ ∞.

(3) 0 is neutral element: a⊕ 0 = 0⊗ a = a for all a ∈ [0,∞].

(4) Continuity: for any sequences (an)n∈N , (bn)n∈N in [0,∞]N such that lim
n→∞

an = a and

lim
n→∞

bn = b it holds lim
n→∞

an ⊕ bn = a⊕ b.

(5) Commutativity: a⊕ b = b⊕ a for all a, b ∈ [0,∞].

Lemma 2.1 (Aczel’s theorem) Let g be a positive strictly monotone function defined on [a, b] ⊆
(−∞, +∞) such that 0 ∈ Ran(g). The generalized generated pseudo-addition ⊕ and the general-

ized generated pseudo-multiplication ¯ are given by

x⊕ y = g−1(g(x) + g(y)),

x¯ y = g−1(g(x)g(y)),

where g−1 is pseudo-inverse function for function g: g−1(y) = sup{x ∈ [a, b]|g(x) < y} if g is a

non-decreasing function and g−1(y) = sup{x ∈ [a, b]|g(x) > y} if g is a non-increasing function.

Example 2.2 Suppose that g(x) = 1− x (x ∈ [0, 1]), then its pseudo-inverse is

g−1(x) =

{
1− x, x ∈ [0, 1],

0, x ∈ [1, +∞).

And x⊕ y = g−1(g(x) + g(y)) = max{0, x + y − 1}, this is Lukasiewicz t-norm.

3. Construction of pseudo fuzzy rough approximation operators

Definition 3.1 Let U and W be two nonempty sets, R a fuzzy relation from U to W , then

(U,W,R) is called a fuzzy approximation space. g : [0, 1] → [0, +∞) is a strictly decreasing

function such that g(1) = 0 and g(x) + g(y) ∈ Ran(g) ∪ [g(0+), +∞) for all (x, y) ∈ [0, 1]2. Then

for any A ∈ F(W ), the pseudo-lower approximation R⊕(A) and the pseudo-upper approximation

R⊕(A) of A are defined as follows, respectively:

R⊕(A)(x) =
∧

y∈W

{1−R(x, y)⊕ (1−A(y))} =
∧

y∈W

{1− g−1(g(R(x, y)) + g(1−A(y)))}, x ∈ U ;

R⊕(A)(x) =
∨

y∈W

{R(x, y)⊕ A(y)} =
∨

y∈W

{g−1(g(R(x, y)) + g(A(y)))}, x ∈ U.

The pair (R⊕(A), R⊕(A)) is called a pseudo-generalized fuzzy rough set. R⊕ and R⊕ are re-

ferred to as the pseudo-lower and pseudo-upper fuzzy rough approximation operators, respectively.

Example 3.1 Suppose that (U,W,R) is a fuzzy approximation space, where U and W are two

sets called object set and attribute set. Let U = {x1, x2, x3}, W = {a1, a2, a3, a4}. R ∈ F(U ×W )

is a fuzzy relation from U to W and R can be seen in Table 2:

For a fuzzy attribute set

A = 0.8/a1 + 0.3/a2 + 1/a3 + 0.9/a4 ∈ F(W ),
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Table 1: A fuzzy approximation space

a1 a2 a3 a4

x1 1 0.4 0 0.1

x2 0.3 0.9 0.7 0.6

x3 0.9 0.2 1 0

if we take a strictly decreasing function as

g(x) = 1− x (x ∈ [0, 1]),

then the pseudo-lower approximation R⊕(A) and the pseudo-upper approximation R⊕(A) of A

can be computed as follows:

R⊕(A)(x1) = min{1− g−1(0 + 0.8), 1− g−1(0.6 + 0.3), 1− g−1(1 + 1), 1− g−1(0.9 + 0.9)} = 0.8;

R⊕(A)(x2) = min{1−g−1(0.7+0.8), 1−g−1(0.1+0.3), 1−g−1(0.3+1), 1−g−1(0.4+0.9)} = 0.4;

R⊕(A)(x3) = min{1− g−1(0.1 + 0.8), 1− g−1(0.8 + 0.3), 1− g−1(0 + 1), 1− g−1(1 + 0.9)} = 0.9;

R⊕(A)(x1) = max{g−1(0 + 0.2), g−1(0.6 + 0.7), g−1(1 + 0), g−1(0.9 + 0.1)} = 0.8;

R⊕(A)(x2) = max{g−1(0.7 + 0.2), g−1(0.1 + 0.7), g−1(0.3 + 0), g−1(0.4 + 0.1)} = 0.7;

R⊕(A)(x3) = max{g−1(0.1 + 0.2), g−1(0.8 + 0.7), g−1(0 + 0), g−1(1 + 0.1)} = 1.

That is,

R⊕(A) = 0.8/x1 + 0.4/x2 + 0.9/x3,

R⊕(A) = 0.8/x1 + 0.7/x2 + 1/x3.

Remark 3.1 If R is a crisp binary relation from U to W , then the pseudo fuzzy rough approxima-

tion operators defined in Definition 3.1 are degenerated into the approximation operators defined

in [36]. That is, for every A ∈ F(W ), x ∈ U,

R⊕(A)(x) = sup{A(y)|y ∈ Rs(x)}, R⊕(A)(x) = inf{A(y)|y ∈ Rs(x)},

where Rs(x) = {y ∈ W |(x, y) ∈ R}.
In fact,

R⊕(A)(x)

=
∨

y∈W

{g−1(g(R(x, y)) + g(A(y)))}

= sup{g−1(g(1) + g(A(y)))|y ∈ Rs(x)}∨
sup{g−1(g(0) + g(A(y)))|y /∈ Rs(x)}

= sup{g−1(g(1) + g(A(y)))|y ∈ Rs(x)}
= sup{g−1(0 + g(A(y)))|y ∈ Rs(x)}
= sup{A(y)|y ∈ Rs(x)},

R⊕(A)(x)

=
∧

y∈W

{1− g−1(g(R(x, y)) + g(1− A(y)))}

= inf{1−g−1(g(1)+g(1−A(y)))|y ∈ Rs(x)}∧
inf{1−g−1(g(0)+g(1−A(y)))|y /∈ Rs(x)}

= inf{1− g−1(g(1) + g(1− A(y)))|y ∈ Rs(x)}
= inf{1− g−1(0 + g(1− A(y)))|y ∈ Rs(x)}
= inf{A(y)|y ∈ Rs(x)}.
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Remark 3.2 If R is a crisp binary relation on U and A is a crisp set on U , then the pseudo fuzzy

rough approximation operators defined in Definition 3.1 are degenerated into the approximation

operators defined in [7]. That is, for any A ∈ P (U), x ∈ U,

R⊕(A) = {x ∈ U |Rs(x) ∩ A 6= φ}, R⊕(A) = {x ∈ U |Rs(x) ⊆ A}.

where Rs(x) = {y ∈ U |(x, y) ∈ R}.
In fact, by Remark 3.2, we know that if A ∈ P (U) then for any x ∈ U,

x ∈ R⊕(A) ⇔ R⊕(A)(x) = 1 ⇔ ∃ y ∈ Rs(x) such that A(y) = 1, i.e., y ∈ A ⇔ Rs(x)∩A 6= φ,

x ∈ R⊕(A) ⇔ R⊕(A)(x) = 1 ⇔ A(y) = 1 for every y ∈ Rs(x), i.e., y ∈ A ⇔ Rs(x) ⊆ A.

Remark 3.3 If R is a crisp equivalence relation on U and A is a fuzzy set on U , then the

pseudo fuzzy rough approximation operators defined in Definition 3.1 are degenerated into the

approximation operators defined in [27]. That is, for every A ∈ F(U), x ∈ U,

R⊕(A)(x) = sup{A(y)|y ∈ [x]R}, R⊕(A)(x) = inf{A(y)|y ∈ [x]R}.

In fact, if R is a crisp equivalence relation on U , then Rs(x) = [x]R.

Remark 3.4 If R is a crisp equivalence relation on U and A is a crisp set on U , then the

pseudo fuzzy rough approximation operators defined in Definition 3.1 are degenerated into the

approximation operators defined in [1]. That is, for any A ∈ P (U), x ∈ U,

R⊕(A) = {x ∈ U |[x]R ∩ A 6= φ}, R⊕(A) = {x ∈ U |[x]R ⊆ A}.

Example 3.2 Let U = {x1, x2, x3} be the universe of discourse, R =




0.8 0.9 0.6

0.7 0.9 0.1

0.8 0.2 0.8


 be a

fuzzy relation on U . Suppose that A,B,C ∈ F(U), and

A = 0.4/x1 + 0.5/x2 + 0.8/x3;

B = 0.6/x1 + 0.7/x2 + 0.2/x3;

C = 0.6/x1 + 0.8/x2 + 0.9/x3.

Let g : [0, 1] → [0, +∞) given by g(x) = 1 − x be a generating function for pseudo-addition ⊕,

then we can compute that

R⊕(A) = 0.6/x1 + 0.6/x2 + 0.6/x3;

R⊕(A) = 0.4/x1 + 0.4/x2 + 0.6/x3;

R⊕(B) = 0.6/x1 + 0.8/x2 + 0.4/x3;

R⊕(B) = 0.6/x1 + 0.6/x2 + 0.4/x3;

R⊕(C) = 0.9/x1 + 1/x2 + 0.9/x3;

R⊕(C) = 0.7/x1 + 0.7/x2 + 0.7/x3.

From computation above, we can find A ⊆ C implies that R⊕(A) ⊆ R⊕(C) and R⊕(A) ⊆ R⊕(C).

Furthermore,

A ∩B = 0.4/x1 + 0.5/x2 + 0.2/x3,
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A ∪B = 0.6/x1 + 0.7/x2 + 0.8/x3.

And

R⊕(A ∩B) = 0.6/x1 + 0.6/x2 + 0.4/x3;

R⊕(A ∩B) = 0.4/x1 + 0.4/x2 + 0.2/x3;

R⊕(A ∪B) = 0.8/x1 + 0.8/x2 + 0.8/x3;

R⊕(A ∪B) = 0.6/x1 + 0.6/x2 + 0.6/x3.

Thus, we notice that

R⊕(A ∩B) = R⊕(A) ∩R⊕(B), R⊕(A ∪B) = R⊕(A) ∪R⊕(B);

R⊕(A ∪B) ⊇ R⊕(A) ∪R⊕(B), R⊕(A ∩B) ⊆ R⊕(A) ∩R⊕(B).

4. Measuring fuzziness of pseudo-generalized fuzzy rough sets

Let (U,W,R) be a fuzzy approximation space, where U and W are two nonempty sets, R is

a fuzzy relation from U to W . For any A ∈ F(W ), the pseudo-generalized fuzzy rough set of A

is (R⊕(A), R⊕(A)). Thus in the fuzzy approximation space (U,W,R), A is approximated by two

fuzzy sets, one called the pseudo-lower approximation of A, and another called the pseudo-upper

approximation of A. In this section, we suppose that U = W and give an approach to measuring

the fuzziness of pseudo-generalized fuzzy rough sets.

Definition 4.1 Let U be a universe of discourse, R be a fuzzy relation on U . For any x ∈ U and

A ∈ F(U), the degree of rough membership of x in A is defined by

r(A)(x) =

∑
y∈U [R(x, y)⊕ A(y)]∑

y∈U R(x, y)
.

From Definition 4.1, we note that the fuzzy set A and fuzzy relation R on U can induce a new

fuzzy set r(A) of U .

Theorem 4.1 For any fuzzy sets A,B ∈ F(U),

(1) if A ⊆ B, then r(A) ⊆ r(B);

(2) r(A ∩B) ⊆ r(A) ∩ r(B), r(A ∪B) ⊇ r(A) ∪ r(B).

Proof

(1) Since for any x ∈ U , A(x) ≤ B(x). By Definition 4.1, we have

r(A)(x) =

∑
y∈U [R(x, y)⊕ A(y)]∑

y∈U R(x, y)
≤

∑
y∈U [R(x, y)⊕B(y)]∑

y∈U R(x, y)
= r(B)(x).

So r(A) ⊆ r(B).

(2) For any A,B ∈ F(U), we have A ∩B ⊆ A and A ∩B ⊆ B. It implies that

r(A ∩B) ⊆ r(A), r(A ∩B) ⊆ r(B).

Thus, r(A ∩B) ⊆ r(A) ∩ r(B).

r(A ∪B) ⊇ r(A) ∪ r(B) can be proved in a similar way. ¤
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Definition 4.2 Let U be a universe of discourse, R be a fuzzy relation on U , A ∈ F(U). The

fuzziness of pseudo-generalized fuzzy rough set (R⊕(A), R⊕(A)) is defined by

FR(A) = − 1

|U |
∑
x∈U

r(A)(x) · log2 r(A)(x).

Example 4.1 (Continue the Example 3.2)

In Example 3.2, fuzzy relation R =




0.8 0.9 0.6

0.7 0.9 0.1

0.8 0.2 0.8


, three fuzzy sets A,B,C are denoted

as follows, respectively:

A = 0.4/x1 + 0.5/x2 + 0.8/x3;

B = 0.6/x1 + 0.7/x2 + 0.2/x3;

C = 0.6/x1 + 0.8/x2 + 0.9/x3.

Meanwhile, g(x) = 1− x (x ∈ [0, 1]). Thus, we can compute that

r(A)(x1) =
g−1(0.2 + 0.6) + g−1(0.1 + 0.5) + g−1(0.4 + 0.2)

0.8 + 0.9 + 0.6

=
0.2 + 0.4 + 0.4

0.8 + 0.9 + 0.6
= 0.435.

In a similar way, we get

r(A)(x2) =
0.1 + 0.4 + 0

0.7 + 0.9 + 0.1
= 0.294,

r(A)(x3) =
0.2 + 0 + 0.6

0.8 + 0.2 + 0.8
= 0.444.

That is,

r(A) = 0.435/x1 + 0.294/x2 + 0.444/x3.

In addition, we can obtain that

r(B) = 0.435/x1 + 0.529/x2 + 0.222/x3,

r(C) = 0.783/x1 + 0.588/x2 + 0.555/x3,

r(A ∩B) = 0.261/x1 + 0.294/x2 + 0.111/x3,

r(A ∪B) = 0.609/x1 + 0.529/x2 + 0.555/x3.

From computation above, we note that

A ⊆ C ⇒ r(A) ⊆ r(C), r(A ∩B) ⊆ r(A) ∩ r(B) and r(A ∪B) ⊇ r(A) ∪ r(B) hold.

Furthermore, we have

FR(A) = −1

3
(0.435× log2 0.435 + 0.294× log2 0.294 + 0.444× log2 0.444) ≈ 0.521;

FR(B) = −1

3
(0.435× log2 0.435 + 0.529× log2 0.529 + 0.222× log2 0.222) ≈ 0.497;
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FR(C) = −1

3
(0.783× log2 0.783 + 0.588× log2 0.588 + 0.555× log2 0.555) ≈ 0.399;

FR(A ∩B) = −1

3
(0.261× log2 0.261 + 0.294× log2 0.294 + 0.111× log2 0.111) ≈ 0.459;

FR(A ∪B) = −1

3
(0.609× log2 0.609 + 0.529× log2 0.529 + 0.555× log2 0.555) ≈ 0.464.

From the results of Example 4.1, we note that FR(A) ≥ FR(C) whenever A ⊆ C, but for

A ∩B ⊆ A, FR(A ∩B) ≤ FR(A).

It can be shown that for any A,B ∈ F(U), if A ⊆ B, FR(A) ≤ FR(B) or FR(A) ≥ FR(B)

does not hold.

5. Conclusions

At present, there are many researchers about pseudo-analysis. Pseudo-analysis has been ap-

plied in different fields. It is interesting to combine pseudo-operations and rough set in order to

expand the application domain of pseudo-analysis and rough set. In this paper, we presented a

generalized fuzzy rough set model based on pseudo-operation, constructed pseudo fuzzy rough ap-

proximation operations. Some properties of the proposed generalized fuzzy rough approximation

operators also investigated. At the same time, the fuzziness of pseudo-generalized fuzzy rough

sets is given.
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Abstract

This paper investigates the qualitative behavior of viral infection model with multitarget cells in vivo.
The infection rate is given by Crowley-Martin functional response. By assuming that the virus attack n
classes of uninfected target cells, we study a viral infection model of dimension 2n + 1 with distributed
delay. To describe the latent period for the contacted target cells with viruses to begin producing viruses,
two types of distributed delay are incorporated into the model. The basic reproduction number R0 of the
model is de�ned which determines the dynamical behavior of the model. Utilizing Lyapunov functionals and
LaSalle�s invariance principle, we have proven that if R0 � 1 then the uninfected steady state is globally
asymptotically stable, and if R0 > 1 then the infected steady state is globally asymptotically stable.

.
Keywords : Viral infection; Global stability; Delay; Crowley-Martin functional response.
AMS subject classi�cations. 92D25, 34D20, 34D23 :

1 Introduction

Mathematical models have proven their importance in understanding the dynamical behaviors of various viruses
such as human immunode�ciency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), etc. [1]. The
interatcion of the virus and target cells has been formulated as ordinary di¤erential equations in several works
(see e.g. [2], [3], [4], [12], [11], [5] and [6]). The basic mathematical model describing the dynamics of viral
infection can be written in a general form as [6]:

_x = �� dx� h(x; v); (1)

_y = h(x; v)� �y; (2)

_v = ky � rv; (3)

where x; y and v represent the populations of the uninfected target cells, infected cells and free virus particles,
respectively. The uninfected cells are generated from sources within the body at rate �. The parameter d is the
death rate constant of the uninfected target cells. Eq. (2) describes the population dynamics of the infected
cells and shows that they die with rate constant �. The virus particles are produced by the infected cells with
rate constant k, and are cleared from plasma with rate constant r. The function h(x; v) represents the incidence
rate of infection and it has been considered in the viral infection models by di¤erent forms:
� Bilinear incidence rate [2], [3]: h(x; v) = �xv:
� Saturated incidence rate [30]: h(x; v) = �xv

1+bv :

� Holling type II functional response [34]: h(x; v) = �xv
1+ax :

� Beddington-DeAngelis infection rate [28]: h(x; v) = �xv
1+ax+bv :

� Crowley-Martin functional response [31], [32]: h(x; v) = �xv
(1+ax)(1+bv) ;where a; b � 0 and � is the rate con-

stant characterizing infections of the cells. The Crowley-Martin type of functional response was �rst introduced
by Crowley and Martin [33].
Model (1)-(3) is based on the assumption that, once the virus contacts a target cell, the cell begins producing

new virus particles. More realistic models incorporate the delay between the time of viral entry into the
target cell and the time the production of new virus particles, modeled with discrete time delay or distributed
time delay using functional di¤erential equations. Many researchers have devoted their e¤ort in developing
various mathematical models of viral infections with discrete or distributed delays and studying their qualitative
behaviors (see e.g. [8], [10], [9], [27], [29], [24], [26], [22], [21], [34]).
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In the literature, most of the proposed mathematical models for viral infection assume that the virus has
one class of target cells, (e.g. CD4+ T cells in case of HIV or hepatic cells in case of HCV and HBV) (see e.g.
[2], [3] and the book Nowak and May [1]). In [7], [25], [13], [15], [18], [19], and [16], some HIV models with
two classes of target cells, CD4+ T cells and macrophages have been proposed. The global stability of these
models has been investigated in ([13], [15] and [16]). Because the interactions of some types of viruses in vivo
is complex and is not known clearly, we would suppose that the virus may attack n classes of target cells where
n � 1 [14], [17]. In [17], models with discrete-time delays and saturated incidence rate have been studied. Elaiw
[14] studied a class of virus infection models with multitarget cells without time delay.
The purpose of this paper is to propose a viral infection model with multitarget cells and Crowley-Martin

functional response and investigate its qualitative behavior. We incorporate distributed delay into the model
which represents an intracellular latent period for the contacted uninfected target cells with virus to begin
producing new virus particles. The global stability of this model is established using Lyapunov functionals and
LaSalle�s invariance principle. We prove that the global dynamics of this model is determined by the basic
reproduction number R0. If R0 � 1, then the uninfected steady state is globally asymptotically stable (GAS)
and if R0 > 1, then the infected steady state exists and is GAS.

2 Model with distributed time delays

In this section we propose a virus dynamics model with multitarget cells and multiple distributed intracellular
delays.

_xi(t) = �i � dixi �
�ixi(t)v(t)

(1 + aixi(t))(1 + biv(t))
; i = 1; :::; n (4)

_yi(t) = �i

�iZ
0

fi(�)e
�mi�

xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

d� � �iyi(t); i = 1; :::; n (5)

_v(t) =
nX
i=1

ki

�iZ
0

gi(�)e
�ni�yi(t� �)d� � rv(t); (6)

where xi and yi represent the populations of the uninfected target cells and infected cells of class i, respectively,
v is the population of the virus particles. To account for the time lag between viral contacting a target cell and
the production of new virus particles, two distributed intracellular delays are introduced. It is assumed that the
target cells of class i are contacted by the virus particles at time t� � become infected cells at time t, where �
is a random variable with a probability distribution fi(�) over the interval [0; �i] and �i is limit superior of this
delay. The factor e�mi� accounts for the loss of target cells during delay period where mi is positive constant.
On the other hand, it is assumed that, a cell infected at time t� � starts to yield new infectious virus at time
t where � is distributed according to a probability distribution gi(�) over the interval [0; �i] and �i is limit
superior of this delay. The factor e�ni� account for the cells loss during this delay period where ni is positive
constant. All the other parameters of the model have the same biological meaning as given in model (1)-(3).
The probability distribution functions fi(�) : [0; �i] ! R+ and gi(�) : [0; �i] ! R+ are integral functions

with
�iR
0

fi(�)d� =
�iR
0

gi(�)d� = 1; i = 1; :::; n. De�ne Fi =
�iR
0

fi(�)e
�mi�d� and Gi =

�iR
0

gi(�)e
�ni�d� , mi � 0,

ni � 0. It is clear that 0 < Fi � 1 and 0 < Gi � 1, i = 1; :::; n.
The initial conditions for system (4)-(6) take the form

xj(�) = 'j(�); yj(�) = 'j+n(�); j = 1; :::; n; v(�) = '2n+1(�);

'j(�) � 0; � 2 [�`; 0); 'j(0) > 0; j = 1; :::; 2n+ 1; (7)

where ` = maxf�1; :::; �n; �1; :::; �ng, ('1(�); '2(�); :::; '2n+1(�)) 2 C and C = C([�`; 0];R2n+1+ ) is the Banach
space of continuous functions mapping the interval [�`; 0] into R2n+1+ . By the fundamental theory of functional
di¤erential equations [20], system (4)-(6) has a unique solution satisfying initial conditions (7).

2.1 Non-negativity and boundedness of solutions

In the following, we establish the non-negativity and boundedness of solutions of (4)-(6) with initial conditions
(7). Let x = (x1; x2; :::; xn)T and y = (y1; y2; :::; yn)T .
Proposition 2. Let (x(t);y(t); v(t)) be any solution of (4)-(6) satisfying the initial conditions (7), then

x(t);y(t) and v(t) are all non-negative for t � 0 and ultimately bounded.
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Proof. First, we prove that xi(t) > 0, i = 1; :::; n, for all t � 0. Assume that xi(t) lose its non-negativity
on some local existence interval [0; !] for some constant ! and let t1 2 [0; !] be such that xi(t1) = 0. From Eq.
(4) we have _xi(t1) = �i > 0. Hence xi(t) < 0 for some t 2 (t1 � "; t1), where " > 0 is su¢ ciently small. This
leads to a contradiction and hence xi(t) > 0, for all t � 0. Further, from Eqs. (5) and (6) we have

yi(t) = yi(0)e
��it + �i

tZ
0

e��i(t��)
�iZ
0

fi(�)e
�mi�

xi(� � �)v(� � �)
(1 + aixi(� � �))(1 + biv(� � �))

d�d�;

v(t) = v(0)e�rt +
nX
i=1

ki

tZ
0

e�r(t��)
�iZ
0

gi(�)e
�ni�yi(� � �)d�d�;

con�ming that yi(t) � 0; i = 1; :::; n, and v(t) � 0 for all t 2 [0; `]. By a recursive argument, we obtain yi(t) � 0,
i = 1; :::; n, and v(t) � 0 for all t � 0.
Now we show the boundedness of the solutions of (4)-(6). Eqs. (4) imply that lim supt!1 xi(t) � x0i ,

where x0i = �i=di, and thus xi(t) is ultimately bounded. If follows that
�iR
0

fi(�)e
�mi�xi(t � �)d� � Fix0i . Let

Xi(t) =
�iR
0

fi(�)e
�mi�xi(t� �)d� + yi(t), i = 1; :::; n, then

_Xi(t) =

�iZ
0

fi(�)e
�mi�

�
�i � dixi(t� �)�

�ixi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

�
d�

+

�iZ
0

fi(�)e
�mi�

�ixi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

d� � �iyi(t) � Fi�i � �iXi(t);

where �i = minfdi; �ig. Hence lim supt!1Xi(t) � Li, where Li = �iFi=�i . Since
�iR
0

fi(�)e
�mi�xi(t� �)d� > 0,

we get lim supt!1 yi(t) � Li. On the other hand,

_v(t) �
nX
i=1

kiLi

�iZ
0

gi(�)e
�ni�d� � rv =

nX
i=1

kiLiGi � rv;

then lim supt!1 v(t) � L�, where L� =
nP
i=1

kiLiGi

r . Therefore, x(t);y(t) and v(t) are ultimately bounded.�

2.2 Steady states

System (4)-(6) has an uninfected steady state E0 = (x0;y0; v0), where x0i =
�i
di
, y0i = 0; i = 1; :::; n and v

0 = 0.
In addition to E0, the system can has a positive infected steady state E1(x�;y�; v�). The coordinates of the
infected steady state, if they exist, satisfy the equalities:

�i = dix
�
i +

�ix
�
i v
�

(1 + aix�i )(1 + biv
�)
; i = 1; :::; n; (8)

�iy
�
i = Fi

�ix
�
i v
�

(1 + aix�i )(1 + biv
�)
; i = 1; :::; n; (9)

rv� =
nX
i=1

Gikiy
�
i : (10)

The basic reproduction number of system (4)-(6) is given by

R0 =
nX
i=1

Ri =
nX
i=1

FiGi�ikix
0
i

�ir(1 + aix0i )
; (11)

where Ri is the basic reproduction number for the dynamics of the interaction of the virus only with the target
cells of class i.
Lemma 1. If R0 > 1, then there exists a positive steady state E1.
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Proof. To compute the steady states of model (4)-(6), we let the right-hand sides of Eqs. (4)-(6) equal
zero,

�i � dixi �
�ixiv

(1 + aixi)(1 + biv)
= 0; i = 1; :::; n; (12)

Fi�ixiv

(1 + aixi)(1 + biv)
� �iyi = 0; i = 1; :::; n; (13)

nX
i=1

Gikiyi � rv = 0: (14)

Solving Eq. (12) with respect to xi, we get xi as a function of v as:

x+i =
aix

0
i (1 + biv)� (1 + �iv) +

q
[(1 + �iv)� aix0i (1 + biv)]

2
+ 4aix0i (1 + biv)

2

2ai(1 + biv)
; (15)

x�i =
aix

0
i (1 + biv)� (1 + �iv)�

q
[(1 + �iv)� aix0i (1 + biv)]

2
+ 4aix0i (1 + biv)

2

2ai(1 + biv)
; (16)

where, �i = bi +
�i
di
.

It is clear that if v > 0 then x+i > 0 and x
�
i < 0. Let us choose xi = x

+
i . From Eqs. (12)-(14) we have

nX
i=1

kiFiGi
�i

(�i � dixi)� rv = 0: (17)

Since xi is a function of v, then we can de�ne a function S1(v) as:

S1(v) =
nX
i=1

kiFiGi
�i

(�i � dixi)� rv = 0:

It is clear that when v = 0, then xi = x0i and S1(0) = 0 and when v = v =
nP
i=1

FiGiki�i
�ir

> 0, then substituting

it in Eq. (15) we obtain xi > 0 and

S1(v) = �
nX
i=1

kidiFiGi
�i

xi < 0:

Since S1(v) is continuous for all v � 0; we have that

S01(0) =

nX
i=1

ki�ix
0
iFiGi

�i (1 + aix0i )
� r = r(R0 � 1):

Therefore, if R0 > 1, then S01(0) > 0. It follows that there exists v
� 2 (0; v) such that S1(v�) = 0. From Eq.

(15), we obtain x�i > 0; i = 1; :::; n. Moreover, from Eq, (13) we get y�i > 0; i = 1; :::; n. �

2.3 Global stability

In this section, we prove the global stability of the uninfected and infected steady states of system (4)-(6)
employing the method of Lyapunov functional which is used in [23] for SIR epidemic model with distributed
delay.
Next we shall use the following notation: z = z(t), for any z 2 fxi; yi; v; i = 1; :::; ng. We also de�ne a

function H : (0;1) ! [0;1) as H(z) = z � 1 � ln z. It is clear that H(z) � 0 for any z > 0 and H has the
global minimum H(1) = 0.
Theorem 1. (i) If R0 � 1, then E0 is GAS.
(ii) If R0 > 1, then E1 is GAS.
Proof. (i) De�ne a Lyapunov functional W1 as:

W1 =
nX
i=1

kiFiGi
�i

24 x0i
1 + aix0i

H

�
xi
x0i

�
+
1

Fi
yi +

�i
FiGi

�iZ
0

gi(�)e
�ni�

�Z
0

yi(t� �)d�d�

+
�i
Fi

�iZ
0

fi(�)e
�mi�

�Z
0

xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

d�d�

35+ v:
4
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The time derivative of W1 along the trajectories of (4)-(6) satis�es

dW1

dt
=

nX
i=1

kiFiGi
�i

�
1

1 + aix0i

�
1� x

0
i

xi

��
�i � dixi �

�ixiv

(1 + aixi)(1 + biv)

�

+
�i
Fi

�iZ
0

fi(�)e
�mi�

xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

d� � �i
Fi
yi

+
�i
Fi

�iZ
0

fi(�)e
�mi�

�
xiv

(1 + aixi)(1 + biv)
� xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

�
d�

+
�i
FiGi

�iZ
0

gi(�)e
�ni� (yi � yi(t� �))d�

35+ nX
i=1

ki

�iZ
0

gi(�)e
�ni�yi(t� �)d� � rv

=
nX
i=1

kiFiGi
�i

�
�i

1 + aix0i

�
2� xi

x0i
� x

0
i

xi

�
� �ixiv

(1 + aix0i ) (1 + aixi)(1 + biv)

+
�ix

0
i v

(1 + aix0i ) (1 + aixi)(1 + biv)
+

�ixiv

(1 + aixi)(1 + biv)

�
� rv

=
nX
i=1

kiFiGi
�i

�
��i

xix0i (1 + aix
0
i )

�
xi � x0i

�2
+

�ix
0
i v

(1 + aix0i ) (1 + biv)

�
� rv

= �
nX
i=1

kiFiGidi
�
xi � x0i

�2
�ixi(1 + aix0i )

+ r
nX
i=1

FiGiki�ix
0
i v

�ir(1 + aix0i )(1 + biv)
� rv

= �
nX
i=1

 
kiFiGidi

�
xi � x0i

�2
�ixi(1 + aix0i )

+
rbiRiv

2

1 + biv

!
+ (R0 � 1) rv: (18)

If R0 � 1, then dW1

dt � 0 for all xi; v > 0. By Theorem 5.3.1 in [20], the solutions of system (4)-(6) limit to M ,
the largest invariant subset of

�
dW1

dt = 0
	
. Clearly, it follows from (18) that dW1

dt = 0 if and only if xi = x0i and
v = 0. Noting that M is invariant, for each element of M we have v = 0, then _v = 0. From Eq. (6) we drive

that 0 = _v =
nP
i=1

�iR
0

gi(�)e
�ni�kiyi(t� �)d� . This yields yi = 0 and hence dW1

dt = 0 if and only if xi = x0i , yi = 0

and v = 0. From LaSalle�s invariance principle, E0 is GAS.
(ii) We construct the following Lyapunov functional

W2 =
nX
i=1

kiFiGi
�i

264xi � x�i � xiZ
x�i

x�i (1 + ai�)

�(1 + aix�i )
d� +

1

Fi
y�iH

�
yi
y�i

�

+
1

Fi

�ix
�
i v
�

(1 + aix�i )(1 + biv
�)

�iZ
0

fi(�)e
�mi�

�Z
0

H

�
xi(t� �)v(t� �)(1 + aix�i )(1 + biv�)
x�i v

�(1 + aixi(t� �))(1 + biv(t� �))

�
d�d�

+
�iy

�
i

FiGi

�iZ
0

gi(�)e
�ni�

�Z
0

H

�
yi(t� �)
y�i

�
d�d�

35+ v�H � v
v�

�
:

Di¤erentiating with respect to time yields

dW2

dt
=

nX
i=1

kiFiGi
�i

��
1� x

�
i (1 + aixi)

xi(1 + aix�i )

��
�i � dixi �

�ixiv

(1 + aixi)(1 + biv)

�

+
1

Fi

�
1� y

�
i

yi

�0@�i �iZ
0

fi(�)e
�mi�

xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))

d� � �iyi

1A
+
�i
Fi

�iZ
0

fi(�)e
�mi�

�
xiv

(1 + aixi)(1 + biv)
� xi(t� �)v(t� �)
(1 + aixi(t� �))(1 + biv(t� �))
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+
x�i v

�

(1 + aix�i )(1 + biv
�)
ln

�
xi(t� �)v(t� �)(1 + aixi)(1 + biv)
xiv(1 + aixi(t� �))(1 + biv(t� �))

��
d�

+
�i
FiGi

�iZ
0

gi(�)e
�ni�

�
yi � yi(t� �) + y�i ln

�
yi(t� �)
yi

��
d�

35
+

�
1� v

�

v

�0@ nX
i=1

ki

�iZ
0

gi(�)e
�ni�yi(t� �)d� � rv

1A : (19)

Collecting terms of (19) we obtain

dW2

dt
=

nX
i=1

kiFiGi
�i

��
1� x

�
i (1 + aixi)

xi(1 + aix�i )

�
(�i � dixi)

+
�ivx

�
i

(1 + aix�i )(1 + biv)
� �i
Fi

�iZ
0

fi(�)e
�mi�

y�i xi(t� �)v(t� �)
yi(1 + aixi(t� �))(1 + biv(t� �))

d� +
�i
Fi
y�i

+
1

Fi

�ix
�
i v
�

(1 + aix�i )(1 + biv
�)

�iZ
0

fi(�)e
�mi� ln

�
xi(t� �)v(t� �)(1 + aixi)(1 + biv)
xiv(1 + aixi(t� �))(1 + biv(t� �))

�
d�

+
�iy

�
i

FiGi

�iZ
0

gi(�)e
�ni� ln

�
yi(t� �)
yi

�
d�

35� rv � v�
v

nX
i=1

ki

�iZ
0

gi(�)e
�ni�yi(t� �)d� + rv�:

Using the infected steady state conditions (8)-(10), we obtain

dW2

dt
=

nX
i=1

kiFiGi
�i

��
1� x

�
i (1 + aixi)

xi(1 + aix�i )

�
(dix

�
i � dixi)�

�i
Fi
y�i
x�i (1 + aixi)

xi(1 + aix�i )
+
�i
Fi
y�i
v(1 + biv

�)

v�(1 + biv)

� �i
F 2i
y�i

�iZ
0

fi(�)e
�mi�

xi(t� �)v(t� �)y�i (1 + aix�i )(1 + biv�)
x�i v

�yi (1 + aixi(t� �))(1 + biv(t� �))
d�

+ 3
�i
Fi
y�i +

�i
F 2i
y�i

�iZ
0

fi(�)e
�mi� ln

�
xi(t� �)v(t� �)(1 + aixi)(1 + biv)
xiv(1 + aixi(t� �))(1 + biv(t� �))

�
d�

+
�iy

�
i

FiGi

�iZ
0

gi(�)e
�ni� ln

�
yi(t� �)
yi

�
d� � �i

Fi
y�i
v

v�
� �i
FiGi

y�i

�iZ
0

gi(�)e
�ni� v

�yi(t� �)
vy�i

d�

35

=
nX
i=1

kiFiGi
�i

��
1� x

�
i (1 + aixi)

xi(1 + aix�i )

�
(dix

�
i � dixi) +

�i
Fi
y�i

�
�1� v

v�
+
v(1 + biv

�)

v�(1 + biv)
+
1 + biv

1 + biv�

�
� �i
Fi
y�iH

�
x�i (1 + aixi)

xi(1 + aix�i )

�
� �i
Fi
y�iH

�
1 + biv

1 + biv�

�

� �i
F 2i
y�i

�iZ
0

fi(�)e
�mi�H

�
xi(t� �)v(t� �)y�i (1 + aix�i )(1 + biv�)
x�i v

�yi (1 + aixi(t� �))(1 + biv(t� �))

�
d�

� �i
FiGi

y�i

�iZ
0

gi(�)e
�ni�H

�
v�yi(t� �)

vy�i

�
d�

35
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= �
nX
i=1

kiFiGi
�i

"
di (xi � x�i )

2

xi (1 + aix�i )
+

�iy
�
i bi (v � v�)

2

Fiv� (1 + biv) (1 + biv�)
+
�i
Fi
y�iH

�
x�i (1 + aixi)

xi(1 + aix�i )

�

+
�i
Fi
y�iH

�
1 + biv

1 + biv�

�
+
�i
F 2i
y�i

�iZ
0

fi(�)e
�mi�H

�
xi(t� �)v(t� �)y�i (1 + aix�i )(1 + biv�)
x�i v

�yi (1 + aixi(t� �))(1 + biv(t� �))

�
d�

+
�i
FiGi

y�i

�iZ
0

gi(�)e
�ni�H

�
v�yi(t� �)

vy�i

�
d�

35 :
It is easy to see that if x�i ; y

�
i ; v

� > 0; i = 1; :::; n, then dW2

dt � 0. By Theorem 5.3.1 in [20], the solutions of
system (4)-(6) limit to M , the largest invariant subset of

�
dW2

dt = 0
	
. It can be seen that dW2

dt = 0 if and only
if xi = x�i ; v = v

�, and H = 0 i.e.

xi(t� �)v(t� �)y�i (1 + aix�i )(1 + biv�)
x�i v

�yi (1 + aixi(t� �))(1 + biv(t� �))
=
v�yi(t� �)

vy�i
= 1 for all � 2 [0; `]: (20)

If v = v�, then from Eq. (20) we have yi = y�i ; and hence
dW2

dt equal to zero at E1. LaSalle�s invariance principle
implies global stability of E1.�

3 Conclusion

In this paper, we have investigated mathematical model of virus dynamics with distributed delay. We have
assumed that the virus attack n classes of target cells. The infection rate is given by Crowley-Martin functional
response. By de�ning the delay-dependent basic reproduction number R0, we have discussed the existence of the
steady states. The global stability of the uninfected and infected steady states of the model has been established
using suitable Lyapunov functionals and LaSalle�s invariant principle. We have proven that, if R0 < 1, then the
uninfected steady state is GAS and if R0 > 1, then infected steady state is GAS.
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The parameter reduction of soft sets and its

algorithm ∗

Zhaowen Li† Ninghua Gao‡

February 21, 2013

Abstract: Soft set theory is a new mathematical tool to deal with uncer-
tain problems. In this paper, we prove the fact that there exists a one-to-one
correspondence between “the set of all soft sets” and “the set of all 2-value in-
formation systems”. Base on this fact, we investigate the parameter reduction
of soft sets by means of the knowledge reduction in rough set theory and give
an algorithm. Parameters of soft sets are classified and the core of soft sets are
obtained.

Keywords: Soft sets; Rough sets; Information systems; One-to-one corre-
spondences; Parameter reductions; Cores.

1 Introduction

In 1999, Molodtsov [6] proposed soft set theory as a new mathematical tool for
dealing with uncertainties which is free from the difficulties affecting existing
method. As reported in [6, 7], a wide range of applications of soft sets have been
developed in many different fields, including the smoothness of functions, game
theory, operations research, Riemann integration, Perron integration, probabil-
ity theory and measurement theory.

Presently, works on theory of soft sets are progressing rapidly. Maji et al.
[8, 9] further studied the theory of soft sets, used this theory to solve some
decision making problems. Jiang et al. [4] extended soft sets with description
logics. Ge et al. [3] discussed relationships between soft sets and topological
spaces.

Rough set theory was initiated by [10] for dealing with vagueness and gran-
ularity in information systems. This theory handles the approximation of an
arbitrary subset of a universe by two definable or observable subsets called lower
and upper approximations. It has been successfully applied to machine learning,
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intelligent information systems, inductive reasoning, pattern recognition, mere-
ology, image processing, signal analysis, knowledge discovery, decision analysis,
expert information systems and many other fields (see [11]).

Soft set itself has classification ability. The parameter reduction of soft sets
means reducing the number of parameters for a soft set to the minimum without
distorting its original classification ability. Thus, the parameter reduction of soft
sets is a very important problem in soft set theory. Maji et al. [9] introduce
parameter reduction of soft sets. Unfortunately some errors in [9] were pointed
out by Chen et al. [2]. They present a new definition of parameterization
reduction in soft sets. In [5], Kong et al. pointed out some odd situations
which may occur when method of reduction of parameters in case of soft sets
given in [2] is applied. So they introduced the concept of reduction of normal
parameters.

In [1], it has been seen that there is a very close relationship between soft
sets and rough sets. The purpose of this paper is to investigate further the
parameter reduction of soft sets with the help of rough set theory. We prove
the fact that there exists a one-to-one correspondence between “the set of all
soft sets” and “the set of all 2-value information systems”. Base on this fact, we
can do consider the parameter reduction of soft sets by means of the knowledge
reduction in rough set theory.

2 Preliminaries

2.1 Soft sets

Definition 2.1 ([6]). Let U be an initial universe and let A be a set of pa-
rameters. A pair (f,A) is called a soft set over U , if f is a mapping given by
f : A → 2U where 2U is the power set of U . We denote (f,A) by fA.

In other words, a soft set over U is a parameterized family of subsets of the
universe U . For e ∈ A, f(e) may be considered as the set of e-approximate
elements of the soft set fA.

Example 2.2. Let U = {h1, h2, h3, h4, h5} be a universe consisting of five
stores. Let A = {a1, a2, a3, a4,
a5, a6, a7} be is a set of status of stores where a1, a2, a3, a4, a5, a6 and a7

represent respectively the parameters “high empowerment of sales personnel”,
“medium empowerment of sales personnel”, “low empowerment of sales per-
sonnel”, “good perceived quality of merchandise”, “average perceived quality of
merchandise”, “high traffic location” and “low traffic location”, respectively. We
define fA as follows

f(a1) = {h1}, f(a2) = {h2, h3, h5}, f(a3) = {h4}, f(a4) = {h1, h2, h3},
f(a5) = {h4, h5}, f(a6) = {h1, h2, h3}, f(a7) = {h4, h5}.
Soft sets fA can be described as the following Table 1. If hi ∈ f(aj), then

hij = 1; otherwise hij = 0, where hij are the entries in Table 1.
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Table 1: Tabular representation of the soft set fA

a1 a2 a3 a4 a5 a6 a7

h1 1 0 0 1 0 1 0
h2 0 1 0 1 0 1 0
h3 0 1 0 1 0 1 0
h4 0 0 1 0 1 0 1
h5 0 1 0 0 1 0 1

Definition 2.3. Let fA be a soft set over U . fA is called non-trivial, if for any
a ∈ A, f(a) 6= ∅ and f(a) 6= U.

In this paper, we only consider non-trivial soft sets.

2.2 Information systems

Definition 2.4 ([11, 12]). Let U be a finite set of objects and let A be a finite set
of attributes. The pair (U,A, V, g) is called an information system ( a knowledge
representation system ), if g is an information function from U × A to V =⋃
a∈A

Va where every Va = {g(x, a) : a ∈ A and x ∈ U} is the values of the

attribute a.

Definition 2.5. An information system (U,A, V, g) is called 2-value, if V =
{0, 1}.
Example 2.6. Let U = {h1, h2, h3, h4} be a universe consisting of four patients,
and let A = {a1, a2, a3} be a set of attributes where a1, a2 and a3 represent
respectively the attributes “ headache”, “ muscle pain” and “ fever”.

Now, we consider an information system (U,A, V, g), which describes the “
symptoms of patients”. For instance, “g(h1, a1) = yes” means “h1 suffers from
headache” and its functional value is yes; “g(h3, a2) = no ”means “h3 has no
muscle pain” and its functional value is no; “g(h3, a3) = no” means “h3 doesn’t
have a fever” and its functional value is no.

We define
g(h1, a1) =yes, g(h1, a2) =yes, g(h1, a3) =no;
g(h2, a1) =yes, g(h2, a2) =yes, g(h2, a3) =yes;
g(h3, a1) =yes, g(h3, a2) =yes, g(h3, a3) =no;
g(h4, a1) =no, g(h4, a2) =yes, g(h4, a3) =no.
Let hij be the entries. If g(hi, aj) =yes, then hij = 1; if g(hi, aj) =no,

then hij = 0. A 2-value information system (U,A, V, g) can be described as the
following Table 2.

In Table 2, Va1 = {0, 1}, Va2 = {0, 1}, Va3 = {0, 1}, V =
⋃

a∈A Va = {0, 1}.
Let (U,A, V, g) be an information system and let P ⊆ A. We denote

ind(P ) = {(x, y) ∈ U × U : g(x, a) = g(y, a) for any a ∈ P}.
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Table 2: The 2-value information system (U,A, V, g)

a1 a2 a3

h1 1 1 0
h2 1 1 1
h3 1 1 0
h4 0 1 0

Obviously, ind(P ) is an equivalence relation on U , which is called the equiv-
alence relation induced by P . Sometimes, we replace respectively ind(P ) and
U/ind(P ) by P and U/P where

U/ind(P ) = {[x]ind(P ) : x ∈ U}.

Specially, we replace ind({a}) by a for a ∈ A.

Theorem 2.7. Let S = fA be a soft set over U and let IS = (U,A, V, gs)
be a 2-value information system induced by S. Then for any a ∈ A, U/a =
{f(a), U − f(a)}.
Proof. Since

a = {(x, y) ∈ U × U : gs(x, a) = gs(y, a)},
gs(x, a) = gs(y, a) = 1 or gs(x, a) = gs(y, a) = 0.

This implies that {x, y} ⊂ f(a) or {x, y} ⊂ U − f(a). Thus U/a = {f(a), U −
f(a)}.

2.3 The relationship between soft sets and information
systems

Definition 2.8. Let S = fA be a soft set over U . Then IS = (U,A, V, gs) is
called a 2-value information system induced by S where gs : U ×A → V .

For any x ∈ U and a ∈ A,

gs(x, a) =
{

1, x ∈ f(a),
0, x 6∈ f(a).

Definition 2.9. Let I = (U,A, V, g) be a 2-value information system. Then
SI = (fI , A) is called a soft set over U induced by I where fI : A → 2U and for
any x ∈ U and a ∈ A, fI(a) = {x ∈ U : g(x, a) = 1}.
Lemma 2.10. Let S = fA be a soft set over U , let IS = (U,A, V, gs) be a
2-value information system induced by S over U and let SIS

= (fIS
, A) be a soft

set over U induced by IS. Then S = SIS
.
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Proof. By Definition 2.9, for any a ∈ A, fIS
(a) = {x ∈ U : gs(x, a) = 1}.

By Definition 2.8, for any x ∈ U and a ∈ A,

gs(x, a) =
{

1, x ∈ f(a),
0, x 6∈ f(a).

This implies that gs(x, a) = 1 ⇔ x ∈ f(a). So, for ∀x ∈ U, a ∈ A, f(a) = fIS
(a).

Hence fA = (fIS
, A). This implies that S = SIS

.

Lemma 2.11. Let I = (U,A, V, g) be a 2-value information system, Let SI =
(fI ,A ) be a soft set over U induced by I and let ISI

= (U,A, V, gsI
) be a 2-value

information system induced by SI . Then I = ISI
.

Proof. By Definition 2.8, for any x ∈ U and a ∈ A,

gsI
(x, a) =

{
1, x ∈ fI(a),
0, x 6∈ fI(a).

For any x ∈ U and a ∈ A, by Definition 2.9, fI(a) = {x ∈ U : g(x, a) = 1}.
Since I = (U,A, V, g) is a 2-value information system, g(x, a) = 0 for x 6∈ fI(a),
This implies that

g(x, a) =
{

1, x ∈ fI(a),
0, x 6∈ fI(a).

So for any x ∈ U and a ∈ A, gsI
(x, a) = g(x, a). Hence gsI

= g. This implies
that that I = ISI

.

Theorem 2.12. Let

Σ = {S : S = fA is a soft set over U}

and
Γ = {I : I = (U,A, V, g)isa2− valueinformationsystem}.

Then there exists a one-to-one correspondence between Σ and Γ.

Proof. Two mappings F : Σ → Γ and G : Γ → Σ are defined as follows:

F (S) = IS for ∀S ∈ Σ; G(I) = SI for ∀I ∈ Γ.

By Lemma 2.9, G ◦F = iΣ where G ◦F is the composition of F and G, and
iΣ is the identity mapping on Σ.

By Lemma 2.10, F ◦G = iΓ where G◦F is the composition of G and F , and
iΓ is the identity mapping on Γ.

Hence F and G are both a one-to-one correspondence. This prove that there
exists a one-to-one correspondence between Σ and Γ.
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3 The parameter reduction of soft sets

Soft sets and rough sets are two different concepts to deal with uncer-
tainty. Both of these concepts help in decision-making problems. Soft set itself
has classification ability. The parameter reduction of soft sets means reducing
the number of parameters for a soft set to the minimum without distorting its
original classification ability. Specific approach is first classifying the parame-
ter according to the importance of parameters and then finding the minimum
set of parameters (ie., the core for a soft set) without distorting the original
classification ability of soft sets.

Reduction of parameters of soft sets plays a vital role in decision-making
problems. Reduction of parameters can save expensive tests and time.

Since there exists a one-to-one correspondence between “the set of all soft
sets” and “the set of all 2-value information systems” ( see Theorem 2.12 ),
we can do the parameter reduction of soft sets with the help of the knowledge
reduction in rough set theory.

Definition 3.1. Let fA be a soft set over U .
(1) A∗ ⊆ A is called a parameter reduction of fA (brief. a fA-parameter

reduction), if ind(A) = ind(A∗) and ind(A) 6= ind(B) for any B ( A∗.
(2) The intersection set of all fA-parameter reductions is called the core of

fA. We denote it by core(fA).

In this paper, we denote the set of all fA-parameter reductions by pr(fA).

Proposition 3.2. Let fA be a soft set over U . Then pr(fA) 6= ∅.
Proof. (1) If ind(A) 6= ind(A − {a}) for any a ∈ A, then A itself is a fA-
parameter reduction.

(2) If ind(A) = ind(A−{a}) for some a ∈ A, then we consider B1 = A−{a}.
If ind(A) 6= ind(B1 − {b1}) for any b1 ∈ B1, B1 is a fA-parameter reduction.
Otherwise, we consider B1−{b1} again and repeat the above mentioned process.
Since A is a finite set, we can find a fA-parameter reduction.

Thus, pr(fA) 6= ∅.
Definition 3.3. Let fA be a soft set over U and let pr(fA) = {Ci : 1 ≤ i ≤ n}.
Then

(1) a ∈ A is called core, if a ∈
n⋂

i=1

Ci = core(fA).

(2) a ∈ A is called relative indispensable, if a ∈
n⋃

i=1

Ci − core(fA).

(3) a ∈ A is called absolutely dispensable, if a ∈ A−
n⋃

i=1

Ci.

(4) a ∈ A is called dispensable, if a ∈ A− core(fA).
Obviously, a ∈ A is dispensable if and only if a is relative indispensable or

absolutely dispensable.
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Definition 3.4. Let A,B ⊂ 2U . A is called a refinement of B, if for any A ∈ A,
there exists B ∈ B such that A ⊆ B. We denote it by A ≤ B.

Lemma 3.5. Let R and ρ be two equivalence relations on U . If R ⊆ ρ, then
U/R ≤ U/ρ.

Proof. Suppose that A ∈ X/R. Since R is an equivalence relation on X, there
exists x ∈ X, such that A = [x]R.

Suppose that y ∈ [x]R. Then xRy. This implies that (x, y) ∈ R. Since R ⊆ ρ,
(x, y) ∈ ρ. This implies that y ∈ [x]ρ. Then [x]R ⊆ [x]ρ.

Pick B = [x]ρ. Then A ⊆ B and so X/R ≤ X/ρ.

The following Theorem 3.6 and Corollary 3.7 give the parameter reduction
of soft sets.

Theorem 3.6. Let fA be a soft set over U . Then
(1) |pr(fA)| = 1 if and only if core(fA) ∈ pr(fA).
(2) a ∈ core(fA) if and only if U/ind(A) 6= U/ind(A− {a}).
(3) a ∈ A is dispensable if and only if U/ind(A) = U/ind(A− {a}).

Proof. (1) Sufficiency. Let core(fA) ∈ pr(fA). Note that pr(fA) = {Ci : 1 ≤
i ≤ n}. We only need to prove n = 1.

1) Suppose n = 2. Then there are only two different fA-parameter reductions
C1 and C2.

a) If C1 ( C2. Since C2 ∈ pr(fA), ind(A) 6= ind(C1). Then C1 6∈ pr(fA).
This is a contradiction.

b) If C2 ( C1. We can similarly prove that this implies a contradiction.
c) If C1 * C2 and C2 * C1. Obviously, core(fA) = C1 ∩C2 and core(fA) (

C1. Since C1 ∈ pr(fA), ind(A) 6= ind(core(fA)). Then core(fA) 6∈ pr(fA). This
is also a contradiction.

2) Suppose n ≥ 3. This is similar to the proof of 1).
Thus |pr(fA)| = 1.
Necessity. This is obvious.
(2) Sufficiency. Suppose that U/ind(A) 6= U/ind(A − {a}). We claim that

a ∈ Ci for any 1 ≤ i ≤ n. Otherwise. a 6∈ Ci0 for some Ci0 . This implies that
U/ind(A) = U/ind(Ci0). Since ind(Ci0) ⊇ ind(A − {a}) ⊇ ind(A), by Lemma
3.5, U/ind(Ci0) ≥ U/ind(A−{a}) ≥ U/ind(A). So U/ind(A) = U/ind(A−{a}),
a contradiction.

This implies that a ∈ core(fA).
Necessity. Suppose that U/ind(A) = U/ind(A − {a}). Since pr(fA) 6= ∅,

there exists B′
1 ⊆ A − {a} such that B′

1 ∈ pr(fA). So a 6∈ core(fA). This is a
contradiction.

Thus U/ind(A) 6= U/ind(A− {a}).
(3) Sufficiency. Suppose that U/ind(A) = U/ind(A−{a}). Since A−{a} is

a finite set, there exists B2 ⊆ A− {a} such that B2 ∈ pr(fA). So a 6∈ core(fA).
This implies that a ∈ A− core(fA).
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Thus a is a dispensable parameter.
Necessity. Suppose that U/ind(A) 6= U/ind(A−{a}). Similar to the proof of

(2), we have a ∈ core(fA). Then a 6∈ A− core(fA). Note that a is a dispensable
parameter. Then a ∈ A− core(fA). This implies a contradiction.

Thus U/ind(A) = U/ind(A− {a}).
Corollary 3.7. core(fA) = {a ∈ A : U/ind(A) 6= U/ind(A− {a})}.

4 Algorithms

Algorithms 4.1. Let fA be a soft set over U . The algorithm of parameter
reduction is shown as follows:

Input: A soft set fA.
Output: pr(fA) and core(fA).
Step 1. Calculate U/ind(A) and U/ind(A− {a}) for any a ∈ A;
Step 2. If U/ind(A) 6= U/ind(A − {a}) for any a ∈ A, then pr(fA) = {A}

and core(fA) = A;
Step 3. If U/ind(A) = U/ind(A − {a}) for some a ∈ A, then we consider

B1 = A − {a}. If U/ind(A) 6= U/ind(B1 − {b1}) for any b1 ∈ B1, then B1 ∈
pr(fA); Otherwise, we consider B1 − {b1} again;

Step 4. Output pr(fA) and core(fA).

Example 4.2. Let U = {h1, h2, h3, h4, h5}, A = {a1, a2, a3, a4} and let fA be
a soft set over U , defined as follows

f(a1) = {h1, h2, h5}, f(a2) = ∅, f(a3) = {h3}, f(a4) = {h3, h4}.
By Theorem 2.7, we have U/a1 = {f(a1), U−f(a1)} = {{h1, h2, h5}, {h3, h4}},

U/a2 = {f(a2), U − f(a2)} = {{h1, h2, h3, h4, h5}},
U/a3 = {f(a3), U − f(a3)} = {{h3}, {h1, h2, h4, h5}},
U/a4 = {f(a4), U − f(a4)} = {{h3, h4}, {h1, h2, h5}}. And
U/A = {{h1, h2, h5}, {h3}, {h4}}. U/ind(A−{a1}) = {{h1, h2, h5}, {h3}, {h4}} =

U/ind(A).
U/ind(A− {a2}) = {{h1, h2, h5}, {h3}, {h4}} = U/ind(A).
U/ind(A− {a3}) = {{h1, h2, h5}, {h3, h4}} 6= U/ind(A).
U/ind(A− {a4}) = {{h1, h2, h5}, {h3}, {h4}} = U/ind(A).
This implies that
U/ind({a2, a3, a4}) = U/ind({a1, a3, a4}) = U/ind({a1, a2, a3}) = U/ind(A).

Since U/ind({a2, a3, a4}) = U/ind({a3, a4}), U/ind({a3, a4}) 6= U/ind({a3})
and U/ind({a3, a4}) 6= U/ind({a4}), {a3, a4} is a fA-parameter reduction.

Since U/ind({a1, a3, a4}) = U/ind({a1, a3}), U/ind({a1, a3}) 6= U/ind({a1})
and U/ind({a1, a3}) 6= U/ind({a4}), {a1, a3} also is a fA-parameter reduction.

Obviously,
pr(fA) = {{a3, a4}, {a1, a3}},

core(fA) = {a3, a4} ∩ {a1, a3} = {a3}.

8
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Example 4.3. In Example 4.2, we have
(1) a3 is core. (2) a1 and a4 are relative indispensable.
(3) a2 is absolutely dispensable. (4) a1, a2 and a4 are dispensable.
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FUNCTIONAL INEQUALITIES ASSOCIATED WITH BI-CAUCHY

ADDITIVE FUNCTIONAL EQUATIONS

GANG LU, CHOONKIL PARK, AND DONG YUN SHIN∗

Abstract. In this paper, we prove the Hyers-Ulam stability for the following functional
inequalities:

∥f(x1, y1) + f(x2, y2) + f(x3, y3)∥ ≤ ∥f(x1 + x2 + x3, y1 + y2 + y3)∥, (1)

∥f(x1, y1) + f(x2, y2) + f(x3, y3)∥ ≤
∥∥∥2f (x1 + x2 + x3

2
,
y1 + y2 + y3

2

)∥∥∥ , (2)

∥f(x1, y1) + f(x2, y2) + 2f(x3, y3)∥ ≤
∥∥∥2f (x1 + x2

2
+ x3,

y1 + y2
2

+ y3
)∥∥∥ (3)

in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1] con-
cerning the stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, ⋄, d) be a
metric group with the metric d(·, ·). Given ϵ > 0, does there exist a δ(ϵ) > 0 such that if a
mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ⋄ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ϵ

for all x ∈ G1? If the answer is affirmative, we would say that the question of homomorphism
H(x ∗ y) = H(x) ⋄ H(y) is stable. The concept of stability for a functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equation is that how do the solutions of the
inequality differ from those of the given functional equation?

Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Let X
and Y be Banach spaces. Assume that f : X → Y satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ X and some ϵ ≥ 0. Then there exists a unique additive mapping T : X → Y such
that

∥f(x)− T (x)∥ ≤ ϵ

for all x ∈ X.
Let X and Y be Banach spaces with norms ∥ · ∥ and ∥ · ∥, respectively. Consider f : X → Y

to be a mapping such that f(tx) is continuous in t ∈ R for each fixed x ∈ X. Th.M. Rassias
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[3] introduced the following inequality, that we call Cauchy-Rassias inequality : Assume that
there exist constants λ ≥ 0 and p ∈ [0, 1) such that

∥f(x+ y)− f(x)− f(y)∥ ≤ λ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Th.M. Rassias [3] showed that there exists a unique R-linear mapping T :
X → Y such that

∥f(x)− T (x)∥ ≤ 2λ

2− 2p
∥x∥p

for all x ∈ X. Beginning around the year 1980 the topic of approximate homomorphisms, or
the stability of the equation of homomorphism, was studied by a number of mathematicians.
Gǎvruta [4] generalized the Rassias’ result.

A square norm on an inner product space satisfies the important parallelogram equality

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic
functional equation was proved by Skof [5] for mappings f : X → Y , where X is a normed space
and Y is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant
domain X is replace by an Abelian group. In [7], Czerwik proved the Hyers-Ulam stability
of the quadratic functional equation. Borelli and Forti [8] generalized the stability result.
The stability problems of several functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem. A large list
of references can be found in [9]–[28].

In this paper, let X be a vector space and Y a Banach space. A mapping f : X → Y is
called a Cauchy additive mapping if f satisfies the functional equation f(x+ y) = f(x)+ f(y).
For a given mapping f : X ×X → Y , we define

f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2, y2) (1.1)

for all (x1, y1), (x2, y2) ∈ X ×X. A mapping f : X ×X → Y is called a bi-Cauchy mapping if
f satisfies the functional equation (1.1). We investigate the functional inequalities (1), (2) and
(3) and prove the Hyers-Ulam stability of the functional inequalities (1), (2) and (3).

2. Hyers-Ulam stability of the functional inequality (1)

Proposition 2.1. Let f : X ×X → Y be a mapping such that

∥f(x1, y1) + f(x2, y2) + f(x3, y3)∥ ≤ ∥f(x1 + x2 + x3, y1 + y2 + y3)∥ (2.1)

for all (x1, y1), (x2, y2), (x3, y3) ∈ X ×X. Then the mapping f : X → Y is bi-Cauchy additive.

Proof. Letting (x1, y1) = (x2, y2) = (x3, y3) = (0, 0) in (2.1), we have

∥3f(0, 0)∥ ≤ ∥f(0, 0)∥

and so f(0, 0) = 0.
Letting x1 = x, x2 = −x, x3 = 0, y1 = y, y2 = −y, y3 = 0 in (2.1), we get

∥f(x, y) + f(−x,−y)∥ ≤ 0

and so f(x, y) = −f(−x,−y) for all (x, y) ∈ X ×X.
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Next, we show that f is a bi-Cauchy additive mapping.

∥f(x1, y1) + f(x2, y2)− f(x1 + x2, y1 + y2)∥
= ∥f(x1, y2) + f(x2, y2) + f(−x1 − x2,−y1 − y2)∥
≤ ∥f(0, 0)∥ = 0

and so f(x1+x2, y1+y2) = f(x1, y1)+f(x2, y2) for all (x1, y1), (x2, y2) ∈ X×X, as desired. �

Theorem 2.2. Assume that a mapping f : X ×X → Y satisfies the inequality

∥f(x1, y1) + f(x2, y2) + f(x3, y3)∥
≤ ∥f (x1 + x2 + x3, y1 + y2 + y3)∥+ ϕ((x1, y1), (x2, y2), (x3, y3)),

(2.2)

where ϕ : (X ×X)3 → [0,∞) satisfies

ϕ̃((x1, y1), (x2, y2), (x3, y3)) :=
∞∑
j=1

2jϕ
((x1

2j
,
y1
2j

)
,
(x2
2j
,
y2
2j

)
,
(x3
2j
,
y3
2j

))
<∞ (2.3)

for all (x1, y1), (x2, y2), (x3, y3) ∈ X ×X. Then there exists a unique bi-Cauchy additive map-
ping A : X ×X → Y such that

∥A(x, y)− f(x, y)∥ ≤ ϕ̃
((x

2
,
y

2

)
,
(x
2
,
y

2

)
, (−x,−y)

)
+ ϕ̃((x, y), (−x,−y), (0, 0)) (2.4)

for all (x, y) ∈ X ×X.

Proof. Letting x1 = x2 = x3 = 0 and y1 = y2 = y3 = 0 in (2.2), we get f(0, 0) = 0.
Letting x1 = x2 = x, y1 = y2 = y and x3 = −2x, y3 = −2y in (2.2), we get

∥2f(x, y) + f(−2x,−2y)∥ ≤ ϕ((x, y), (x, y), (−2x,−2y))

for all (x, y) ∈ X ×X.
Letting x1 = 2x, x2 = −2x, x3 = 0 and y1 = 2y, y2 = −2y, y3 = 0 in (2.2), we obtain

∥f(2x, 2y) + f(−2x,−2y)∥ ≤ ϕ((2x, 0), (−2x,−2y), (0, 0))

for all (x, y) ∈ X ×X.
Thus ∥∥∥∥f(x, y)− 2f

(
1

2
x,

1

2
y

)∥∥∥∥
≤
[
ϕ

((
1

2
x,

1

2
y

)
,

(
1

2
x,

1

2
y

)
, (−x,−y)

)
+ ϕ((x, y), (−x,−y), (0, 0))

]
and so ∥∥∥2lf ( x

2l
,
y

2l

)
− 2mf

( x

2m
,
y

2m

)∥∥∥
≤

m−1∑
j=l

2j
[
ϕ
(( x

2j+1
,
y

2j+1

)
,
( x

2j+1
,
y

2j+1

)
,
(
− x

2j
,− y

2j

))
+ϕ
(( x

2j
,
y

2j

)
,
(
− x

2j
,− y

2j

)
, (0, 0)

)] (2.5)

for all nonnegative integersm and l withm > l and all (x, y) ∈ X×X. It follows from (2.3) and
(2.5) that the sequence {2kf( x

2k
, y
2k
)} is a Cauchy sequence for all (x, y) ∈ X ×X. Since Y is
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complete, the sequence {2kf( x
2k
, y
2k
)} converges. So we can define the mapping A : X×X → Y

by

A(x, y) := lim
k→∞

2kf
( x
2k
,
y

2k

)
for all (x, y) ∈ X ×X. Moreover, letting l = 0 and passing the limit m→ ∞, we get (2.4).

Now, we show that A(x, y) is a bi-Cauchy additive mapping.
It follows from (2.2) and (2.3) that

∥A(x, y) +A(−x,−y)∥

= lim
k→∞

2k
∥∥∥∥f ( x2k , y2k)+ f

(
−x
2k
,
−y
2k

)
+ f(0, 0)

∥∥∥∥
≤ lim

k→∞
2k
[∥∥∥∥f ( x

2k
+

−x
2k

+ 0,
y

2k
+

−y
2k

+ 0

)∥∥∥∥+ ϕ

(( x
2k
,
y

2k

)
,

(
−x
2k
,
−y
2k

)
, (0, 0)

)]
= 0

and so A(x, y) = −A(−x,−y) for any (x, y) ∈ X ×X.

∥A(x1, y1) +A(x2, y2)−A(x1 + x2, y1 + y2)∥
= ∥A(x1, y1) +A(x2, y2) +A(−x1 − x2,−y1 − y2)∥

= lim
k→∞

2k
∥∥∥∥f (x12k , y12k)+ f

(x2
2k
,
y2
2k

)
+ f

(
−x1 − x2

2k
,
−y1 − y2

2k

)∥∥∥∥
≤ lim

k→∞
2k
[∥∥∥∥f (x12k +

x2
2k

+
−x1 − x2

2k
,
y1
2k

+
y2
2k

+
−y1 − y2

2k

)∥∥∥∥
+ ϕ

((x1
2k
,
y1
2k

)
,
(x2
2k
,
y2
2k

)
,

(
−x1 − x2

2k
,
−y1 − y2

2k

))]
= 0

for all (x1, y1), (x2, y2) ∈ X ×X. Thus the mapping A : X ×X → is bi-Cauchy additive.
Next, we prove the uniqueness of A. Suppose that T : X × X → Y is another additive

mapping satisfying (2.4). We may obtain

∥A(x, y)− T (x, y)∥ = lim
k→∞

2k
∥∥∥A( x

2k
,
y

2k

)
− T

( x
2k
,
y

2k

)∥∥∥
≤ lim

k→∞
2k
∥∥∥A( x

2k
,
y

2k

)
− f

( x
2k
,
y

2k

)∥∥∥
+ lim

k→∞
2k
∥∥∥T ( x

2k
,
y

2k

)
− f

( x
2k
,
y

2k

)∥∥∥
≤ lim

k→∞
2
[
ϕ̃
(( x

2k+1
,
y

2k+1

)
,
( x

2k+1
,
y

2k+1

)
,
(
− x

2k
,− y

2k

))
+ ϕ̃

(( x
2k
,
y

2k

)
,
(
− x

2k
,− y

2k

)
, (0, 0)

)]
= 0

for all (x, y) ∈ X × X. Thus we can conclude that A(x, y) = T (x, y) for all (x, y) ∈ X × X.
This complete the proof. �
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3. Hyers-Ulam stability of the functional inequality (2)

Proposition 3.1. Let f : X ×X → Y be a mapping such that

∥f(x1, y1) + f(x2, y2) + f(x3, y3)∥ ≤
∥∥∥∥2f (x1 + x2 + x3

2
,
y1 + y2 + y3

2

)∥∥∥∥ (3.1)

for all (x1, y1), (x2, y2), (x3, y3) ∈ X × X. Then the mapping f : X × X → Y is bi-Cauchy
additive.

Proof. Letting x1 = x2 = x3 = 0, y1 = y2 = y3 = 0 in (3.1), we get

∥3f(0, 0)∥ ≤ ∥2f(0, 0)∥.
So f(0, 0) = 0.

Letting x1 = x, y1 = y, x2 = −x, y2 = −y and x3 = y3 = 0 in (3.1), we get

∥f(x, y) + f(−x,−y) + f(0, 0)∥ ≤ ∥2f(0, 0)∥ = 0

for all (x, y) ∈ X ×X. So f(−x,−y) = −f(x, y) for all (x, y) ∈ X ×X.
Letting x3 = −x1 − x2, y3 = −y1 − y2 in (3.1), we obtain

∥f(x1, y1) + f(x2, y2)− f(x1 + x2, y1 + y2)∥
= ∥f(x1, y1) + f(x2, y2) + f(−x1 − x2,−y1 − y2)∥ ≤ ∥2f(0, 0)∥ = 0

for all (x1, y1), (x2, y2) ∈ X ×X. Thus

f(x1, y1) + f(x2, y2) = f(x1 + x2, y1 + y2)

for all (x1, y1), (x2, y2) ∈ X ×X, as desired. �
Theorem 3.2. Assume that a mapping f : X ×X → Y satisfies the inequality

∥f(x1, y1) + f(x2, y2) + f(x3, y3) ≤
∥∥∥∥2f (x1 + x2 + x3

2
,
y1 + y2 + y3

2

)∥∥∥∥
+ ϕ((x1, y1), (x2, y2), (x3, y3))

(3.2)

where ϕ : (X ×X)3 → [0,∞) satisfies

ϕ̃((x1, y1), (x2, y2), (x3, y3)) :=

∞∑
j=1

2jϕ
((x1

2j
,
y1
2j

)
,
(x2
2j
,
y2
2j

)
,
(x3
2j
,
y3
2j

))
<∞

for all (x1, y1), (x2, y2), (x3, y3) ∈ X ×X. Then there exists a unique bi-Cauchy additive map-
ping A : X ×X → Y such that

∥A(x, y)− f(x, y)∥ ≤ ϕ̃
((x

2
,
y

2

)
,
(x
2
,
y

2

)
, (−x,−y)

)
+ ϕ̃((x, y), (−x,−y), (0, 0))

for all (x, y) ∈ X ×X.

Proof. Letting x1 = x2 = x3 = 0 and y1 = y2 = y3 = 0 in (3.2), we get f(0, 0) = 0.
Letting x1 = x2 = x, y1 = y2 = y and x3 = −2x, y3 = −2y in (3.2), we get

∥2f(x, y) + f(−2x,−2y)∥ ≤ ϕ((x, y), (x, y), (−2x,−2y))

for all (x, y) ∈ X ×X.
Letting x1 = 2x, x2 = −2x, x3 = 0 and y1 = 2y, y2 = −2y, y3 = 0 in (3.2), we obtain

∥f(2x, 2y) + f(−2x,−2y)∥ ≤ ϕ((2x, 0), (−2x,−2y), (0, 0))

for all (x, y) ∈ X ×X.
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Thus we get∥∥∥∥f(x, y)− 2f

(
1

2
x,

1

2
y

)∥∥∥∥
≤
[
ϕ

((
1

2
x,

1

2
y

)
,

(
1

2
x,

1

2
y

)
, (−x,−y)

)
+ ϕ((x, y), (−x,−y), (0, 0))

]
for any (x, y) ∈ X ×X.

The rest of the proof is the same as in the proof of Theorem 2.2. �

4. Hyers-Ulam stability of the functional inequality (3)

Proposition 4.1. Let f : X ×X → Y be a mapping such that

∥f(x1, y1) + f(x2, y2) + 2f(x3, y3)∥ ≤
∥∥∥∥2f (x1 + x2

2
+ x3,

y1 + y2
2

+ y3

)∥∥∥∥ (4.1)

for all (x1, y1), (x2, y2), (x3, y3) ∈ X × X. Then the mapping f : X × X → Y is bi-Cauchy
additive.

Proof. Letting x1 = x2 = x3 = 0, y1 = y2 = y3 = 0 in (4.1), we get

∥4f(0, 0)∥ ≤ ∥2f(0, 0)∥.
So f(0, 0) = 0.

Letting x1 = x, x2 = −x, x3 = 0 and y1 = y, y2 = −y, y3 = 0 in (4.1), we obtain

∥f(x, y) + f(−x,−y) + 2f(0, 0)∥ ≤ ∥2f(0, 0)∥ = 0

for all (x, y) ∈ X ×X. Hence f(−x,−y) = −f(x, y) for all (x, y) ∈ X ×X.
Letting x1 = −2x, x2 = 0, x3 = x and y1 = −2y, y2 = 0, y3 = y in (4.1), we get

∥f(−2x,−2y) + f(0, 0) + 2f(x, y)∥ ≤ ∥2f(0, 0)∥ = 0

for all (x, y) ∈ X ×X. Hence f(2x, 2y) = 2f(x, y) for all (x, y) ∈ X ×X.
Replacing x3 = −x1+x2

2 and y3 = −y1+y2
2 in (4.1), we have

∥f(x1, y1) + f(x2, y2)− f(x1 + x2, y1 + y2)∥

=

∥∥∥∥f(x1, y1) + f(x2, y2) + 2f

(
−x1 + x2

2
,−y1 + y2

2

)∥∥∥∥
≤ ∥2f(0, 0)∥ = 0

for all (x1, y1), (x2, y2) ∈ X ×X. Thus

f(x1, y1) + f(x2, y2) = f(x1 + x2, y1 + y2)

for all (x1, y1), (x2, y2) ∈ X ×X, as desired. �
Theorem 4.2. Assume that a mapping f : X ×X → Y satisfies the inequality

∥f(x1, y1) + f(x2, y2) + 2f(x3, y3) ≤
∥∥∥∥2f (x1 + x2

2
+ x3,

y1 + y2
2

+ y3

)∥∥∥∥
+ ϕ((x1, y1), (x2, y2), (x3, y3))

(4.2)

where ϕ : (X ×X)3 → [0,∞) satisfies

ϕ̃((x1, y1), (x2, y2), (x3, y3)) :=

∞∑
j=1

2jϕ
((x1

2j
,
y1
2j

)
,
(x2
2j
,
y2
2j

)
,
(x3
2j
,
y3
2j

))
<∞ (4.3)
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for all (x1, y1), (x2, y2), (x3, y3) ∈ X ×X. Then there exists a unique bi-Cauchy additive map-
ping A : X ×X → Y such that

∥A(x, y)− f(x, y)∥

≤ ϕ̃

(
(x, y), (0, 0),

(
−1

2
x,−1

2
y

))
+ ϕ̃

((
1

2
x,

1

2
y

)
,

(
1

2
x,

1

2
y

)
,

(
−1

2
x,−1

2
y

))
for all (x, y) ∈ X ×X.

Proof. It follows from (4.3) that ϕ((0, 0), (0, 0), (0, 0)) = 0. Letting x1 = x2 = x3 = 0 and
y1 = y2 = y3 = 0 in (4.2), we get ∥4f(0, 0)∥ ≤ ∥2f(0, 0)∥ + ϕ((0, 0), (0, 0), (0, 0)) = ∥2f(0, 0)∥.
So f(0, 0) = 0.

Letting x1 = 2x, x2 = 0, x3 = −x and y1 = 2y, y2 = 0, y3 = −y in (4.2), we get

∥f(2x, 2y) + f(0, 0) + 2f(−x,−y)∥ ≤ ϕ((2x, 2y), (0, 0), (−x,−y))

for all (x, y) ∈ X ×X.
Letting x1 = x, x2 = x, x3 = −x and y1 = y, y2 = y, y3 = −y in (4.2), we get

∥2f(x, y) + 2f(−x,−y)∥ ≤ ϕ((x, y), (x, y), (−x,−y))

for any (x, y) ∈ X ×X.
Thus we get

∥f(2x, 2y)− 2f(x, y)∥ ≤ ϕ((2x, 2y), (0, 0), (−x,−y)) + ϕ((x, y), (x, y), (−x,−y))

for all (x, y) ∈ X ×X. So∥∥∥f(x, y)− 2f
(x
2
,
y

2

)∥∥∥
≤ ϕ

(
(x, y), (0, 0),

(
−1

2
x,−1

2
y

))
+ ϕ

((
1

2
x,

1

2
y

)
,

(
1

2
x,

1

2
y

)
,

(
−1

2
x,−1

2
y

))
for all (x, y) ∈ X ×X.

The rest of the proof is the same as in the proof of Theorem 2.2. �
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Basel, 1998.

[13] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
[14] K. Jun and H. Kim, Ulam stability problem for quadratic mappings of Eulaer-Lagrange, Nonlinear Anal.–

TMA 61 (2005), 1093–1104.
[15] K. Jun and H. Kim, On the generalized A-quadratic mappings associated with the variance of a discrete-

type distribution, Nonlinear Anal.–TMA 62 (2005), 975–987.
[16] G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett.

24 (2011), 1312–1316.
[17] C. Park, Generalized quadratic mappings in several variables, Nonlinear anal.–TMA 57 (2004), 713–722.
[18] C. Park, Cauchy-Rassias stability of a generalized Trif ’s mapping associated in Banach modulules and its

applications, Nonlinear Anal.–TMA 62 (2005), 595–613.
[19] Th.M. Rassias, On the stability of the quadratic functional and its applications, Studia Univ. Babes-Bolyai

XLIII (1998), 89–124.
[20] Th.M. Rassias, The prolem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl.

246 (2000), 352–378.
[21] Th.M. Rassias, On the stability of functional equations in Banach space, J. Math. Anal. Appl. 251 (2000),

264–284.
[22] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62

(2000), 23–130.

[23] Th.M. Rassias and P. S̆emrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173
(1993), 325–338.

[24] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J.
Math. Anal. Appl. 228 (1998), 234–253.

[25] P. S̆emrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1987), 27–28.
[26] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83

(2004), 243–255.
[27] C. Park, K. Jun and G. Lu, On the quadratic mapping in generalized quasi-Banach spaces, J. Chungcheong

Math. Soc. 19 (2006), 263–274.
[28] C. Park, S. Hong and M. Kim, Jensen type quadratic-quadratic mapping in Banach space, Bull. Korean

Math. Soc. 43 (2006), 703–709.

Gang Lu
Department of Mathematics, ShenYang University of Technology, School of Science, Shenyang
110178, P.R. China

E-mail address: lvgang1234@hanmail.net

Choonkil Park
Department of Mathematics, Research Institute for Natural Sciences, Hanyang University,
Seoul 133-791, Korea

E-mail address: baak@hanyang.ac.kr

Dong Yun Shin
Department of Mathematics, University of Seoul, Seoul 130-743, Korea

E-mail address: dyshin@uos.ac.kr

92

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

LU ET AL 85-92



Robust CVaR-based portfolio optimization under

a genal affine data perturbation uncertainty set ∗

Zhifeng Dai1,2 Fenghua Wen2 †
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Abstract: Under a genal affine data perturbation uncertainty set, we pro-
pose a computationally tractable robust optimization method for minimizing the
CVaR of a portfolio. Using L1 norm, the robust counterpart problem can be a
linear programming problem. Moreover, it is less conservative than the Quar-
anta and Zaffaroni’s method which is under box uncertainty set. We present
some numerical experiments with real market data to illustrate the behavior of
robust optimization model.
Keywords: Conditional value at risk(CVaR), robust optimization, line pro-
gramming(LP), second-order cone programming(SOCP).

1. Introduction

Portfolio selection optimization is one of the best known and most widely used
methods in financial optimization. The mean-variance (MV) portfolio selection
model, proposed by Markowitz [1], provides a fundamental basis for portfolio
selection in both theoretical and practical applications.

Since the middle of 1990s, Value-at-Risk (VaR, [2]), a new measure of down-
side risk, has become popular in financial risk management. It has even been
recommended as a standard on banking supervision by the Basel Committee.
However, VaR has been criticized for its theoretical deficiency[3]. Condition-
al value at risk(CVaR), defined as the mean of the tail distribution exceeding
VaR, has attracted much attention in recent years. CVaR is known to have nice
properties such as the coherence [3, 4] and the consistency with the second-order
stochastic dominance [5]. Also, Rockafellar and Uryasev [6, 7] show that the
minimization of CVaR results in a tractable optimization problem.

∗This work was supported by the Humanities and Social Sciences project of the Ministry of
Education of China granded(12YJC790027), the NSF of China granted(11301041, 71171024),
the Science and Technology Depart of Hunan Province project ( 2012FJ3006), and a Project
Supported by Scientific Research Fund of Hunan Provincial Education Department(12K080).
†The corresponding author: mailtowfh@126.com
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However, as pointed out by Black and Litterman [8], in the classical mean-
variance model, the portfolio decision is very sensitive to the mean and the
covariance matrix, especially to the mean. Chopra and Ziemba [9] showed that
small changes in the input parameters can result in large changes in the opti-
mal portfolio allocation. Thus, the modeling risk arises due to the uncertainty
of the underlying probability distribution. Being aware of the importance of
robustness, researchers have paid increasing attention to the robust version of
portfolio selection problems, for example, ( Lobo and Boyd [14], Goldfarb and
Iyengar [15], El Ghaoui, Oks and Oustry [16], Zhu and Fukushima [17]).

By utilizing the Soyster’s approach [18], under the assumption that the ex-
pected returns lie in a box uncertainty set, Quaranta and Zaffaroni [10] con-
sidered robust optimization of conditional value at risk and portfolio selection
problem. Although they succeeded in obtaining a linear robust copy of the bicri-
teria minimization model proposed by Rockafellar and Uryasev, the associated
consequences are that the resulting robust portfolios can be too conservative.
Under the assumption that the expected returns lie in an ellipsoidal uncertainty
set, An and Luo (2010) [11] considered robust optimization of conditional value
at risk and portfolio selection problem. They showed that the robust optimiza-
tion problem can be reformulated as a second order cone programming (SOCP),
however, a practical drawback of such an approach, is that it leads to nonlinear,
although convex, models, which are more demanding computationally than the
earlier linear models by Quaranta and Zaffaroni [10].

In robust portfolio selection problems, one try to find portfolios with the
worst-case return under a given uncertainty set, in which asset returns can be
realized. A too large uncertainty set will lead to a too conservative robust port-
folio. However, if the given uncertainty set is not large enough, the realized
returns of resulting portfolios will be outside of the uncertainty set when an ex-
treme event such as market crash or a large shock of asset returns occurs. Moti-
vated by the works in [20], under an affine data perturbation uncertainty set, we
provide a computationally tractable robust optimization method for minimiz-
ing the CVaR of a portfolio which is less conservative than box uncertainty set.
specifically the robust optimization problem retains its original structure,i.e.,
the robust counterpart problem is still a linear programming problem.

The rest of this paper is organized as follows: In the next section, we intro-
duce the concept of CVaR and the mean-CVaR portfolio optimization model.
In Section 3, we review the main ideas behind the robust optimization method-
ology, and present the computationally tractable robust optimization method
for minimizing the CVaR of a portfolio. In Section 4, we report some numerical
results to test the proposed methods.

2. Conditional value-at-risk measure

Conditional VaR (CVaR) is a popular example of such a coherent risk measure
and is discussed in Rockafellar and Uryasev [6, 7]. The CVaR measure can be
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written as

CV aRβ(x ) = (1− β)−1

∫
f(x ,y )≥V aRβ(x )

f(x ,y)p(y)dy (2.1)

where
V aRβ(x ) = min{α ∈ R : Ψ(x , α) ≥ β} (2.2)

and

Ψ(x , α) =

∫
f(x ,y )≤α

p(y)dy (2.3)

is the probability of f(x ,y) not exceeding a threshold α.
In practice, the probability density function p(y) is often not available, or

is very difficult to estimate. Instead, we might have T different scenarios Y =
(y1,y2, . . . ,yT ) that are sampled from the probability distribution or that have
been obtained from computer simulations. Evaluating the auxiliary function
F̃β(x , α) using the scenarios Y , we have

F̃β(x , α) = α+ (1− β)−1
T∑
j=1

πj [f(x ,y [j])− α]+ (2.4)

where y [j] denotes the jth sample (the subscript [j] is used to distinguish a
vector from a scalar) generated by simple random sampling with respect to y
according to its density function p(.), and T denotes the number of samples.
where πj are probabilities of scenarios y [j]. If πj is equal to T−1 for all j, then
(2.4) reduces to

F̃α(x , α) = α+
1

T (1− β)

T∑
j=1

[f(x ,y [j])− α]+ (2.5)

Obviously, F̃α(x , α) is convex and piecewise linear with respect to α. Further,
F̃α(x , α) is convex for (x, α), if f(x ,y) is convex (see Theorem 2 in [6]).

Replacing [f(x ,y [j]) − α]+ by the auxiliary variables zj along with appro-
priate constraints, we obtain the equivalent optimization problem

min
x ,α

α+
1

T (1− β)

T∑
i=1

zj

s.t. zj ≥ f(x ,y [j])− α, j = 1, . . . , T (2.6)

zj ≥ 0

Generally, the loss and return functions of portfolio allocation are chosen by:

f(x ,y) = −xTy , Rp(x ) = Ep[x
Ty ] = xTEp[y ] = xT r (2.7)

in which y is the vector of the assets’ return, xT r is the mean return of the
portfolio.
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2.1. portfolio optimization with CVaR measure

Portfolio optimization tries to find an optimal trade-off between the risk and
the return according to the investor’s preference. Thus, the portfolio selection
problem using CVaR as a risk measure can be represented as

min
x∈X

CV aRβ(x )

where X denotes the constraint on the portfolio position, which usually includes
the budget constraint and no short sales constraint

xT1 = 1, x ≥ 0. (2.8)

Let µ be the worst-case minimum mean return required by the investor.
From (2.7), this can be represented as

min xT r ≥ µ (2.9)

Hence, adding an auxiliary variable θ ∈ R, the mean-CVaR Portfolio opti-
mization can be be written as the following linear program

min θ

s.t. α+
1

T (1− β)

T∑
j=1

zj ≤ θ (2.10)

zj ≥ −xTy [j] − α, j = 1, . . . , T (2.11)

zj ≥ 0 (2.12)

xT r ≥ µ (2.13)

xT1 = 1, x ≥ 0. (2.14)

The expected return r in constraint (2.9) is assumed to be exactly known. In
fact, the expected assets’ return r is uncertain. On the other hand, it is difficult
to estimate the mean return vector, and the solution to the problem is sensitive
to the mean return vector. One way to address this issue is to consider a robust
version of the portfolio problem. More specifically, we propose the following
robust version of the constraint on the expected portfolio return

min xT r ≥ µw. (2.15)

where µw denotes the worst-case required expected return specified by the in-
vestor. In next section, we will investigate a tractable robust formulation of the
constraint on the expected return which belongs to a genal affine data pertur-
bation uncertainty set.

3. Robust portfolio optimization

Robust optimization is emerging as a leading methodology to address optimiza-
tion problems under uncertainty. In this section, we will discuss different robust
optimization methods which can be applied to deal with the uncertain minimal
constraint (2.15).
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3.1. Genal Affine Data Perturbation uncertainty

In this paper, We consider instead the following uncertainty set, suggested by
Chen et al. (2007) [20] in the context of stochastic programming applications:

VΩ =
{
r : r = r0 +

N∑
j=1

∆r jzj , z ∈ AΩ(z )
}
, (3.1)

where

AΩ(z ) =
{
z : ∃v ,w ∈ RN+ , z = v −w , ‖P−1v + Q−1w‖ ≤ Ω

}
, (3.2)

and P = diag(p1, . . . , pN ), Q = diag(q1, . . . , qN ). The parameters pj > 0 and
qj > 0 are the ”forward”and the ”backward” deviations of random variable
zj , j = 1, . . . , N , respectively.

For the stochastic linear constraint (2.15), the worst-case convex support
of the uncertain parameter can be specified as follows,

W =
{
r : ∃z ∈ RN , r = r0 +

N∑
j=1

∆r j z̃j ,−z ≤ z ≤ z
}

(3.3)

Therefore, under affine data perturbation, the worse-case uncertainty set is a
parallelotope in which the feasible solution is characterized by Soyster [18],
which, of course, is a very conservative.

To derive a less conservative approximation, we need to choose the budget
of uncertainty, Ω, appropriately. The natural uncertainty set to consider is the
intersection of a norm uncertainty set, VΩ and the worst-case support set, W
as follows.

SΩ =
{
r : ∃z ∈ RN , r = r0 +

N∑
j=1

∆r j z̃j , z ∈ AΩ(z ),−z ≤ z ≤ z
}

(3.4)

As the budget of uncertainty Ω increases, the norm uncertainty set, VΩ expands
radially from the point r0 until it engulfs the set W. In this case, the uncertainty
set SΩ = W. Hence, for any choice of Ω, the uncertainty set SΩ is always less
conservative than the worst-case uncertainty set W. We call the uncertainty SΩ

as genal affine data perturbation uncertainty.
We will show an equivalent formulation of the corresponding robust coun-

terpart of (2.15) under the generalized uncertainty set, SΩ. The dual norm ‖u‖∗
is defined as

‖u‖∗ = max
{‖x ‖≤1}

u ′x (3.5)
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Theorem 3.1 The robust counterpart of (2.15) in which UΩ = SΩ is equivalent
to 

∃u, λ, s ∈ RN , h ∈ R
−r′0x + Ωh + λ′z + s′z ≤ −µ
‖u‖∗ ≤ h,
uj ≥ −pj(∆r′jx + λj − sj),∀j = {1, . . . , N}
uj ≥ qj(∆r′jx + λj − sj),∀j = {1, . . . , N}
u, λ, s ≥ 0.

(3.6)

Proof: From (2.15), we have

max − xT r ≤ −µ (3.7)

Under the condition UΩ = SΩ, the robust counterpart of (3.7) is as follows,

−rT0 x + max
{z∈C}

z′y ≤ −µ (3.8)

where

C =
{

(v ,w) : ‖P−1v + Q−1w‖ ≤ Ω,−z ≤ z ≤ z , v ,w ≥ 0
}

and yj = −∆rj
′
x . Since C is a compact convex set with nonempty interior, we

can use strong duality to obtain the equivalent representation. Observe that

max
{(v ,w):‖P−1v+Q−1w‖≤Ω,−z≤z≤z ,v ,w≥0}

(v − w)′y

= min

r, s≥0

{
max

{(v,w):‖P−1v+Q−1w‖≤Ω,v,w≥0}
(v − w)′y + r

′(z − v + w) + s
′(z + v − w)

}

= min

r, s≥0

{
max

{(v,w):‖P−1v+Q−1w‖≤Ω,v,w≥0}
(y − r + s)′v − (y − r + s)′w + r

′
z + s

′
z

}

= min

r, s≥0

{
max

{(v,w):‖v+w‖≤Ω,v,w≥0}
P(y − r + s)′v − Q(y − r + s)′w + r

′
z + s

′
z

}
= min

r, s≥0
Ω‖u‖∗ + r′z + s′z

where

uj = max{pj(yj − rj + sj),−qj(yj − rj + sj)}
= max{−pj(∆rj

′
x + rj − sj), qj(∆rj

′
x + rj − sj)}.

Hence the robust counterpart is the same as

−rT0 x + Ω‖u‖∗ + r′z + s′z ≤ −µ (3.9)

Adding an auxiliary variable h ∈ R, we can easily obtain the equivalent formu-
lation of (3.9), that is (3.6).
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The complete formulation and complexity class of the robust counterpart
depends on the representation of the dual norm constraint, ‖u‖∗ ≤ h. In this
paper, we select the l1 norm. So the ‖u‖∗ ≤ h is equivalent to

uj ≤ h,∀j ∈ N. (3.10)

By (2.10)-(2.14) and (3.10), the robust portfolio selection problem can be
written as the following linear programming problem with variables (x, z,u, λ, s,v, θ, α, h) ∈
Rn × RT × RN × RN × RN × RN × R × R × R :

min θ

s.t. α+
1

T (1− β)

J∑
i=1

zj ≤ θ

zj ≥ −xTy[j] − α, j = 1, . . . , T

xT1 = 1, x ≥ 0

−r ′0x + Ωh + λ′z + s′z ≤ −µ (3.11)

uj ≤ h,∀j ∈ N
uj ≥ −pj(∆r′jx + λj − sj),∀j = {1, . . . , N}
uj ≥ qj(∆r′jx + λj − sj), ∀j = {1, . . . , N}
z,u, λ, s ≥ 0, v ∈ RN+ , p ∈ R+

4. Empirical Results

In this section, we apply the robust portfolio optimization methods discussed
in the previous sections to real market data and compare the behavior of the
solutions obtained by the robust optimization technique.

In all tables and figure, the methods have the following meanings:

• ”CVaR” stands for the initial CVaR method in [7].

• ”BCVAR” stands for the robust mean-CVaR Portfolio optimization under
box uncertainty set in [10].

• ”ECVaR” stands for the robust mean-CVaR Portfolio optimization under
ellipsoidal uncertainty set in [11].

• ”ACVaR” stands for the robust mean-CVaR Portfolio optimization (3.11)
under a genal affine data perturbation uncertainty set.

We utilize MatLab7.0 for solving models CVaR, BCVAR, and ACVaR which
are linear programming problems. The model ECVaR is an SOCP and solved
by SeDuMi1.02 [21].

We consider a portfolio of 10 small cap stocks from 5 different industry
categories of the S&P 600 index(Table 2), and use historical returns from May,
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1998 to June, 2006. There are a total of 2,000 observations for each stock.
Table 2: List of Stocks and Corresponding Industries

Industry discretionary Company name (ticker)
Consumer discretionary Aztar Corp. (AZR), Hancock Fabrics Inc. (HKF)
Financials Downey S & L Assn. (DSL), HARB
Industrials AAR Corp. (AIR), CDI Corp. (CDI)
Information technology FEI Company (FEIC), Exar Corp. (EXAR)
Healthcare BioLase Technology (BLTI), BDR

In our first experiment, using the data presented above, we generated the
classical and robust efficient frontiers. The parameters for all optimization mod-
els are set as follows:

• For the CVaR formulation, mean return r is given by the sample mean.

• For the BCVaR formulation, we assume that mean return r0 is given by
the sample mean, and that ri is determined by the standard deviation of
the stock i’ sample return.

• According to the ECVaR formulation,we assume that mean return r0 is
given by the sample mean. For simplicity, the scaling matrix of the ellip-
soid P is assumed to be a diagonal matrix ρI, where ρ is a nonnegative
parameter.

• For the ACVaR formulation, we assume that mean return r0 is given by
the sample mean, and that ∆ri is determined by the standard deviation
of the stock i’ sample return, and assume they are also stochastically
independent (N=10). We set Ω = 0.8 , z = z = 1 and pj = 1.5, qj = 2 in
our Numerical experiments.
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Figure 1-portfolio efficient frontiers for the different optimization formulations
with β = 1%.

100

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

DAI ET AL 93-103



As shown in Figure 1, it is apparent that ACVaR outperforms both ECVaR and
BCVaR in terms of realized CVaR. As expected, CVaR is dominated by ACVaR.
We also can see that the robust optimal portfolios are somewhat conservative
in comparison to that of the CVaR model. But in the next experiment, we will
see the robust optimal portfolios can result in more stable portfolio returns.

In our second experiment, we study the cumulative portfolio wealth if a
portfolio manager employs a simple buy-and-hold strategy. The entire data
sequence is divided into investment periods of length T = 200 days. In all there
are p = 10 time periods. For each period p, first, we consider moving windows
of n = 10 days and compute the parameters for all optimization models as
experiment 1.

Once all the parameters are set, the portfolio xpCV aR, x
p
BCV aR, x

p
ECV aR,

xpACV aR for period p can be computed by solving the portfolio selection model C-
VaR, BCVaR, ECVaR, and ACVaR respectively. The portfolio xpCV aR, x

p
BCV aR,

xpECV aR, x
p
ACV aR are held constant for the period p and then rebalanced to the

portfolio xp+1
CV aR, x

p+1
BCV aR, x

p+1
ECV aR, x

p+1
ACV aR for period p+ 1.

Let W p
CV aR,W

p
BCV aR,W

p
ECV aR,W

p
ACV aR denote the wealth at the end of

period p of an investor with initial wealth w0 = 1 . Because these strategies
require a block of data of length T = 200 to estimate all of parameters, the first
investment period p = 1 starts from the time instant T + 1. Therefore, 10 time
periods of length ”T = 200” only have 9 investment periods.
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Figure 2-The wealth resulting from the four strategies with window n = 10 at
each investment period.

It is clear that the wealth generated by the ACVaR model is much better than
other models at the end of investment period. But in Figure 2 the wealth
generated by the ACVaR model is a litter lower than other models at early
investment periods. Therefore, it is not guaranteed that the ACVaR model
always has an advantage of other three models. On the other hand, the optimal
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portfolio allocation based on the ACVaR approach tends to result in stable
returns, whereas, for example, the behavior of the optimal portfolio obtained
with the CVaR approach is erratic.

5. Conclusion

under a genal affine data perturbation uncertainty set, we propose a compu-
tationally tractable robust optimization method for minimizing the CVaR of a
portfolio. The remarkable characteristic of the new method is that, using L1

norm, the robust optimization model retains the complexity of original portfo-
lio optimization problem, i.e., the robust counterpart problem is still a linear
programming problem. This fact has important theoretical and practical impli-
cations. Since the computational complexity of an LP is simplest in all of pro-
gram problems, it follows that robust portfolio optimization is able to provide
protection against parameter fluctuations at light computational cost. More-
over, the LP problem is maybe the best known and the most frequently solved
optimization problem in the real world. The numerical experiments presented
in this paper suggest that the behavior of portfolios can be improved by using
the robust CVaR model under a genal affine data perturbation uncertainty set.
And the robustness is achieved at relatively high performance and low cost.
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RANDOM DERIVATIONS ON RANDOM NORMED ALGEBRAS

JUNG RYE LEE, CHOONKIL PARK, AND DONG YUN SHIN∗

Abstract. Using the fixed point method, we prove the Hyers-Ulam stability of random
derivations in random normed algebras associated with the Cauchy functional equation.

1. Introduction

Fuzzy set theory is a powerful tool set for modeling uncertainty and vagueness in
various problems arising in the field of science and engineering. It has also very useful
applications in various fields, e.g., population dynamics [4], chaos control [13], computer
programming [15], etc. Recently, the fuzzy topology has proved to be a very useful tool
to deal with such situations where the use of classical theories breaks down.

In the sequel, we adopt the usual terminology, notations and conventions of the theory
of random normed spaces, as in [7, 25, 26, 31, 32]. Throughout this paper, ∆+ is the space
of distribution functions, that is, the space of all mappings F : R ∪ {−∞,∞} → [0, 1]
such that F is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1. D+ is
a subset of ∆+ consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f(x)
denotes the left limit of the function f at the point x, that is, l−f(x) = limt→x− f(t).
The space ∆+ is partially ordered by the usual point-wise ordering of functions, i.e.,
F ≤ G if and only if F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this
order is the distribution function ε0 given by

ε0(t) =

 0, if t ≤ 0,

1, if t > 0.

Definition 1.1. ([31]) A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm). Recall (see [16, 17]) that if T
is a t-norm and {xn} is a given sequence of numbers in [0, 1], then T n

i=1xi is defined
recurrently by T 1

i=1xi = x1 and T n
i=1xi = T (T n−1

i=1 xi, xn) for n ≥ 2. T∞
i=nxi is defined as

2010 Mathematics Subject Classification. Primary 47H10, 39B52, 37H10, 60H25, 39B72, 47B47,
17B40, 54E70.

Key words and phrases. Random normed algebra; Fixed point; Hyers-Ulam stability; Cauchy func-
tional equation; Random derivation.
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T∞
i=1xn+i−1. It is known ([17]) that for the Lukasiewicz t-norm the following implication

holds:

lim
n→∞

(TL)
∞
i=1xn+i−1 = 1 ⇐⇒

∞∑
n=1

(1− xn) < ∞.

Definition 1.2. ([32]) A random normed space (briefly, RN-space) is a triple (X,µ, TM),
where X is a vector space and µ is a mapping from X into D+ such that the following
conditions hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx(

t
|α|) for all x ∈ X, α ̸= 0;

(RN3) µx+y(t+ s) ≥ TM(µx(t), µy(s)) for all x, y ∈ X and all t, s > 0.

Every normed space (X, ∥ · ∥) defines a random normed space (X,µ, TM), where

µx(t) =
t

t+ ∥x∥
for all t > 0. This space is called the induced random normed space.

Definition 1.3. Let (X,µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ϵ > 0 and
λ > 0, there exists a positive integer N such that µxn−x(ϵ) > 1− λ whenever n ≥ N .
(2) A sequence {xn} in X is called a Cauchy sequence if, for every ϵ > 0 and λ > 0,
there exists a positive integer N such that µxn−xm(ϵ) > 1− λ whenever n ≥ m ≥ N .
(3) An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X.

Theorem 1.4. ([31]) If (X,µ, T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn(t) = µx(t) almost everywhere.

Definition 1.5. A random normed algebra is a random normed space with algebraic
structure such that (RN4) µxy(ts) ≥ µx(t)µy(s) for all x, y ∈ X and all t, s > 0.

Example 1.6. Every normed algebra (X, ∥.∥) defines a random normed algebra (X,µ, TM),
where

µx(t) =
t

t+ ∥x∥
for all t > 0. This space is called the induced random normed algebra.

Definition 1.7. Let (X,µ, TM) be a random normed algebra. An R-linear mapping
f : X → X is called a random derivation if f(xy) = f(x)y + xf(y) for all x, y ∈ X.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if
d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.

Theorem 1.8. ([6, 9]) Let (X, d) be a complete generalized metric space and let J : X →
X be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given
element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that
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(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

The stability problem of functional equations originated from a question of Ulam [33]
concerning the stability of group homomorphisms. Hyers [18] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was gener-
alized by Aoki [1] for additive mappings and by Th.M. Rassias [30] for linear mappings
by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [30] has
provided a lot of influence in the development of what we call Hyers-Ulam stability of
functional equations. A generalization of the Th.M. Rassias theorem was obtained by
Găvruta [14] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Th.M. Rassias’ approach. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [2, 3, 5, 8, 10, 11, 19, 21, 22, 23, 29]).

In 1996, G. Isac and Th.M. Rassias [20] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems with
applications. By using fixed point methods, the stability problems of several functional
equations have been extensively investigated by a number of authors (see [25, 27, 28]).

The Hyers-Ulam stability of different functional equations in random normed and
fuzzy normed spaces has been recently studied in [24, 26].

Using the fixed point method, we prove the Hyers-Ulam stability of random derivations
in random normed algebras, associated with the Cauchy functional equation

f (x+ y) = f(x) + f(y).

Throughout this paper, assume that (X,µ, TM) is a complete random normed algebra.

2. Hyers-Ulam stability of random derivations in random normed
algebras

Using the fixed point method, we prove the Hyers-Ulam stability of random derivations
associated with the Cauchy functional equation.

Theorem 2.1. Let φ : X2 → [0,∞) be a function such that there exists a constant
0 < L < 1

2
with

φ(x, y) ≤ L

2
φ (2x, 2y)

for all x, y ∈ X. Let f : X → X be a mapping satisfying

µf(rx+ry)−rf(x)−rf(y) (t) ≥ t

t+ φ(x, y)
, (2.1)

µf(xy)−f(x)y−xf(y) (t) ≥ t

t+ φ(x, y)
(2.2)

for all r ∈ R, all x, y ∈ X and all t > 0. Then

D(x) := lim
n→∞

2nf
(
x

2n

)
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exists for each x ∈ X and defines a random derivation D : X → X such that

µf(x)−D(x) (t) ≥
(2− 2L)t

(2− 2L)t+ Lφ(x, x)
(2.3)

for all x ∈ X and all t > 0.

Proof. Letting y = x and r = 1 in (2.1), we get

µf(2x)−2f(x) (t) ≥
t

t+ φ(x, x)
(2.4)

for all x ∈ X and all t > 0. So

µf(x)−2f(x
2 )

(t) ≥ t

t+ φ
(
x
2
, x
2

) ≥ 2t

2t+ Lφ (x, x)
(2.5)

for all x ∈ X and all t > 0.
Consider the set

S := {g : X → X}
and introduce the generalized metric on S:

d(g, h) = inf{ν ∈ R+ : µg(x)−h(x)(νt) ≥
t

t+ φ(x, x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see the proof of
[26, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ φ(x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ2g(x
2 )−2h(x

2 )
(Lεt) = µg(x

2 )−h(x
2 )

(
L

2
εt
)

≥
Lt
2

Lt
2
+ φ

(
x
2
, x
2

) ≥
Lt
2

Lt
2
+ L

2
φ(x, x)

=
t

t+ φ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.5) that

µf(x)−2f(x
2 )

(
L

2
t
)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
2
.

By Theorem 1.8, there exists a mapping D : X → X satisfying the following:

107

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

LEE ET AL 104-111



RANDOM DERIVATIONS ON RN-ALGEBRAS

(1) D is a fixed point of J , i.e.,

D
(
x

2

)
=

1

2
D(x) (2.6)

for all x ∈ X. The mapping D is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that D is a unique mapping satisfying (2.6) such that there exists a ν ∈
(0,∞) satisfying

µf(x)−D(x)(νt) ≥
t

t+ φ(x, x)

for all x ∈ X and all t > 0;
(2) d(Jnf,D) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
(
x

2n

)
= D(x)

for all x ∈ X;
(3) d(f,D) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f,D) ≤ L

2− 2L
.

This implies that the inequality (2.3) holds.
By (2.1),

µ2nf( x
2n

+ y
2n )−2nf( x

2n )−2nf( y
2n )

(2nt) ≥ t

t+ φ
(

x
2n
, y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

µ2nf( x
2n

+ y
2n )−2nf( x

2n )−2nf( y
2n )

(t) ≥
t
2n

t
2n

+ Ln

2n
φ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
φ(x,y)

= 1 for all x, y ∈ X

and all t > 0,

µD(x+y)−D(x)−D(y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping D : X → X is Cauchy additive.
Let y = 0 in (2.1). By (2.1),

µ2nf( rx
2n )−2nrf( x

2n )
(2nt) ≥ t

t+ φ
(

x
2n
, 0
)

for all r ∈ R, all x ∈ X, all t > 0 and all n ∈ N. So

µ2nf( rx
2n )−2nrf( x

2n )
(t) ≥

t
2n

t
2n

+ Ln

2n
φ (x, 0)
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for all r ∈ R, all x ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
φ(x,0)

= 1 for all

x ∈ X and all t > 0,

µH(rx)−rH(x) (t) = 1

for all r ∈ R, all x ∈ X and all t > 0. Thus the additive mapping D : X → X is R-linear.
By (2.2),

µ4nf( x
2n

· y
2n )−2nf( x

2n )·y−x·2nf( y
2n )

(4nt) ≥ t

t+ φ
(

x
2n
, y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

µ4nf( x
2n

· y
2n )−2nf( x

2n )·y−x·2nf( y
2n )

(t) ≥
t
4n

t
4n

+ Ln

2n
φ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
4n

t
4n

+Ln

2n
φ(x,y)

= 1 for all x, y ∈ X

and all t > 0,

µD(xy)−D(x)y−xD(y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping D : X → X satisfies D(xy) =
D(x)y + xD(y) for all x, y ∈ X.

Therefore, there exists a unique random derivation D : X → X satisfying (2.3). �
Theorem 2.2. Let φ : X2 → [0,∞) be a function such that there exists a constant
0 < L < 1 with

φ(x, y) ≤ 2Lφ
(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → X be a mapping satisfying (2.1) and (2.2). Then

D(x) := lim
n→∞

1

2n
f (2nx)

exists for each x ∈ X and defines a random derivation D : X → X such that

µf(x)−D(x) (t) ≥
(2− 2L)t

(2− 2L)t+ φ(x, x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (2.4) that

µf(x)− 1
2
f(2x)

(
1

2
t
)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 1
2
.

The rest of the proof is similar to the proof of Theorem 2.1. �
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A note on the q-extension of second kind Euler numbers and
polynomials

C. S. Ryoo

Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract : In this paper, by using the p-adic integral on Zp, we construct a new type of the

q-extension of the second kind Euler numbers En,q and polynomials En,q(x). From these numbers

and polynomials, we establish some interesting identities and relations. By using the q-extension

of the second kind Euler numbers En,q and polynomials En,q(x), the q-Euler zeta function and

Hurwitz-type q-Euler zeta functions are defined.

Key words : the second kind Euler numbers and polynomials, the q-extension of the second kind

Euler numbers and polynomials

2000 Mathematics Subject Classification : 11B68, 11S40, 11S80

1. Introduction

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · } denotes
the set of natural numbers, R denotes the set of real numbers, C denotes the set of complex numbers,

Zp denotes the ring of p-adic rational integers, Qp denotes the field of p-adic rational numbers, and

Cp denotes the completion of algebraic closure of Qp.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one

talks of q-extension, q is considered in many ways such as an indeterminate, a complex number

q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally

assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1.Throughout this paper we use

the notation:

[x]q =
1− qx

1− q
, cf. [1, 2, 3, 4, 5, 6] .

For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
Kim[1, 2] defined the p-adic integral on Zp as follows:

I1(g) =

∫

Zp

g(x)dμ−1(x) = lim
N→∞

∑

0≤x<pN

g(x)(−1)x. (1.1)

From (1.1), we obtain

I−1(gn) = (−1)nI−1(g) + 2

n−1
∑

l=0

(−1)n−1−lg(l), (see [1-3]). (1.2)

where gn(x) = g(x+ n).

First, we introduce the second kind Euler numbers En and polynomials En(x)(see [4]). The

second kind Euler numbers En are defined by the generating function:

F (t) =
2et

e2t + 1
=

∞
∑

n=0

En
tn

n!
. (1.3)
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We introduce the second kind Euler polynomials En(x) as follows:

F (x, t) =
2et

e2t + 1
ext =

∞
∑

n=0

En(x)
tn

n!
. (1.4)

2. q-extension of the second kind Euler numbers and polynomials

In this section, we introduce the q-extension of the second kind Euler Euler numbers En,q and

polynomials En,q(x) and investigate their properties. Let Z+ = N ∪ {0}.
For q ∈ Cp with |1− q|p < 1, q-extension of the second kind Euler numbers En,q are defined by

En,q =

∫

Zp

qx[2x+ 1]nq dμ−1(x). (2.1)

By using p-adic integral on Zp, we obtain,

∫

Zp

qx[2x+ 1]nq dμ−1(x) = lim
N→∞

pN−1
∑

x=0

qx[2x+ 1]nq (−1)x

= 2

(

1

1− q

)n n
∑

l=0

(

n

l

)

(−1)lql
1

1 + q2l+1

= 2

∞
∑

m=0

(−1)mqm[2m+ 1]nq .

(2.2)

By (2.1), we have the following theorem.

Theorem 1. For h ∈ Z and q ∈ Cp with |q − 1|p < 1, we have

En,q = 2

(

1

1− q

)n n−1
∑

l=0

(

n

l

)

(−1)lql
1

1 + q2l+1

= 2
∞
∑

m=0

(−1)mqm[2m+ 1]nq .

We set

Fq(t) =

∞
∑

n=0

En,q
tn

n!
.

By using above equation and (2.2), we have

Fq(t) =

∞
∑

n=0

En,q
tn

n!
= 2

∞
∑

n=0

(

(

1

1− q

)n n
∑

l=0

(

n

l

)

(−1)lql
1

1 + q2l+1

)

tn

n!

= 2

∞
∑

m=0

(−1)mqme[2m+1]qt.

(2.3)

Thus, q-extension of the second kind Euler numbers, En,q are defined by means of the generating

function

Fq(t) = 2

∞
∑

m=0

(−1)mqme[2m+1]qt. (2.4)

By using (2.1), we have

∞
∑

n=0

En,q
tn

n!
=

∞
∑

n=0

∫

Zp

qx[2x+ 1]nq dμ−1(x)
tn

n!
=

∫

Zp

qxe[2x+1]qtdμ−1(x). (2.5)
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By (2.3), (2.5), we have

∫

Zp

qxe[2x+1]qtdμ−1(x) = 2

∞
∑

m=0

(−1)mqme[2m+1]qt.

Next, we introduce q-extension of the second kind Euler polynomials En,q(x). The q-extension of

the second kind Euler polynomials En,q(x) are defined by

En,q(x) =

∫

Zp

qy[x+ 2y + 1]nq dμ−1(y). (2.6)

By using p-adic integral, we obtain

En,q(x) = 2

(

1

1− q

)n n
∑

l=0

(

n

l

)

(−1)lq(x+1)l 1

1 + q2l+1
. (2.7)

We set

Fq(t, x) =

∞
∑

n=0

En,q(x)
tn

n!
. (2.8)

By using (2.7) and (2.8), we obtain

Fq(t, x) =
∞
∑

n=0

En,q(x)
tn

n!
= 2

∞
∑

m=0

(−1)mqme[2m+1+x]qt. (2.9)

Since [x+ 2y + 1]q = [x]q + qx[2y + 1]q, we easily see that

En,q(x) =

∫

Zp

qy[x+ 2y + 1]nq dμ−1(y)

=
n

∑

l=0

(

n

l

)

[x]n−l
q qxlEl,q

= 2

∞
∑

m=0

(−1)mqm[x+ 2m+ 1]nq ,

(2.10)

with the usual convention of replacing (Eq)
n by En,q.

By (1.3), (1.4), (2.3), and (2.10), we have the following remark.

Remark 1. Note that

(1) En,q(0) = En,q,

(2) If q → 1, then En,q(x) = En(x), En,q = En,

(3) If q → 1, then Fq(x, t) = F (x, t), Fq(t) = F (t).

By (2.7), we obtain the following theorem.

Theorem 2( Property of complement).

En,q−1(−x) = (−1)nqn+1En,q(x)

By (2.7), we have the following distribution relation:

Theorem 3. For any positive integer m(=odd), we have

En,q(x) = [m]nq

m−1
∑

a=0

(−1)aqaEn,qm

(

2a+ x+ 1−m

m

)

, n ∈ Z+.
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By (1.2), (2.1), and (2.6), we easily see that

qnEm,q(2n) + (−1)n−1Em,q = 2

n−1
∑

l=0

(−1)n−1−lql[2l + 1]mq .

Hence, we obtain the following theorem.

Theorem 4. Let m ∈ Z+. If n ≡ 0 (mod 2), then

qnEm,q(2n)− Em,q = 2

n−1
∑

l=0

(−1)l+1ql[2l + 1]mq .

If n ≡ 1 (mod 2), then

qnEm,q(2n) + Em,q = 2

n−1
∑

l=0

(−1)lql[2l + 1]mq .

From (1.2), we note that

2et = q

∫

Zp

e[2x+3]qtdμ−1(x) +

∫

Zp

e[2x+1]qtdμ−1(x)

=

∞
∑

n=0

(

q

∫

Zp

[2x+ 3]nq dμ−1(x) +

∫

Zp

[2x+ 1]nq dμ−1(x)

)

tn

n!

=
∞
∑

n=0

(qEn,q(2) + En,q)
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 5. For n ∈ Z+, we have

qEn,q(2) + En,q = 2.

By Theorem 5 and (2.10), we have the following corollary.

Corollary 6. For n ∈ Z+, we have

q(q2Eq + [2]q)
n + En,q = 2,

with the usual convention of replacing (Eq)
n by En,q.

3. The analogue of the Euler zeta function

By using q-extension of second kind Euler numbers and polynomials, q-Euler zeta function and

Hurwitz q-Euler zeta functions are defined. These functions interpolate the q-extension of second

kind Euler numbers En,q, and polynomials En,q(x), respectively. Let q be a complex number with

|q| < 1. From (2.4), we note that

dk

dtk
Fq(t)

∣

∣

∣

∣

t=0

= 2

∞
∑

m=0

(−1)nqm[2m+ 1]kq

= Ek,q, (k ∈ N).
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By using the above equation, we are now ready to define q-Euler zeta functions.

Definition 7. Let s ∈ C with Res > 1.

ζq(s) = 2

∞
∑

n=1

(−1)nqn

[2n+ 1]sq
. (3.1)

Note that ζq(s) is a meromorphic function on C. Note that, if q → 1, then ζq(s) = ζ(s) which is the

Euler zeta functions(see [6]). Relation between ζq(s) and Ek,q is given by the following theorem.

Theorem 8. For k ∈ N, we have

ζq(−k) = Ek,q.

Observe that ζq(s) function interpolates Ek,q numbers at non-negative integers. By using (2.9),

we note that
dk

dtk
Fq(t, x)

∣

∣

∣

∣

t=0

= 2

∞
∑

m=0

(−1)mqm[2x+ 1 +m]kq (3.2)

and
(

d

dt

)k
( ∞

∑

n=0

En,q(x)
tn

n!

)∣

∣

∣

∣

∣

t=0

= Ek,q(x), for k ∈ N. (3.3)

By (3.2) and (3.3), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 9. Let s ∈ C with Res > 1.

ζq(s, x) = 2

∞
∑

n=0

(−1)nqn

[n+ 2x+ 1]sq
. (3.4)

Note that ζq(s, x) is a meromorphic function on C. Obverse that, if q → 1, then ζq(s, x) = ζ(s, x)

which is the Hurwitz Euler zeta functions(see [6]). Relation between ζq(s, x) and Ek,q(x) is given

by the following theorem.

Theorem 10. For k ∈ N, we have

ζq(−k, x) = Ek,q(x).

Observe that ζq(−k, x) function interpolates Ek,q(x) numbers at non-negative integers.
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SOME PROPERTIES OF BAZILEVIC FUNCTIONS RELATED
WITH CONIC DOMAINS

KHALIDA INAYAT NOOR, MOHSAN RAZA∗ AND KAMRAN YOUSAF

Abstract. The aim of this paper is to study the Bazilevic functions associ-
ated with conic domains. Some properties of analytic functions related with
Bazilevic functions by using the concept of convolution are examined. We in-
vestigate some results concerned with integral preserving property and radius
problems which generalize the already proved results.

1. Introduction

Let A be the class of analytic functions

F (z) = z +
∞∑
n=2

anz
n, (1.1)

defined in the open unit disc E = {z : |z| < 1}. For any two analytic functions
f and g with

f (z) =
∞∑
n=0

bnz
n and g (z) =

∞∑
n=0

cnz
n, z ∈ E,

the convolution (Hadamard product) is given by

(f ∗ g) (z) =
∞∑
n=0

bncnz
n, z ∈ E.

A function f ∈ A is starlike univalent function of order ρ, if and only if

Re
zf ′ (z)

f (z)
> ρ, 0 ≤ ρ < 1, z ∈ E.

This class of functions is denoted by S∗ (ρ) . Kanas and Wisnowska [7] studied
k − UCV, the class of k-uniformly convex and k − ST , the corresponding class
of k-starlike functions. A function f ∈ A is said to be in the class k − UCV of
k-uniformly convex function, if

Re

{
1 +

zf ′′ (z)

f ′ (z)

}
≥ k

∣∣∣zf ′′ (z)
f ′ (z)

∣∣∣
, k ≥ 0, z ∈ E. (1.2)

Similarly a function f ∈ A is said to be in the class denoted by k − ST , if and
only if

Re

{
zf ′ (z)

f (z)

}
≥ k

∣∣∣zf ′ (z)
f (z)

− 1
∣∣∣
, k ≥ 0, z ∈ E. (1.3)

∗ Corresponding author
2010 Mathematics Subject Classification. 30C45, 30C50.
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Geometric interpretation. The function f ∈ k−UCV and f ∈ k−ST, if and

only if zf ′′(z)
f ′(z)

+ 1 and zf ′(z)
f(z)

, respectively, take all values in the conic domain Ωk,

which is included in the right half plane such that

Ωk = {u+ iv : u > k
√

(u− 1)2 + v2},

with p(z) = zf ′′(z)
f ′(z)

+1 or p(z) = zf ′(z)
f(z)

and considering the functions which map E

onto the conic domain Ωk such that 1 ∈ Ωk, we may rewrite the conditions (1.2)
or (1.3) in the form

p(z) ≺ qk(z).

The domain Ωk,ρ is such that

Ωk,ρ = (1− ρ) Ωk + ρ, 0 ≤ ρ < 1.

The function qk,ρ plays the role of extremal for these classes and is given by

qk,ρ(z) =



1+(1−ρ)z
1−z , k = 0,

1 + 2γ(1−ρ)
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2(1−ρ)
1−k2 sinh2

[(
2
π

arccos k
)

arctanh
√
z
]

, 0 < k < 1,

1 + (1−ρ)
k2−1 sin

 π
2R(t)

u(z)√
t∫

0

1√
1−x2
√

1−(tx)2
dx

+ (1−ρ)
k2−1 , k > 1,

(1.4)

where u(z) = z−
√
t

1−
√
tz
, t ∈ (0, 1), z ∈ E and t is chosen such that k = cosh

(
πR′(t)
4R(t)

)
,

with R(t) is Legendre’s complete elliptic integral of the first kind and R′(t) is
complementary integral of R(t). By virtue of (1.4) and the properties of the
domains Ωk,ρ, we have p ≺ qk,ρ implies

Re p(z) > Re qk,ρ(z) >
k + ρ

k + 1
.

A function p, analytic in E with p(0) = 1, is said to be in the class k−P (ρ) ⊂ P,
if it is subordinate to qk,ρ in E. That is p ∈ k − P (ρ), if and only if p ≺ qk,ρ,
where qk,ρ is given by (1.4) and p(E) ⊂ qk,ρ(E).

It is noted that 0−P (0) = P, the class of analytic functions with positive real
part and p ∈ 0− P (ρ) = P (ρ) implies that Rep(z) > ρ, z ∈ E.

Recently Noor [11] has extended the class k − P (ρ) and defined the following
subclass of caratheodory class P.

Definition 1.1. Let p be analytic in E with p(0) = 1. Then p ∈ k − Pm(ρ), if
and only if

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2 (z) , p1(z), p2(z) ∈ k − P (ρ),

for m ≥ 2, 0 ≤ ρ < 1, k ∈ [0,∞), z ∈ E. We note that k − P2(ρ) = k − P (ρ)
and 0− Pm(0) = Pm, the well-known class defined in [12].

K. I. NOOR, M. RAZA, K. YOUSAF
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BAZILEVIC FUNCTIONS RELATED WITH CONIC DOMAINS

Definition 1.2. [11] Let f ∈ A. Then f ∈ k − URm(ρ), 0 ≤ ρ < 1, k ∈ [0,∞)
and m ≥ 2, if and only if

zf ′ (z)

f (z)
∈ k − Pm(ρ), z ∈ E.

Noor called k − URm(ρ), the class of functions of k-uniform bounded boundary
rotation m with order ρ. It can easily be seen that 0−URm(0) = Rm, the class of
functions of bounded boundary rotation. It is also noted that 1−UR2(0) = UST,
the class of unifromly starlike functions.

Now using the concepts of class k − Pm and the class of uniformly starlike
functions, we define the following:

Definition 1.3. Let F ∈ A, α, β ∈ R, α > 0, f ∈ UST. Then F ∈ k −
UBm (α, β) , if and only if{

zF ′ (z)F α+iβ−1 (z)

ziβfα (z)

}
∈ k − Pm, z ∈ E. (1.5)

Remark 1.4. From (1.5) it can easily be seen that F ∈ k − UBm (α, β) can be
represented by the following integral representation

F (z) =

(α + iβ)

z∫
0

h(t)fα(t)tiβ−1dt

 1
α+iβ

h ∈ k−Pm, f ∈ UST, z ∈ E. (1.6)

We note that, with m = 2, k = 0, the class k−UBm (α, β) reduces to the class of
Bazilevic functions introduced in [3], where he showed that a Bazilevic function
is univalent in E and has the integral representation given by (1.6) .

For recent work of the above mentioned classes, we refer [1,2,6,9,13].
We need the following lemmas which will be used in our main results.

2. Preliminary Results

Lemma 2.1. Let g ∈ UST. Then z
(
g(z)
z

)α
, where α > 0 also belongs to UST

in E.

Proof. Let

G1 (z) = z

(
g (z)

z

)α
.

Taking logarithmic differentiation of both sides we have

zG′1 (z)

G1 (z)
= α

zg′ (z)

g (z)
+ (1− α)

= αh0 (z) + (1− α) .

Since h0 ∈ 1− P, p0 (z) = 1 ∈ 1− P and 1− P is convex set, see [11], therefore
G1 (z) ∈ 1− P.

Remark 2.2. This result can easily be extended to the class k − URm using the
fact that k − Pm is convex set, see [11].
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Lemma 2.3. [15] Let f ∈ C and g ∈ S∗. Then for any analytic function F with
F (0) = 1 in E

f ∗ Fg
f ∗ g

(E) ⊂ coF (E) ,

where coF (E) denotes the convex hull of F (E) (the smallest convex set which
contains F (E)).

Lemma 2.4. [10] Let u = u1 + iu2, v = v1 + iv2 and ψ (u, v) be a complex valued
function satisfying the conditions:
(i) ψ (u, v) is continuous in a domain D ⊂ C2,
(ii) (1, 0) ∈ D and Reψ (1, 0) > 0,
(iii) Reψ (iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −1

2
(1 + u22) .

If h (z) = 1 + c1z + · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D
and Reψ (h(z), zh′(z)) > 0 for z ∈ E, then Reh(z) > 0 in E.

3. Main Results

Theorem 3.1. Let α ∈ R, α > 0 and c ∈ C, Re c ≥ 0 and let f ∈ UST. Then

g(z) =

(c+ 1) z−c
z∫
0

tc−1fα(t)dt

 1
α

∈ UST, z ∈ E. (3.1)

Proof. We can write (3.1) by using convolution as

g (z) = z

[(
f (z)

z

)α
∗ φα+c (z)

z

] 1
α

, (3.2)

where φα+c (z) =
∑∞

n=1
α+c

α+c+n−1z
n is convex in E, see [14]. Now from (3.2) , we

get

zg′ (z)

g (z)
=
φα+c (z) ∗ z

(
f(z)
z

)α
zf ′(z)
f(z)

φα+c (z) ∗ z
(
f(z)
z

)α .

Since, by Lemma 2.1, z
(
f(z)
z

)α
∈ UST ⊂ S∗ 1

2

)
⊂ S∗, φα+c (z) is convex, it

follows from Lemma 2.3 that

φα+c (z) ∗ z
(
f(z)
z

)α
H (z)

φα+c (z) ∗ z
(
f(z)
z

)α (E) ⊂ coH (E) , H (z) =
zf ′ (z)

f (z)
.

This proves that zg′(z)
g(z)
∈ 1− P and thus g ∈ UST.

Theorem 3.2. Let F ∈ k − UBm (α, β) , φ ∈ C. Then

G (z) = z

[(
F (z)

z

)α+iβ
∗ φ (z)

z

] 1
α+iβ

∈ k − UBm (α, β) (3.3)

in E.
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Proof. Since F ∈ k − UBm (α, β) , there exists f ∈ UST such that{
zF ′ (z)F α+iβ−1 (z)

ziβfα (z)

}
∈ k − Pm, z ∈ E. (3.4)

Define

g (z) = z

[(
f (z)

z

)α
∗ φ (z)

z

] 1
α

. (3.5)

Then g ∈ UST by Theorem 3.1. Therefore from (3.3) , (3.4) and (3.5) , it follows
that

zG′(z)Gα+iβ−1(z)

ziβgα(z)
=

φ(z) ∗ z
(
f(z)
z

)α
zF ′(z)Fα+iβ−1(z)

ziβfα(z)

φ(z) ∗ z
(
f(z)
z

)α
=

φ (z) ∗ f1(z)H0(z)

φ(z) ∗ f1(z)
,

where H0 = zF ′(z)Fα+iβ−1(z)
ziβfα(z)

∈ k − Pm, f1(z) = z
(
f(z)
z

)α
∈ S∗. Now using Lemma

2.3, we obtain the desired result.

Applications of Theorem 2.3

The class k−UBm(α, β) is invariant under the following integral representation

F1(z) =

(α + iβ + c)z−c
z∫
0

tc−1Fα+iβ(t)dt

 1
α+iβ

,

where Re c ≥ 0 and F (z) ∈ k − UBm(α, β). In fact we can write

F1(z) = z

[(
F (z)

z

)α+iβ
∗ φα+iβ+c(z)

z

] 1
α+iβ

,

and since φα+iβ+c is convex in E, the result is immediate from Theorem 3.2.
We note the following special cases.

(i) For β = 0, α = 1, we have

F1(z) = (1 + c)z−c
z∫
0

tc−1F (t)dt, Re c ≥ 0, (3.6)

and this is the generalized Bernadi integral operator [4]. When k = 0,m = 2, we
have the result for the class K of close-to-convex functions [4].
(ii) In (3.6), by taking c = 1, we obtain Libera operator [8] and c = 0 leads us to
the well-known Alexander operator.
(iii) When β = c = 0 implies that

[F1(z)]
α = α

z∫
0

(
F (t)

t

)α
dt, α > 0, (3.7)

a generalized form of Alexander operator.
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With m = 2, k = 0, we note that the class of Bazilevic functions of type α (see,
[16]) is invariant under the integral operator defined in (3.6).

Class Bm(α, β, γ)

We now deal the case k = 0, when F ∈ A, α, β ∈ R, α > 0, f ∈ S∗. Then
F ∈ Bm(α, β, γ), if and only if

zF ′(z)Fα+iβ−1(z)

ziβfα(z)
∈ Pm(γ), 0 ≤ γ < 1.

Theorem 3.3. Let F ∈ Bm(α, β, γ) and set

G(z) =

(α + iβ + c)z−c
z∫
0

tc−1Fα+iβ(t)dt

 1
α+iβ

, c ≥ 0. (3.8)

Then G ∈ Bm(α, β, γ1), where

γ1 =
2γC1 + c+ αh1
2C1 + c+ αh1

, h1 = Re
zg′ (z)

g (z)
, C1 =

∣∣∣
α
zg′ (z)

g (z)
+ c+ iβ

∣∣∣2
,

and g is integral representation of f ∈ S∗ and is starlike.

Proof. Since F ∈ Bm(α, β, γ) so there exists f ∈ S∗ such that

zF ′(z)Fα+iβ−1(z)

ziβfα(z)
∈ Pm(γ), z ∈ E. (3.9)

Set
zG′(z)Gα+iβ−1(z)

ziβgα(z)
= h(z), (3.10)

where

g(z) =

[
α + iβ + c

zc+iβ

∫ z

0

tc+iβ−1fα(t)dt

] 1
α

∈ S∗ (3.11)

by Theorem 3.1. Since g ∈ S∗ we set zg′(z)
g(z)

= h0(z) = h1 + ih2, h0 ∈ P in E. Now

from (3.8) – (3.11) , we obtain after some computations{
h(z) +

zh′(z)

αh0(z) + c+ iβ

}
∈ Pm(γ). (3.12)

Writing

h(z) = (1− γ1)p(z) + γ1.

It follows from (3.12) that for i = 1, 2,{
(1− γ1) pi(z) +

(1− γ1) zp′i(z)
αh0(z) + c+ iβ

+ γ1 − γ
}
∈ P, z ∈ E.

We construct the functional ψ(u, v) by taking u = pi(z), v = zp′i(z) as follows:

(u, v) = (1− γ1)u+
(1− γ1)v

αh0(z) + c+ iβ
+ (γ1 − γ).
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The first two conditions of Lemma 2.4 can easily be verified. We check condition
(iii) as below:

Reψ(iu2, v1) = (γ1 − γ) +
(1− γ1)(c+ αh1)v

|αh0(z) + c+ iβ|2

≤ (γ1 − γ)− (1− γ1)(c+ αh1)(1 + u22)

2 |αh0(z) + c+ iβ|2

=
2(γ1 − γ)C1 − (1− γ1)(c+ αh1)(1 + u22)

2C1

=
2(γ1 − γ)C1 − (1− γ1)(c+ αh1) + (γ1 − 1)(c+ αh1)u

2
2

2C1

=
A+Bu22

2C1

, (3.13)

where A = 2(γ1 − γ)C1 − (1 − γ1)(c + αh1) and B = (γ1 − 1)(c + αh1). Since
C1 = |αh0(z) + c+ iβ|2 > 0 and the right hand side of (3.13) is less than or equal
to zero, if A ≤ 0 and B ≤ 0. Now from B ≤ 0, we have γ1 < 1 and from A ≤ 0,
we obtain the value of γ1 given by

γ1 =
2γC1 + c+ αh1
2C1 + c+ αh1

.

Thus all the conditions of Lemma 2.4 are satisfied and pi ∈ P which mean
hi ∈ P (γ1) and hence h ∈ Pm (γ1) . This proves our result.

Theorem 3.4. Let G ∈ B2(α, β, 0), where

G(z) =

(α + iβ + c)z−c
z∫
0

tc−1Fα+iβ(t)dt

 1
α+iβ

, c ≥ 0.

Then F ∈ B2(α, β, 0), for |z| < r0 and

r0 =

{
−(α+1)+

√
c2+2α+1

c−α , c > α,
1
2
, c = α = 1.

(3.14)

Proof. Since G ∈ B2(α, β, 0), so there exists g ∈ S∗ such that

zG′(z)Gα+iβ−1(z)

ziβgα(z)
= h(z),

where

g(z) =

[
α + iβ + c

zc+iβ

∫ z

0

tc+iβ−1fα(t)dt

] 1
α

∈ S∗

by Theorem 3.1. Since g ∈ S∗ we set zg′(z)
g(z)

= h0(z) ∈ P in E. Now from (3.8),

(3.10) and (3.11) , we obtain after some computation

zF ′(z)Fα+iβ−1(z)

ziβfα(z)
= h(z) +

zh′(z)

αh0(z) + c+ iβ
.
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This implies that

Re
zF ′(z)Fα+iβ−1(z)

ziβfα(z)
= Re

{
h(z) +

zh′(z)

αh0(z) + c+ iβ

}
≥ Reh(z)−

∣∣∣ zh′(z)

αh0(z) + c+ iβ
∣∣∣ .

Using the well-known distortion results for class P, we have

Re
zF ′(z)Fα+iβ−1(z)

ziβfα(z)
≥ Reh(z)

{
1− 2r

1− r2
∣∣∣ 1

αh0(z) + c+ iβ
∣∣∣} .

Since h0 ∈ P, we have

|αh0(z) + c+ iβ| ≥ Re {αh0(z) + c+ iβ}

≥ α

(
1− r
1 + r

)
+ c

=
α (1− r) + c (1 + r)

1 + r
.

It follows easily that

Re
zF ′(z)Fα+iβ−1(z)

ziβfα(z)
≥ Reh(z)

{
1− 2r

(1− r) {α (1− r) + c (1 + r)}

}
= Reh(z)

{
(α + c)− 2 (α + 1) r + (α− c) r2

(1− r) {α (1− r) + c (1 + r)}

}
.

Hence F ∈ B2(α, β, 0), for |z| < r0, where r0 is given in (3.14) . This completes
the proof.

For α = 1 and β = 0, we have the result proved by Bernardi [5] for Bernardi
operator.

Corollary 3.5. Let G ∈ K, where

G(z) = (1 + c) z−c
z∫

0

tc−1F (t)dt.

Then F ∈ K, for |z| < r0 and

r0 =

{
−2+

√
c2+3

c−1 , c > 1,
1
2
, c = 1.
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Abstract. We give two characterizations of the Möbius invariant QK(p, q) spaces, one in terms of a double
integral and the other in terms of the mean oscillation in the Bergman metric. Both characterizations avoid the
use of derivatives.

1 Introduction

Let ∆ = {z ∈ C : |z| < 1} be the unit disk of the complex plane C. The Green’s function in the unit disk ∆ with
singularity at a ∈ ∆ is given by g(z, a) = log 1

|ϕa(z)| , where ϕa(z) = a−z
1−āz

. For 0 < r < 1, let ∆(a, r) = {z ∈ ∆ :

|ϕa(z)| < r} be the pseudo-hyperbolic disk with the center a ∈ ∆ and radius r. Through this paper, we assume
that K : [0,∞) → [0,∞) is a right continuous and nondecreasing function. For 0 < p < ∞ and −2 < q < ∞, we
say that a function f analytic in ∆ belongs to the space QK(p, q) if

‖f‖p
K,p,q = sup

a∈∆

∫

∆

∣∣f ′(z)
∣∣p(

1− |z|2
)q

K(1− |ϕa(z)|2)dA(z) < ∞,

where dA(z) is the Euclidean area element on ∆. It is clear that QK(p, q) is a Banach space with the norm
‖f‖ = |f(0)| + ‖f‖K,p,q where p ≥ 1. If q + 2 = p, QK(p, q) is Möbius invariant, i.e., ‖f ◦ ϕa‖ = ‖f‖K,p,q for all
a ∈ ∆. Now we consider some special cases. If p = 2, and q = 0, we obtain that QK(p, q) = QK (cf. [4, 9]). If
K(t) = ts, then QK(p, q) = F (p, q, s) (cf. [11]) that F (p, q, s) is contained in q+2

p
− Bloch space.

The space QK,0(p, q) consists of analytic function f in ∆ with the property that

lim
|a|→1−

∫

∆

|f ′(z)|p(1− |z|2)qK(1− |ϕa(z)|2)dA(z) = 0.

AMS: 47B38 46E15.
Key words and phrases : Berezin transform,QK(p, q) spaces, Möbius invariant spaces.
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It can be checked that QK,0(p, q) is a closed subspace in QK(p, q). The following identity is easily verified:

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2 = (1− |z|2)|ϕ′a(z)|.

For a ∈ ∆, the substitution z = ϕa(w) results in the Jacobian change in measure given by dA(w) = |ϕa(z)|2dA(z).
For a Lebesgue integrable or a non-negative Lebesgue measurable function h on ∆ we thus have the following
change-of-variable formula:

∫

∆(0,r)

h(ϕa(w))dA(w) =

∫

∆(a,r)

h(z)

(
1− |ϕa(z)|2

1− |z|2
)2

dA(z) .

Note that ϕa(ϕa(z)) = z and thus ϕ−1
a (z) = ϕa(z). For a, z ∈ ∆ and 0 < r < 1, the pseudo-hyperbolic disk

∆(a, r) is defined by ∆(a, r) = {z ∈ ∆ : |ϕa(z)| < r}. We will also need to use the so-called Berezin transform.
More specifically, for any function f ∈ L1(∆, dA), we define a function Bf by

Bf(z) =

∫

∆

(1− |z|2)2
|1− zw|4 f(w)dA(w), z ∈ ∆

we call Bf the Berezin transform of f. By a change of variables, we can also write

Bf(z) =

∫

∆

f ◦ ϕz(w)dA(w), z ∈ ∆

see [1, 2, 3, 6] and [12] for basic properties of the Berezin transform.
If the function K is only defined on (0, 1], then we extend it to (0,∞) by setting K(t) = K(1) for t > 1. We can
then define on auxiliary function as follows:

ϕK(s) = sup
0<t≤1

K(st)

K(t)
, 0 < s < ∞.

We further assume that K is continuous and nondecreasing on (0, 1] This ensures that the function ϕK is contin-
uous and nondecreasing on (0,∞).
The following estimate is the key to the main results of this paper.

Lemma 1.1 [10] Let K be any nonnegative and Lebesgue measurable function on (0,∞) and f(z) = K(1− |z|2).
If ∫ ∞

0

ϕK(x)

(1 + x)3
dx < ∞, (1)

then there exists a positive constant C such that Bf(z) ≤ Cf(z) for all z ∈ ∆.

Hereafter, C stands for absolute constants, which may indicate different constants from one occurrence to the
next.

2 A double integral characterization in QK(p, q) spaces

In this section we characterize the space QK(p, q) in terms of a double integral that does not involve the use of
derivatives. We begin with the following estimate of Bloch type integrals.

Theorem 2.1 Suppose that K(t) ≈ tnK(t); 0 < t < 1, n ≥ 0. There exists a constant C > 0 (independent of
K) such that

∫

∆

∣∣f ′(z)
∣∣p(

1− |z|2
)p−2

K(1− |z|2)dA(z) ≤ CI(f)

for all analytic functions f in ∆, where

I(f) =

∫

∆

∫

∆

∣∣f(z)− f(w)
∣∣p

∣∣1− zw̄|4
(
1− |z|2

)p−2
K(1− |z|2)d(z)dA(w).

2
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Proof. We write the double integral I(f) as an iterated integral

I(f) =

∫

∆

K(1− |z|2)
(1− |z|2)4−p

dA(z)

∫

∆

(
1− |z|2

)2

∣∣1− zw̄|4
∣∣f(z)− f(w)

∣∣p
dA(w)

Making a change of variables in the inner integral, we obtain

I(f) =

∫

∆

K(1− |z|2)
(1− |z|2)4−p

dA(z)

∫

∆

∣∣f(ϕz(w))− f(z)
∣∣p

dA(w). (2)

It is well known that ∫

∆

|g(w)− g(0)|pdA(w) ∼
∫

∆

|g′(w)|p(1− |w|2)pdA(w), (3)

for analytic functions g in ∆. Applying (3) to the inner integral in (2) with the function g(w) = f(ϕz(w)), we
deduce that

I(f) ∼
∫

∆

K(1− |z|2)
(1− |z|2)4−p

dA(z)

∫

∆

∣∣(f ◦ ϕz)
′(w)

∣∣p(
1− |w|2

)p
dA(w).

Therefore, by the chain rule and a change of variables, we get

I(f) ∼
∫

∆

(
1− |z|2

)p−2
K(1− |z|2)dA(z)

∫

∆

∣∣f ′(w)
∣∣p (1− |w|2)p

|1− zw̄|4 dA(w). (4)

Fix any positive radius R. Then there exists a constant C > 0 such that

I(f) ≥ C

∫

∆

(
1− |z|2

)p−2
K(1− |z|2)dA(z)

∫

∆(z,R)

∣∣f ′(w)
∣∣p (1− |w|2)p

|1− zw̄|4 dA(w).

It is well known that (see e.g [8])

(1− |w|2)
|1− zw̄|2 ∼ 1

(1− |z|2) ∼
1√

|∆(z, R)|
.

for w ∈ ∆(z, R). It is follows that there exists a positive constant C such that

I(f) ≥ C

∫

∆

(1− |z|2)p−2K(1− |z|2)dA(z)
1

|∆(z, R)| p
2

∫

∆(z,R)

∣∣f ′(w)
∣∣p

dA(w).

Then,

I(f) ≥ C

∫

∆

∣∣f ′(z)
∣∣p

(1− |z|2)p−2K(1− |z|2)dA(z).

This complete the proof of the theorem.

Theorem 2.2 Let p > 2. If the function K satisfies condition (1) and suppose that K(t) ≈ tnK(t); 0 < t <
1, n ≥ 0. Then there exists a constant C > 0 such that∫

∆

∣∣f ′(z)
∣∣p(

1− |z|2
)p−2

K(1− |z|2)dA(z) ≥ CI(f)

for all analytic functions f in ∆, where I(f) is as given in Lemma 2.1.

Proof. By Fubini’s theorem, we can rewrite (4) as

I(f) ∼
∫

∆

∣∣f ′(w)
∣∣p

(1− |w|2)p−2dA(w)

∫

∆

(1− |z|2)p−2

(
1− |w|2

)2

|1− zw̄|4 K(1− |z|2)dA(z).

∼
∫

∆

∣∣f ′(w)
∣∣p

(1− |w|2)p−2dA(w)

∫

∆

(
1− |w|2

)2

|1− zw̄|4 K(1− |z|2)dA(z). (5)

The inner integral above is nothing but the Berezin transform of the function K(1 − |z|2) at the point w. The
desired estimate now follows from Lemma 2.1
We can now prove the main result of this section

3
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Theorem 2.3 Suppose K satisfies condition (1) and satisfies all conditions of Theorems 2.1 and 2.2, then an
analytic function f in ∆ belongs to QK(p, p− 2) if and only if

∫

∆

∫

∆

∣∣f(z)− f(w)
∣∣p

|1− zw̄|4
(
1− |z|2

)p−2
K(1− |z|2))dA(z)dA(w) < ∞. (6)

Proof. f ∈ QK(p, p− 2) if and only if

sup
a∈∆

∫

∆

|f ′(z)
∣∣p(

1− |z|2
)p−2

K(1− |ϕa(z)|)dA(z) < ∞.

By a change of variables, we have f ∈ QK(p, p− 2) if and only if

sup
a∈∆

∫

∆

∣∣(f ◦ ϕa)′(z)
∣∣p(

1− |ϕa(z)|2
)p−2

K
(
1− |z|2

)
dA(z)

Replacing f by f ◦ ϕa in Theorems 2.1 and 2.2, we conclude that f ∈ QK(p, p− 2) iff

sup
a∈∆

∫

∆

∫

∆

∣∣f ◦ ϕa(z)− f ◦ ϕa(w)
∣∣p

|1− zw̄|4
(
1− |z|2

)p−2
K

(
1− |z|2

)
dA(z)dA(w) < ∞.

Changing variables and simplifying the result, we find that the double integral above is the same as

sup
a∈∆

∫

∆

∫

∆

∣∣f(z)− f(w)
∣∣p

|1− zw̄|4
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dA(z)dA(w) < ∞.

Therefore, f ∈ QK(p, p− 2) iff the condition (6) holds.

3 Bergman metric and QK(p, q) spaces

In this section we give two closely related characterizations of QK(p, q) spaces, one in terms of the Berezin
transform and the other in terms of certain class of analytic functions in Bergman metric.
Given a function f ∈ Lp(∆, dA) it is customary to write

S(f)(z) = (B(|f |p)− |Bf(z)|p)
1
p .

It easy to check that

(S(f)(z))p =

∫

∆

|f ◦ ϕz(w)−Bf(z)|pdA(w)

=

∫

∆

|f(w)−Bf(z)|p (1− |z|2)2
|1− zw̄|4 dA(w).

If the function f is analytic, then it is easy to see that Bf = f, so that

(S(f)(z))p =

∫

∆

|f ◦ ϕz(w)− f(z)|pdA(w)

=

∫

∆

|f(w)− f(z)|p (1− |z|2)2
|1− zw̄|4 dA(w).

We can now reformulate Theorem 3.1 as follows

Theorem 3.1 If K satisfies condition (1), then an analytic function f in ∆ belongs to QK(p, p− 2) iff

sup
a∈∆

∫

∆

(S(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτ(z) < ∞, (7)

where

dτ(z) =
dA(z)

(1− |z|2)2
is the Möbius invariant measure on the unit disk.

4
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Proof. From Theorem 3.1

Ia(f) =

∫

∆

∫

∆

∣∣f(z)− f(w)
∣∣p

|1− zw̄|4
(
1− |z|2

)q
K(1− |ϕa(z)|2)dA(z)dA(w)

we rewrite it as an iterated integral

Ia(f) =

∫

∆

(
1− |z|2

)p
K(1− |ϕa(z)|2) dτ(z)

∫

∆

∣∣f(z)− f(w)
∣∣p

|1− zw̄|4 dA(w)

or

Ia(f) =

∫

∆

(
1− |z|2

)p−2
K(1− |ϕa(z)|2) dτ(z)

∫

∆

∣∣f(z)− f(w)
∣∣p

(
1− |z|2

)2

|1− zw̄|4 dA(w)

According to the calculations preceding this theorem, we have

Ia(f) =

∫

∆

(S(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτz

This proves the desired result.

Now, fix a positive radius R and denote by

AR(f)(z) =
1

|D(z, R)|

∫

∆(z,R)

f(w)dA(w)

the a verge of f over the Bergman metric ball D(z, R). For p ≥ 1, we define

SR(f)(z) =

[
1

|D(z, R)|p
∫

∆

|f(w)−AR(f)(z)|pdA(w)

] 1
p

.

It is easy to verify that
(SR(f)(z))p = AR(|f |p)(z)− |AR(f)(z)|p.

Now, we prove the following theorem:

Theorem 3.2 If K satisfies condition (1), then an analytic function f in ∆ belongs to QK(p, p− 2) if and only
if

sup
a∈∆

∫

∆

(SR(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτ(z) < ∞, (8)

where R is any fixed positive radius.

Proof. There exists a positive constant C which is depending on R only such that

SR(f)(z) ≤ C S(f)(z), z ∈ ∆,

where f is any function in Lp(∆, dA). Therefore, condition (6) implies condition (7).
On the other hand, since D(0, R) is an Euclidean disk centered at the origin, we can find a positive constant C
which is depending on R only such that

|f ′(0)|p ≤ C

∫

D(0,R)

|f(w)− C|pdA(w)

for all analytic f in ∆ and all complex constants C.
Replace f by f ◦ ϕz and replace C by AR(f)(z) then

(1− |z|2)p|f ′(z)|p ≤ C

∫

D(0,R)

|f ◦ ϕz(w)−AR(f)(z)|pdA(w)

5
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Make an obvious change of variables on the right hand side, we obtain

(1− |z|2)p |f ′(z)|p ≤ C

∫

D(z,R)

|f(w)−AR(f)(z)|p
(
1− |z|2

)2

|1− zw̄|4 dA(w).

Since
(
1− |z|2

)2

|1− zw̄|4 ∼ 1(
1− |z|2

)2
∼ 1

|D(z, R)|

for w ∈ ∆(z, R), we can find another positive constant C such that

(1− |z|2)p |f ′(z)|p ≤ C (SR(f)(z))p, z ∈ ∆

It follows that for each a ∈ ∆ that

sup
a∈∆

∫

∆

|f ′(z)|p
(
1− |z|2

)q
K(1− |ϕa(z)|2)dA(z) ≤ C sup

a∈∆

∫

∆

(SR(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτ(z).

This shows that the condition (7) implies f ∈ QK(p, p− 2).

Recall from [5] that a positive Borel measure µ on ∆ is called a K-Carleson measure if

sup
I

∫

S(I)

K

(
1− |z|
|I|

)
dµ(z) < ∞,

where the supremum is taken over all sub-arcs I ⊂ ∂∆. Here, for a sub-arcs I of ∂∆, |I| is the length of I and
S(I) = {rξ : ξ ∈ I, 1 − |I| < r < 1} is the corresponding Carlesson square. Also, A positive Borel measure µ on
∆ is called a vanishing K− Carleson measure if

lim
|z|→1−

∫

∆

K

(
1− |z|
|I|

)
dµ(z) = 0.

Theorem 3.3 Suppose K satisfies the following two conditions:

(a) There exists a constant C > 0 such that K(2t) ≤ CK(t) for all t > 0.

(b) The auxiliary function ϕk has the property that
∫ 1

0

ϕk(s)
ds

s
< ∞.

Let µ be a positive Borel measure on ∆. Then µ is a K-Carleson measure if and only if

sup
a∈∆

∫

∆

K(1− |ϕa(z)|2)dµ(z) < ∞.

Proof. Since QK(p, q) is defined by the condition

sup
a∈∆

∫

∆

|f ′(z)|p
(
1− |z|2

)q
K(1− |ϕa(z)|2)dA(z) < ∞,

we see that f ∈ QK(p, q) if and only if the measure
(
1− |z|2

)q|f ′(z)|pdA(z) is a K-Carleson measure.
The following Corollary gives two analogous characterizations.

Corollary 3.1 Suppose K satisfies condition (1) and conditions (a) and (b) in Theorem 3.3. Let R > 0 be a
fixed radius. Then the following conditions are equivalent for an analytic function f in ∆.

(a) The function f belong to QK(p, p− 2).

(b) The measure dµ(z) = (S(f)(z))p(1− |z|2)p−2dτ(z) is a K-Carleson measure.

(c) The measure dν(z) = (SR(f)(z))p(1− |z|2)p−2dτ(z) is a K-Carleson measure.

6
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Proof. This is a direct consequence of Theorems 3.1,3.2, and 3.3.
The little-oh version of the above result can be stated as follows:

Theorem 3.4 Suppose K satisfies condition (1) and R > 0 is a fixed, then the following conditions are equivalent
for all analytic functions f in ∆.

(1) f ∈ QK,0(p, p− 2)

(2) lim
|z|→1−

∫

∆

∫

∆

∣∣f(z)− f(w)
∣∣p

|1− zw̄|4
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dA(z)dA(w) = 0

(3) lim
|z|→1−

∫

∆

∫

∆

(S(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτ(z) = 0

(4) lim
|z|→1−

∫

∆

∫

∆

(SR(f)(z))p
(
1− |z|2

)p−2
K(1− |ϕa(z)|2)dτ(z) = 0.
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In this work, we aim to determine the coefficient estimates for functions
in certain subclasses of close-to-convex functions of Janowski type and related
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1 Introduction

We denote by A the class of functions f(z) which are analytic in the open unit
disc E = {z : |z| < 1} and of the form

f(z) = z +
∞∑
n=2

anz
n. (1)
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Let S denote the class of all functions in A which are univalent. Also let S∗γ ,
Cγ , Kγ and Qγ be the subclasses of A consisting of all functions which are
starlike, convex, close-to-convex and quasi convex of complex order γ (γ 6= 0)
respectively, for details see [3, 5, 7]. We note that for 0 < γ ≤ 1, these classes
coincide with the well known classes of starlike, convex and close-to-convex of
order 1−γ. Recently Altintaş et al.[1] considered the following class of functions
denoted by SC(γ, λ,A,B) and defined as:

SC(γ, λ,A,B) =

{
f(z) ∈ A : 1 +

1

γ

(
z[(1− λ)f(z) + λzf ′(z)]′

(1− λ)f(z) + λzf ′(z)
− 1,

)
≺

1 + Az

1 + Bz
, z ∈ E

}
, (2)

where −1 ≤ B < A ≤ 1, 0 ≤ λ ≤ 1, γ ∈ C − {0}. Note that the classes
SC(1, 0, A,B) = S∗[A,B] and SC(1, 1, A,B) = C[A,B] were introduced by
Janowski [4] and are called classes of Janowski starlike and Janowski convex
functions respectively. Also

SC(γ, 0, 1,−1) = S∗γ ,SC(γ, 1, 1,−1) = Cγ .

Throughout the entire paper onward we assume the restrictions −1 ≤ B <
A ≤ 1, 0 ≤ λ ≤ 1, γ ∈ C − {0} unless otherwise mentioned. Now we denote
KQ(γ, λ,A,B) be the class of functions f(z) ∈ A if there exist a function
g(z) ∈ SC(1, λ, A,B) such that

1 +
1

γ

(
z[(1− λ)f(z) + λzf ′(z)]′

(1− λ)g(z) + λzg′(z)
− 1

)
≺ 1 +Az

1 +Bz
, z ∈ E.

As special choices we have the following relationships

KQ(1, 0, A,B) = K[A,B], KQ(1, 1, A,B) = Q[A,B], see [Noor, [6]]

KQ(γ, 0, 1,−1) = Kγ , KQ(γ, 1, 1,−1) = Qγ .

Motivated from the recent work of Srivastava et al. [9] and Altintaş et al. [2] the
main purpose of our investigation is to derive coefficient estimates of a subfamily
DK(γ, λ,A,B,m;µ) of A, which consists of functions f(z) in A satisfying the
following Cauchy Euler type non homogenous differential equation

zm dmw
dzm +mC1(µ+m−1)zm−1 dm−1w

dzm−1 +···mCmw
∏m−1

j=0
(µ+j)=h(z)

∏m−1

j=0
(µ+j+1), (3)

where w = f(z), h(z) ∈ KQ(γ, λ,A,B), µ ∈ R− (−∞,−1], m ∈ N∗ = {2, 3, · · ·}
for details we refer to [2, 8, 9, 10, 11]. The following result which is due to Alt-
intaş et al. [2] is essential in deriving our main results.
Lemma 1. [2]. Let f(z) ∈ SC(γ, λ,A,B) and be of the form (1). Then

|an| ≤

∏n−2
j=0

[
j + 2|γ|(A−B)

1−B

]
(n− 1)![1 + λ(n− 1)]

, n ∈ N∗.
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2 Coefficient Estimates for functions in the class
KQ(γ, λ, A,B)

We first establish the below result for the functions in the class KQ(γ, λ,A,B).
Theorem 1. Let f(z) ∈ KQ(γ, λ,A,B) and be defined by (1). Then

|an|≤

∏n−2

j=0

[
j+

2(A−B)
1−B

]
n![1+λ(n−1)]

+
2|γ|

n[1+λ(n−1)]
A−B
1−B

∑n−1

k=1

∏n−k−2

j=0

[
j+

2(A−B)
1−B

]
(n−k−1)!

, n∈N∗. (4)

Proof. Since f(z) ∈ KQ(γ, λ,A,B), then there exists g(z) = z +
∞∑
n=2

bnz
n

belonging to the class SC(1, λ, A,B) such that

1 +
1

γ

(
zF ′(z)

G(z)
− 1

)
≺ 1 +Az

1 +Bz
, forz ∈ E,

where F (z) = z +
∑∞
n=2Anz

n and G(z) = z +
∑∞
n=2Bnz

n, with

An = [1 + λ(n− 1)]an, Bn = [1 + λ(n− 1)]bn. (5)

Let

1 +
1

γ

(
zF ′(z)

G(z)
− 1

)
= q(z) = 1 +

∞∑
n=1

cnz
n, forz ∈ E, (6)

Since q(z) ≺ 1+Az
1+Bz , z ∈ E, we find that by definition of subordination

q(z) =
1 +Aw(z)

1 +Bw(z)
, w(0) = 0; |w(z)| < 1.

Therefore, we have

|w(z)| =
∣∣∣∣ q(z)− 1

A−Bq(z)

∣∣∣∣ < 1, q(z) = u+ iv,

which further implies that

2u(1−AB) > 1−A2 + (1−B2)(u2 + v2).

Also, since |q(z)|2 ≥ (Req(z))2, we have

(1−B2)u2 − 2u(1−AB) + 1−A2 < 0 =⇒ Req(z) >
1−A
1−B

. (7)

From (6) and (7), we find that

|cn| ≤ 2

(
A−B
1−B

)
, n ∈ N. (8)

Then from (6), we obtain

nAn = Bn + γ

[
cn−1 +

n−1∑
k=1

ckBn−k

]
, n ≥ 2
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Now using Lemma 1 together with (5) and (8), we have

|An| ≤

∏n−2
j=0

[
j + 2(A−B)

1−B

]
n!

+
2 |γ|
n

A−B
1−B

n−1∑
k=1

∏n−k−2
j=0

[
j + 2(A−B)

1−B

]
(n− k − 1)!

,

and hence from the relation between F (z) and f(z) as in (5), we obtain the
desired result. By assigning different specific values to the involved param-
eters A,B, γ, λ in Theorem 1, we deduce the following interesting results.
Corollary 1. Let f(z) ∈ KQ(1, 0, A,B) = K[A,B] and be defined by (1). Then

|an| ≤

∏n−2
j=0

[
j + 2(A−B)

1−B

]
n!

+
2

n

A−B
1−B

n−1∑
k=1

∏n−k−2
j=0

[
j + 2(A−B)

1−B

]
(n− k − 1)!

n ∈ N∗.

Corollary 2. Let f(z) ∈ KQ(γ, λ, 1,−1) and be defined by (1). Then

|an| ≤
1

[1 + λ(n− 1)]
[1 + (n− 1) |γ|] , n ∈ N∗.

Corollary 3 [3]. Let f(z) ∈ KQ(γ, 0, 1,−1) = K(γ) and be defined by (1).
Then

|an| ≤ 1 + (n− 1) |γ| , n ∈ N∗.

Corollary 4 [5]. Let f(z) ∈ KQ(γ, 1, 1,−1) = Q(γ) and be defined by (1).
Then for n ∈ N∗= {2, 3, 4, . . .}.

|an| ≤
1 + (n− 1) |γ|

n
, n ∈ N∗.

For γ = 1 in Corollary 2 and Corollary 3, we obtain the well-known coefficient es-
timates for close-to-convex and quasi convex functions.
Corollary 5. Let f(z) ∈ KQ(1 − α, λ, 1 − 2β,−1) and be defined by (1).
Then for n ∈ N∗

|an| ≤
∏n−2
j=0 [j + 2(1− β)]

n![1 + λ(n− 1)]
+

2(1− α)(1− β)

n[1 + λ(n− 1)]

n−1∑
k=1

∏n−k−2
j=0 [j + 2(1− β)]

(n− k − 1)!
.

Corollary 6. Let f(z) ∈ KQ(1−α, 0, 1,−1) = K(1−α) and be defined by (1).
Then

|an| ≤ n(1− α) + α, n ∈ N∗ = {2, 3, 4, . . .}.

Corollary 7. Let f(z) ∈ KQ(1−α, 1, 1,−1) = Q(1−α) and be defined by (1).
Then

|an| ≤ 1− α+
α

n
, n ∈ N∗ = {2, 3, 4, . . .}.
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3 Coefficient Estimates of the class BK(γ, λ, A,B;µ)

The theorem below is our main coefficient estimates for functions in the class
DK(γ, λ,A,B,m;µ).
Theorem 2. Let f(z) ∈ DK(γ, λ,A,B,m;µ) and be defined by (1). Then
for n ∈ N∗= {2, 3, 4, . . .}

|an|≤

∏m−1

j=0
(µ+j+1)∏m−1

j=0
(µ+j+n)

[∏n−2

j=0

[
j+

2(A−B)
1−B

]
n![1+λ(n−1)]

+
2|γ|

n[1+λ(n−1)]
A−B
1−B

∑n−1

k=1

∏n−k−2

j=0

[
j+

2(A−B)
1−B

]
(n−k−1)!

]
.

(9)
Proof. Let h(z) = z +

∑∞
n=2 bnz

n ∈ KQ(γ, λ, β),so that

an =

∏m−1
j=0 (µ+ j + 1)∏m−1
j=0 (µ+ j + n)

bn, n ∈ N∗, µ ∈ R− (−∞,−1].

Hence, by using Theorem 1, we immediately obtain the required inequality (9).
Corollary 8. Let f(z) ∈ DK(γ, λ, 1− 2β,−1, 2;µ) and be defined by (1). Then
for n ∈ N∗= {2, 3, 4, . . .}

|an|≤ (1+µ)(2+µ)
(n+1+µ)(n+µ)

[∏n−2

j=0
[j+2(1−β)]

n![1+λ(n−1)]
+

2|γ|(1−β)
n[1+λ(n−1)]

∑n−1

k=1

∏n−k−2

j=0
[j+2(1−β)]

(n−k−1)!

]
.
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Five-order Extrapolation Algorithms for Laplace

Equation with Linear Boundary Condition∗
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Abstract

Laplace equation with linear boundary condition will be converted into a bound-
ary integral equation(BIE) with logarithmic singularity following potential theory. In
this paper, a Sidi quadrature formula is introduced to approximate the logarithmic
singularity integral operator with O(h3) approximate accuracy order. A similar ap-
proximate equation is also constructed for the logarithmic singular operator, which is
based on coarse grid with mesh width 2h. So an extrapolation algorithm is applied
to approximate the logarithmic operator and the accuracy order is improved to O(h5).
Moreover, the accuracy order is based on fine grid h. The convergence and stability
are proved based on Anselone’s collective compact and asymptotic compact theory.
Furthermore, an asymptotic expansion with odd powers of the errors is presented with
convergence rate O(h5). Using h5−Richardson extrapolation algorithms(EAs), not only
the approximation accuracy order can be improved to O(h7), but also an a posteriori
error estimate can be obtained for constructing a self-adaptive algorithm. numerical
examples are shown to verify its efficiency.

Keywords: boundary integral equation, Richardson extrapolation algorithm, Laplace
equation, a posteriori error estimate

2000 MSC: 65N25, 65N38

1 Introduction

Laplace equation with linear boundary condition is defined as follows: to find non-zero
deformation ũ in the domain Ω and on the boundary Γ satisfying

△ũ = 0, in Ω,

∂ũ

∂n
= −cũ(x) + f̃(x), on Γ,

(1)

where Ω ⊂ R2 is a bounded, simply connected domain with a smooth boundary Γ, ∂/(∂n)
is an normal outward derivative on Γ, c is a positive constant, and f̃(x) is a given function.

By means of potential theory, Eq.(1) will be transformed into a boundary integral equa-
tion(BIE) as follows[1,2,3]:

α(y)ũ(y)−
∫
Γ

k∗(y, x)ũ(x)dsx =

∫
Γ

h∗(y, x)
∂ũ(x)

∂nx
dsx, y ∈ Γ, (2)

∗Project is supported by the national natural science foundation of China (11271389), and is supported
by natural science foundation project of CQ (CSTC2013JCYJA00017, CSTC2011AC6104)

†Email-address: cheng−pass@sina.com(Pan Cheng)
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where α(y) = θ(y)/(2π) is related to the interior angle θ(y) of Ω at point y ∈ Γ, in particular,
when y is on a smooth part of the boundary Γ, α(y) = 1/2, and h∗(y, x) is the fundamental
solution: 

h∗(y, x) = − 1

2π
ln |x− y|,

k∗(y, x) = −∂h
∗(y, x)

∂n
,

(3)

where |x− y| is the distance between points x and y.
The left terms in Eq.(2) are smooth integrals and the right hand side term is characterized

as a logarithmic singularity. Various numerical methods have been proposed for dealing with
the singularity, such as Galerkin methods in Stephan and Wendland[4], Chandler[5], Sloan
and Spence[6], and Amini and Nixon[7], collocation methods in Elschner and Graham[8]

and Yan[9], quadrature methods in Sidi and Israeli[10], Saranen[11], Huang and Lü[12,13] and
combined Trefftz methods in Li[14].

Extrapolation algorithms (EAs) based on asymptotic expansion about errors are effective
parallel algorithms, which possesses high accuracy degree, good stability and almost optimal
computational complexity. Cheng et al.[15,16] harnessed extrapolation algorithms to obtain
high accuracy order for Steklov eigenvalue in Laplace equations with smoothed and polyg-
onal boundary condition. Huang and Lü established extrapolation algorithms for solving
the Steklov eigenvalue problems[3],the Helmholtz equations[17] and the Laplace equations[18]

with accuracy order O(h3). After the Extrapolation algorithms, the accuracy order of the
approximate solution will be improved to O(h5).

A quadrature method[19,20] is presented for solving the boundary integral equation, in
which the generation of the discrete matrixes does not require any calculations of singular
integrals. The logarithmic integral kernel is approximated by extrapolation algorithms de-
rived from Sidi’s quadrature rule. An asymptotic expansion about the error is obtained with
convergence rate O(h5).

Note that the five order approximate solution is obtained directly and is based on fine
grid h. Although there are some papers[17−20] also obtain the same accuracy order, there
are three main priority for our paper: firstly, those accuracy orders are based on fine grid;
secondly, because the accuracy order is not derived from the extrapolation algorithms but
from the directly calculation, so there are not any errors generated from the extrapolation
algorithms; finally, when an linear equation with n order is solved, there are n approximate
solutions uh can be obtained on boundary Γ with accuracy order O(h5), while not n/2 values
from extrapolation method.

This paper is organized as follows: In Section 2 a Sidi’s quadrature method is recombined
to approximate integral equations for solving the approximate solution; In Section 3 an
asymptotically compact theory is provided for stability and convergence, and an asymptotic
expansion for approximate solution is shown with convergence rate O(h5); In Section 4 the
Richardson extrapolation algorithms are applied to improve the accuracy order to O(h7); In
Section 5 numerical examples illustrate the calculate progress.

2 Five order approximate methods

Assume that Γ is a smooth closed curve described by a regular parameter mapping x(s) =
(x1(s), x2(s)) : [0, 2π] → Γ, satisfying |x′(s)|2 = |x′1(s)|2 + |x′2(s)|2 > 0. Let C2m[0, 2π]
denote the set of 2m times differentiable periodic functions with the periodic 2π and xi(s) ∈
C2m[0, 2π], i = 1, 2. Define the following integral operators on C2m[0, 2π]:

(Ku)(s) = 2

∫ 2π

0

k(t, s)
∂u(t)

∂n
dt

(Hu)(s) = 2

∫ 2π

0

h(t, s)u(t)dt.
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where u(t) = ũ(x1(t), x2(t)), k(t, s) = k∗(x(t), x(s)) |x′(t)| and h(t, s) = h∗(x(t), x(s))|x′(t)|.
Because

h(t, s) = − 1

2π
ln |x(t)− x(s)||x′(t)|,

so h(t, s) is a logarithmic weak singular kernel and k(t, s) is a smooth kernel. Then Eq.(2)
is equivalent to

(I −K)u− cHu = Hf (4)

where I is an identity operator, and f = f̃(x(t)).
Let h = 2π/n (n ∈ N is supposed to be an even number and so n/2 ∈ N) be the mesh

width and tj = sj = jh, (j = 0, 1, . . . , n − 1) be the nodes. In order to approximate the
integral operators K and H, a Lemma is obtained:

Lemma 1:[19] Consider the integral
∫ 2π

0
G(x)dx with integral kernel G(x). Assume that

the functions g(x), g̃(x) are 2m times differentiable on [0, 2π]. Also assume that the integral
kernel G(x) are periodic function with period 2π. Then the following conclusion can be
drawn:

(a). If G(x) = g(x)/(x− t) + g̃(x), and Qn[G] = h
∑n

j=1,xj ̸=tG(xj), then

En[G] = h[g̃(t) + g′(t)] +O(h2m) as h −→ 0,

where En[G] =
∫ 2π

0
G(x)dx−Qn[G] in all cases;

(b). If G(x) = g(x)(x − t)s + g̃(x), s > −1, and Qn[G] = h
∑n

j=1,xj ̸=tG(xj) + hg̃(t) −
2ζ(−s)g(t)hs+1, then

En[G] = −2
m−1∑
µ=1

ζ(−s− 2µ)

(2µ)!
g(2µ)(t)h2µ+s+1 +O(h2m), as h→ 0;

where ς(t) is the Riemann zeta function.
(c). If G(x) = g(x)(x− t)s log |x− t|+ g̃(x), s > −1, and Qn[G] = h

∑n
j=1,xj ̸=tG(xj) +

hg̃(t) + 2[ζ ′(−s)− ζ(−s) log h]g(t)hs+1, then

En[G] = −2

m−1∑
µ=1

[ζ ′(−s− 2µ)− ζ(−s− 2µ) log h]
g(2µ)(t)

(2µ)!
h2µ+s+1 +O(h2m), as h→ 0;

Especially, when s = 0, then ζ ′(0) = −(1/2) log(2π), and we have

Qn[G] = h
n∑

j=1,xj=t

G(xj) + hg̃(t) + log
( h
2π

)
g(t)h,

then

En[G] = 2

m−1∑
µ=1

ζ ′(−2µ)
g(2µ)(t)

(2µ)!
h2µ+1 +O(h2m), as h→ 0.

Since K is a smooth integral operator with period 2π, we obtain a high accuracy approx-
imation when set g(x) ≡ 0 in case (a) of Lemma 1:

(Khu)(s) = h
n−1∑
j=0

k(tj , s)u(tj), (5)

with the error estimate
(Ku)(s)− (Khu)(s) = O(h2m). (6)
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For the logarithmic weak singular operator H, the continuous approximation of its kernel
hn(t, τ) is defined as:

hn(t, s) =


h(t, s), |t− s| ≥ h,

ln
( h
2π

|x′(s)|
)
, |t− s| < h,

(7)

so its approximation operator can be obtained when set g̃(x) ≡ 0 and s = 0 in case (c) of
Lemma 1:

(Hhu)(s) = h
n−1∑
j=0

hn(tj , s)u(tj), (8)

which has the following error estimate:

(Hu)(s)− (Hhu)(s) = 2h3
ς ′(−2)

2!
u(2) + 2

m−1∑
µ=2

ς ′(−2µ)

(2µ)!
u(2µ)(s)h2µ+1 +O(h2m). (9)

We can find that there is an asymptotic expansion with accuracy order O(h3) for the
logarithmic singular operator. In order to improve the accuracy order from O(h3) to O(h5),
a coarse grid 2h = 2π/(n/2) = 4π/n is obtained. The approximate operator based on coarse
grid 2h is shown as:

(H2hu)(s) = 2h

n−1∑
j=0

hn(tj , s)u(tj)ϑj ,

where

ϑj =

{
0, j is an odd number,

1, j is an even number.

The error estimate is:

(Hu)(s)− (H2hu)(s) = 2(2h)3
ς ′(−2)

2!
u(2)

+2
m−1∑
µ=2

ς ′(−2µ)

(2µ)!
u(2µ)(s)(2h)2µ+1 +O((2h)2m).

(10)

An extrapolation algorithm is used to counteract the item O(h3) in Eqs (9) and (10):

(Jhu)(s) =
8

7
(Hhu)(s)−

1

7
(H2hu)(s).

The error for the approximate operator will be improved from O(h3) to O(h5):

(Hu)(s)− (Jhu)(s) =

m−1∑
µ=2

ηµh
2µ+1 +O(h2m), (11)

where ηµ is some coefficients combination of the item h2µ+1. So the accuracy order is not
only improved to O(h5), but also built on the fine grid h.

Thus we obtain the numerical approximate equations of Eq.(4):

(I −Kh)uh − cJhuh = Jhfh, (12)

where Kh and Jh are discrete matrices of order n corresponding to the operators K and H,
respectively.
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3 Asymptotical compact convergence

According to the logarithmic capacity theory[3], the eigenvalues of K and Kh do not include
1. Then the Eqs. (4) and (12) can be rewritten as follows: find u ∈ C[0, 2π] satisfying

(I − L)u = φ, (13)

and find uh satisfying
(I − Lh)uh = φh, (14)

where L = c(I−K)−1H, Lh = c(I−Kh)
−1Jh, φ = (I−K)−1 Hf and φh = (I−Kh)

−1Jhfh.

Theorem 1. The approximate operator sequence {Lh} is an asymptotical compact[21,22]

sequence and convergent to L in C[0, 2π], i,e.

Lh
a.c→ L, (15)

where
a.c→ means the asymptotically compact convergence.

This proof can be obtained similarly as the proofs in the papers[15,16].

Corollary[13,15] 1. Under the assumption of Theorem 1, we obtain{
∥(Lh − L)L∥ → 0

∥(Lh − L)Lh∥ → 0, as h→ 0.

4 Asymptotic expansions of the approximate solutions

Theorem 2. Suppose u(s) ∈ C(2m)[0, 2π], then we have the following asymptotic expansion

(Lh − L)u(s) =
m−1∑
j=2

ψj(s)h
2j+1 +O(h2m), (16)

where ψj(s) ∈ C(2m−2j), j = 2, . . . ,m− 1, are functions independent of h.
Proof. According to properties of the approximate operators, there is

(Ku)(s)− (Khu)(s) = O(h2m). (17)

and

(Hu)(s)− (Jhu)(s) =
m−1∑
j=2

ηj(s)h
2j+1 +O(h2m). (18)

We consider the relationship between Lh and L:

(Lh − L)u = c(I −Kh)
−1Jhu− c(I −K)−1Ju

= c(I −Kh)
−1Jhu− (I −K)−1Jhu+ c(I −K)−1Jhu− (I −K)−1Ju

= c[(I −Kh)
−1 − (I −K)−1]Jhu+ c(I −K)−1(Jh −H)u

= c(I −K)−1(Kh −K)(I −Kh)
−1Jhu+ c(I −K)−1(Jh −H)u

Substituting the errors of Eqs. (19) and (20) into the above equation, and setting
ψj(s) = c(I −K)−1ηj(s), we complete the proof of Theorem 2. �
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Theorem 3. Suppose x(t), g(t) ∈ C2m[0, 2π], Then there exists functions ω̄l ∈ C2m−2l[0,
2π], l = 1, . . . ,m independent of h, such that

(u− uh)|t=tj =
m−1∑
l=2

h2l+1ω̄l|t=tj +O(h2l) (19)

Proof. Because (I −K)−1 is exist, and Jh
a.c→ H, so there is an asymptotic expansion for

function φ:
(φ− φh)|t=tj = h5ω2|t=tj + h7ω3|t=tj + . . .+O(h2m), (20)

where ωl ∈ C2m−2l[0, 2π], l = 2, . . . ,m− 1.
Because u and uh satisfy Eqs. (13) and (14) respectively, we obtain

(I − Lh)(uh − u)|t=tj

=
[
(I − Lh)uh − (I − L)u+ (I − L)u− (I − Lh)u

]∣∣∣
t=tj

= (φh − φ)|t=tj + (L− Lh)u|t=tj = h5ϕ2|t=tj + . . .+O(h2m),

(21)

where ϕl = ωl + ψl, l = 2, . . . ,m− 1.
Define an auxiliary equation

(I − L)ω̄l = ϕl, l = 2, . . . ,m− 1, (22)

and its approximate equation

(I − Lh)ω̄lh = ϕlh, l = 2, . . . ,m− 1. (23)

Substituting Eq. (25) into Eq. (23), we obtain

(I − Lh)(uh − u−
m−1∑
l=2

h2l+1ω̄lh)|t=tj = O(h2m). (24)

Noticing ω̄lh ∈ C2m−2l[0, 2π], we have

(ω̄l − ω̄lh)(ti) = O(h2m−2l). (25)

When substitute ω̄lh by ω̄l and consider the asymptotic compact properties[21], we obtain

(
uh − u−

m−1∑
l=2

h2l+1ω̄l

)
|t=tj = O(h2m), (26)

so the proof is completed. �
The asymptotic expansion in Eq. (21) implies that the Richardson extrapolation[23] can

be applied to improve the accuracy order. A higher accuracy order O(h7) can be obtained
by computing some approximation on Γ in parallel. It can be described as follows:

Taking h and h/2 to solve Eq. (12) in parallel, we obtain that uh(ti), uh/2(ti) are the
solutions on Γ. According to the asymptotic expansion, we obtain

u∗h(ti) =
1

31
(32uh/2(ti)− uh(ti)), (27)

and the error is |u∗h(ti)− u(ti)| = O(h7).
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Moreover, using |u∗h(ti)− u(ti)| = O(h7), we obtain a posteriori error estimate

|u(ti)− uh/2(ti)|

≤ |u(ti)−
1

32
(32uh/2(ti)− uh(ti))|

+
1

31
|uh/2(ti)− uh(ti)|

≤ 1

31
|uh/2(ti)− uh(ti)|+O(h7).

Note that the upper limitation 1
31 |uh/2(ti) − uh(ti)| can be used to construct self-adaptive

algorithms.

5 Numerical examples

In this section, we consider some computational aspects of the approximate equation and
present two examples to illustrate the accelerated convergence of the extrapolation algo-
rithms.

Example 1[24]: Consider the boundary value problem satisfying
△ũ = 0, in Ω,

∂ũ

∂n
= −ũ(x) + f̃(x), on Γ,

(28)

where f̃(x) = 1 and Ω is the region(x1
a

)2
+
(x2
b

)2
< 1, (29)

with (a, b) = (1, 2). The boundary Γ can be described as: x1 = cos t, x2 = 2 sin t, 0 ≤ t ≤ 2π.
So the analyzed solution will be obtained as u(x) ≡ 1.

This problem is calculated in paper [24] by Nyström method. The results is listed in
Table 1 and it shows that the convergent rate is three order. The denotes in Table 1 rep-
resent the following means: ti = 2iπ/10, with i = 1, . . . , 10; ei is the errors at ti; and

rate = log2
ei(h)

ei(h/2)
.

Table 1: Errors of the Nyström solutions in paper [24].

ti ei with h = 2π
10 ei with h = 2π

20 rate ei with h = 2π
40 rate

0.628319 0.121881E-02 0.131313E-03 3.21 0.162984E-04 3.01
1.256637 -0.241312E-02 -0.350908E-03 2.78 -0.439971E-04 3.00
1.884956 -0.241325E-02 -0.350658E-03 2.78 -0.442431E-04 2.99
2.513274 0.121870E-02 0.131397E-03 3.21 0.162478E-04 3.02
3.141593 0.163276E-02 0.189617E-03 3.11 0.236295E-04 3.00
3.769911 0.121862E-02 0.132229E-03 3.20 0.171674E-04 2.95
4.398230 -0.241311E-02 -0.351662E-03 2.78 -0.435820E-04 3.01
5.026548 -0.241343E-02 -0.351146E-03 2.78 -0.437735E-04 3.00
5.654867 0.121874E-02 0.131003E-03 3.22 0.163326E-04 3.00
6.283185 0.163256E-02 0.189412E-03 3.11 0.236443E-04 3.00

We calculate the boundary numerical solutions uh on Γ following Eq. (12). The boundary
is divided into 5 ∗ 2n with n = 0, 1, 2, . . . pieces For convenience, we introduce some denotes:
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Figure 1: Boomerang-shaped domain for numerical example 2.

eh(P ) = |uh(P ) − u(P )| is the error of the displacement; rh(P ) = log2 e
h(P )/eh/2(P ) is

the error ratio; ēh(P ) = |u∗h(P ) − u(P )| is the error after Richardson extrapolation, and
ph(P ) = 1

31 |uh/2(P )− uh(P )| is a posteriori error estimate.
Table 2 lists the approximate values of uh(P ) at points P1 = (a cos 0, b sin 0), P2 =

(a cos(π/5), b sin(π/5)) and P3 = (a cos(2π/5), b sin(2π/5)).

Table 2: The errors, errors ratio of eh, rh and a posteriori

error estimate ph, at points P = P1, P2, P3.

n 5 10 20 40 80
eh(P1) 2.043E-04 6.117E-06 1.848E-07 5.634E-09 1.728E-10
rh(P1) 5.062 5.049 5.036 5.027
ph(P1) 6.133E-06 1.852E-07 5.634E-09 1.727E-10
eh(P2) 7.203E-04 2.126E-05 6.419E-07 1.959E-08 6.061Ee-10
rh(P2) 5.102 5.050 5.034 5.014
ph(P2) 2.226E-05 6.428E-07 1.966E-08 6.061Ee-10
eh(P3) 4.726E-04 1.378E-05 4.096E-07 1.256E-08 3.886E-10
rh(P3) 5.100 5.073 5.028 5.014
ph(P3) 1.389E-05 4.106E-07 1.257E-08 3.886E-10

From Table 2, we can numerically see rh ≈ 5, that means the convergent rate is almost
five order, which agrees with Theorem 3 very well.

Table 3. the errors eh(θ), ẽh(θ) and errors ratio rh(θ) when θ1 = 0, θ2 = π/5 on Γ.

n 5 10 20 40 80
eh(θ1) 6.138E-4 1.779E-5 5.264E-7 1.585E-8 4.863E-10
rh(θ1) 5.109 5.079 5.053 5.027
ph(θ1) 1.791E-5 5.288E-7 1.585E-8 4.854E-10
eh(θ2) 5.413E-4 1.574E-5 4.690E-7 1.413E-8 4.351E-10
rh(θ2) 5.104 5.068 5.052 5.022
ph(θ2) 1.632E-5 4.728E-7 1.403E-8 4.350E-10

Example 2[15]: Consider another boundary value problem with a non-convex boomerang-
shaped cross section boundary. Similar problem is discussed for Helohmotz equation with
nonlinear boundary condition in the same domain in paper [15]. The boundary Γ is illus-
trated in Fig.1 and described by the parametric representation:

x(t) = (x1(t), x2(t)) = (cos t+ 0.65 cos 2t+ 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.
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We set c = 2 and f = (1.5 cos t+sin t+1.3 sin 2t)/
√
w+2(cos(t)+0.65 cos(2t)+1.5 sin(t))

with w = (1.5 cos t)2+(sin t+1.3 sin 2t)2. Then the analytic solution is u(t) = x1(t)+x2(t) =
cos t+ 0.65 cos 2t+ 0.65 + 1.5 sin t, t ∈ [0, 2π].

In Table 3 we list some errors of the uh(y) on Γ computed by formulae (14) and then the
uh at arbitrary point in Ω can be obtained following Eq.(15). We also use the denotes as
used in Table 1. Evidently, from Table 3, a similar conclusion can be obtained as example 1
done.

Conclusion

Generally, there are three main advantages for the Sidi’s quadrature method:
(1) Evaluating each element of discretization matrices is very simple and straightforward,

which does not require any singular integrals;
(2)We can obtain a high accuracy order O(h5) and an asymptotic expansion of the errors

with odd powers, which are based on fine grid h. Harnessing the Richardson extrapolation
algorithms, a higher accuracy order O(h7) can be obtained.

(3)The accuracy order O(h5) of the approximate solution is obtained directly, which avoid
the errors derived from the extrapolation algorithms as some articles have done.
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Abstract

The concept of differential subordination was introduced in [3] by S.S. Miller and P.T. Mocanu and the
concept of strong differential subordination was introduced in [1] by J.A. Antonino and S. Romaguera. This
last concept was applied in the special case of Briot-Bouquet strong differential subordination. In [5] the
authors have developed the general theory of strong differential subordinations following the general theory
introduced in [3]. In [6], the special case of first order linear strong differential subordinations was studied.
Now, we study another special case, the first order nonlinear strong differential subordinations.

Keywords: analytic function, differential subordination, strong subordination, first order linear, first order
nonlinear.
2000 Mathematical Subject Classification: 30C45, 34A30.

1 Introduction
Let H = H(U) denote the class of functions analytic in U . For n a positive integer and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a + anz
n + an+1z

n+1 + . . . , z ∈ U}. Let A be the class of functions f of the form
f(z) = z + a2z

2 + a3z
3 + . . . , z ∈ U.

In adition, we need the classes of convex, alpha-convex, close-to-convex and starlike (univalent) functions
given respectively by K = {f ∈ A : Re zf 00(z)/f 0(z) + 1 > 0}, Mα = {f ∈ A : f(z)f

0(z)
z 6= 0, Re (1− α) zf

0(z)
f(z) +

α
³
1 + zf 00(z)

f 0(z)

´
> 0, z ∈ U}, C = {f ∈ A : Re f 0 (z) > 0, z ∈ U}, and S∗ = {f ∈ A : Re zf 0(z)/f(z) > 0}.

Definition 1.1 [1], [2], [3] Let H(z, ξ) be analytic in U×U and f(z) analytic and univalent in U . The function
H(z, ξ) is strongly subordinate to f(z), written H(z, ξ) ≺≺ f(z) if for each ξ ∈ U , H(z, ξ) is subordinate to
f(z).

Remark 1.1 (i) Since f(z) is analytic and univalent Definition 1.1 is equivalent to H(0, ξ) = f(0) and H(U ×
U) ⊂ f(U).
(ii) If H(z, ξ) ≡ H(z) then the strong subordination becomes the usual notion of subordination.

Definition 1.2 [4], [5, Definition 2.2.b, p. 21] We denote by Q the set of functions q that are analytic and

injective in U \E(q), where E(q) =
½
ζ ∈ ∂U ; lim

z→ζ
q(z) =∞

¾
and are such that q0(ζ) 6= 0 for ζ ∈ ∂U \E(q).

The subclass of Q for which f(0) = a is denoted by Q(a).

Definition 1.3 [5, Definition 4] Let Ω be a set in C, q ∈ Q and n a positive integer. The class of admissible
functions ψn[Ω, q] consists of those functions ψ : C2 × U × U → C that satisfy the admissibility condition:

ψ(r, s; z, ξ) 6∈ Ω (A)

whenever r = q(ζ), s = mζq0(ζ), z ∈ U , ξ ∈ U , ζ ∈ ∂U \E(f) and m ≥ n ≥ 1.

1
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Remark 1.2 The function q(z) = MMz+a
M+az , with M > 0 and |a| < M , satisfies ∆ = q(U) = UM = U(0,M),

q(0) = a, E(q) = ∅ and q ∈ Q. If a = 0, then (A) simplifies to

ψ(Meiθ,Keiθ; z, ξ) 6∈ Ω (A’)

whenever K ≥ nM , z ∈ U , ξ ∈ U and θ ∈ R.

Remark 1.3 The function q(z) = a+az
1−z with Re a > 0, satisfies q(U) = ∆, q(0) = a, E(q) = {1} and q ∈ Q.

If a = 1, then (A) simplifies to
ψ(ρi,σ, z, ξ) 6∈ Ω, (A”)

when ρ,σ ∈ R, σ ≤ −n2 (1 + ρ2), z ∈ U , ξ ∈ U and n ≥ 1.

Lemma 1.1 [3], [4, Lemma 2.2.d, p. 24] Let q ∈ Q(a), with q(0) = a and p(z) = a+anzn+ . . . analytic in U ,
with p(z) 6≡ a, n ≥ 1. If p is not subordinate to q, then there exist points z0 = r0eiθ0 ∈ U and ζ0 ∈ ∂U \ E(q),
and an m ≥ n ≥ 1 for which p(Ur0) ⊂ q(U)
(i) p(z0) = q(ζ0)
(ii) z0p0(z0) = mζ0q

0(ζ0).

Definition 1.4 [6] A strong differential subordination of the form A(z, ξ)zp0(z) + B(z, ξ)p(z) ≺≺ h(z), z ∈
U, ξ ∈ U, where A(z, ξ)zp0(z) + B(z, ξ)p(z) is analytic in U for all ξ ∈ U and h is an analytic and univalent
function in U, is called first order linear strong differential subordination.

2 Main results
Definition 2.1 A strong differential subordination of the form

A(z, ξ)zp0(z) +B(z, ξ)p(z) + C(z, ξ)p2(z) +D(z, ξ) ≺≺ h(z), (1)

where A(z, ξ)zp0(z) + B(z, ξ)p(z) + C(z, ξ)p2(z) +D(z, ξ) is analytic in U for all ξ ∈ U and h is an analytic
and univalent function in U, is called first order nonlinear strong differential subordination.

Remark 2.1 If C(z, ξ) = D(z, ξ) = 0 then (1) becomes a linear strong differential subordination studied in [6].

Remark 2.2 If A(z, ξ) = A(z), B(z, ξ) = B(z), C(z, ξ) = C(z), D(z, ξ) = D(z) then (1) becomes a nonlinear
differential subordination studied in [7].

Next, we find conditions for the functions p,A,B,C,D and h such that (1) holds.

Theorem 2.1 Let p ∈ H[0, n], A,B,C : U × U → C with

Re A(z, ξ) ≥ 0, Re [A(z, ξ) +B(z, ξ)] ≥ 1 +M |C(z, ξ)| (2)

and A(z, ξ)zp0(z) +B(z, ξ)p(z) + C(z, ξ)p2(z) an analytic function in U for all ξ ∈ U . Then

A(z, ξ)zp0(z) +B(z, ξ)p(z) + C(z, ξ)p2(z) ≺≺Mz (3)

implies p(z) ≺Mz, M > 0, z ∈ U.

Proof. Let ψ(r, s; z, ξ) : C2 × U × U → C given by Definition 1.3. For r = p(z), s = zp0(z), z ∈ U we have

ψ(r, s; z, ξ) = A(z, ξ)s+B(z, ξ)s+ C(z, ξ)r2. (4)

Then (3) becomes
ψ(r, s; z, ξ) ≺≺Mz, z ∈ U, ξ ∈ U. (5)

If we consider h(z) =Mz, M > 0 then h(U) = U(0,M) and (5) is equivalent to

ψ(r, s; z, ξ) ∈ U(0,M), z ∈ U, ξ ∈ U. (6)

Suppose that p is not subordinated to h(z) =Mz. Then, from Lemma 1.1, we have that there exist z0 ∈ U ,
z0 = r0e

iθ0 , θ0 ∈ R and ζ0 ∈ ∂U with |ζ0| = 1, such that p(z0) = h(ζ0) =Meiθ0 , z0p0(z0) = mζ0h
0(ζ0) = Ke

iθ0 ,
K ≥ nM .

2

150

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

OROS 149-152



By replacing r with p(z0) = h(ζ0) =Me
iθ0 and s with z0p0(z0) = mζ0h

0(ζ0) = Ke
iθ0 in (4) and taking into

account the conditions from (2), we have
|ψ(p(z0), z0p0(z0); z0, ξ)| = |ψ(Meiθ0 ,Keiθ0 ; z0, ξ)| = |A(z0, ξ)Keiθ0 + B(z0, ξ)Meiθ0 + C(z0, ξ)M2e2iθ0 | =

|A(z0, ξ)K+B(z0, ξ)M+C(z0, ξ)M2e2iθ0 |≥ |A(z0, ξ)K+B(z0, ξ)M |−M2|C(z0, ξ)|≥ Re [A(z0, ξ)K+B(z0, ξ)M ]−
M2|C(z0, ξ)| ≥ KRe A(z0, ξ) +MRe B(z0, ξ)−M2|C(z0, ξ)| ≥ nMRe A(z0, ξ) +MRe B(z0, ξ)−M2|C(z0, ξ)|
≥MRe [A(z0, ξ) +B(z0, ξ)]−M2|C(z0, ξ)| ≥M,
which contradicts (6). This means the assumption made is false, hence p(z) ≺Mz, M > 0, z ∈ U .

Example 2.1 Let A(z, ξ) = z + ξ + 4, B(z, ξ) = 3z − 2ξ + 12− 8i, C(z, ξ) = 2z − 3ξ + 1−
√
3i, M = 1

2 . Since
z ∈ U , ξ ∈ U , we have Re A(z, ξ) ≥ 2, Re B(z, ξ)| ≥ 7, |C(z, ξ)| ≤ 16, Re [A(z, ξ) +B(z, ξ)] ≥ 9.
From Theorem 2.1, we obtain: If p ∈ [0, n], n ∈ N, and (z + ξ + 4)zp0(z) + (3z − 2ξ + 12− 8i)p(z) + (2z −

2ξ+1−
√
3i)p2(z) is a function of z, analytic in U for all ξ ∈ U , then (z+ ξ+4)zp0(z)+(3z−2ξ+12−8i)p(z)

+(2z − 3ξ + i−
√
3i)p2(z) ≺≺ z

2 , z ∈ U, ξ ∈ U, implies p(z) ≺ z
2 , z ∈ U.

Theorem 2.2 Let p ∈ [0, n], A,B,C,D : U × U → C with

Re A(z, ξ) ≥ 0, Re C(z, ξ) ≥ 0, n

2
Re A(z, ξ) ≥ Re D(z, ξ) (7)

and Im B(z, ξ)≤2
q£

n
2Re A(z, ξ) + Re C(z, ξ)

¤ £
n
2Re A(z, ξ)−Re D(z, ξ)

¤
.

If A(z, ξ)zp0(z)+B(z, ξ)p(z)+C(z, ξ)p2(z)+D(z, ξ) is analytic in U for all ξ ∈ U and satisfies the inequality

Re [A(z, ξ)zp0(z) +B(z, ξ)p(z) + C(z, ξ)p2(z) +D(z, ξ)] > 0 (8)

then Re p(z) > 0, z ∈ U.

Proof. Let ψ(r, s; z, ξ) : C2 × U × U → C given by Definition 1.3. For r = p(z), s = zp0(z), z ∈ U we have

ψ(r, s; z, ξ) = A(z, ξ)s+B(z, ξ)r + C(z, ξ)r2 +D(z, ξ), z ∈ U, ξ ∈ U. (9)

Then (8) becomes
Re ψ(r, s; z, ξ) > 0, z ∈ U, ξ ∈ U. (10)

If we consider h(z) = 1+z
1−z then h(U) = {w ∈ C; Re w > 0} and (10) is equivalent to

ψ(r, s; z, ξ) ≺≺ 1 + z
1− z , z ∈ U, ξ ∈ U. (11)

Suppose that p is not subordinated to h(z) = 1+z
1−z . Then, from Lemma 1.1, we have that there exist z0 = r0e

iθ0 ,
θ0 ∈ R and ζ0 ∈ ∂U such that p(z0) = h(ζ0) = ρi, ρ ∈ R, z0p0(z0) = mζ0h

0(ζ0) = σ, σ ∈ R, σ ≤ −n2 (1 + ρ2).
By replacing r with ρi and s with σ in (9) and using the conditions given by (7) we obtain

Re ψ(p(z0), z0p
0(z0); z0, ξ) = Re ψ(ρi,σ; z0, ξ) = Re [A(z0, ξ)σ+B(z0, ξ)ρi−ρ2C(z0, ξ)+D(z0, ξ)] = σRe A(z0, ξ)−

ρIm B(z0, ξ)−ρ2Re C(z0, ξ)+Re D(z0, ξ) ≥ −n2 (1+ρ2)Re A(z0, ξ)−ρIm B(z0, ξ)−ρ2Re C(z0, ξ)+Re D(z0, ξ)
≥ −ρ2

£
n
2Re A(z0, ξ) + Re C(z0, ξ)

¤
− ρIm B(z0, ξ) −n2Re A(z0, ξ) + Re D(z0, ξ) ≤ 0,

which contradicts (10). This means the assumption made is false, hence p(z) ≺ 1+z
1−z , z ∈ U , which is equivalent

to Re p(z) > 0, z ∈ U .

Theorem 2.3 Let p ∈ H[1, n], A,B,C,D : U × U → C with

Re A(z, ξ) ≥ 0, Re C(z, ξ) ≥ 0, n

2
Re A(z, ξ) ≥ Re D(z, ξ) + 1 (12)

and ImB(z, ξ)≤2
q£

n
2ReA(z, ξ)+ReC(z, ξ)

¤£
n
2ReA(z, ξ)−ReD(z, ξ)−1

¤
.

If A(z, ξ)zp0(z)+B(z, ξ)p(z)+C(z, ξ)p2(z)+D(z, ξ) is analytic in U for all ξ ∈ U and satisfies the nonlinear
strong differential subordination

A(z, ξ)zp0(z) +B(z, ξ)p(z) + C(z, ξ)p2(z) +D(z, ξ) ≺≺ z (13)

then p(z) ≺ 1+z
1−z , z ∈ U.
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Proof. Let ψ given by (9). For r = p(z), s = zp0(z), (13) becomes

ψ(r, s; z, ξ) ≺≺ z, z ∈ U, ξ ∈ U. (14)

If we consider h(z) = z, z ∈ U , then q(U) = U and from (14) we have

ψ(r, s; z, ξ) ∈ U, z ∈ U, ξ ∈ U, (15)

which is equivalent to
−1 < Re ψ(r, s; z, ξ) < 1, z ∈ U, ξ ∈ U. (16)

Suppose that p is not subordinated to q(z) = 1+z
1−z . Then, from Lemma 1.1 we have that there exist

z0 = r0e
iθ0 , θ0 ∈ R and ζ0 ∈ ∂U , such that p(z0) = q(ζ0) = ρi, z0p0(z0) = mζ0q

0(ζ0) = σ, σ ∈ R, σ ≤ −n2 (1+ρ2).
By replacing r with ρi and s with σ in (9) and using the conditions given by (12), we have:
Re ψ(r, s; z0, ξ) = Re ψ(ρi,σ; z0, ξ) = Re [A(z0, ξ)σ + B(z0, ξ)ρi − C(z0, ξ)ρ2 + D(z0, ξ)] = σRe A(z0, ξ) −

ρIm B(z0, ξ)−ρ2Re C(z0, ξ)+Re D(z0, ξ) ≤ −n2 (1+ρ2)Re A(z0, ξ)−ρIm B(z0, ξ)−ρ2Re C(z0, ξ)+Re D(z0, ξ)
≤ −ρ2

£
n
2Re A(z0, ξ) + Re C(z0, ξ)

¤
− ρIm B(z0, ξ) −n2Re A(z0, ξ) + Re D(z0, ξ) ≤ −1,

which contradicts (15). That means the assumption made was false, hence p(z) ≺ 1+z
1−z , z ∈ U .
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twisted q-Euler polynomials
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Abstract : In this paper, we introduce the second kind twisted q-Euler numbers and polynomials.

By using these numbers and polynomials, we give some interesting relations between the power sums

and the the second kind twisted Euler polynomials.

Key words : the second kind Euler numbers and polynomials, the second kind twisted Euler

numbers and polynomials, the second kind twisted q-Euler numbers and polynomials, alternating

sums

1. Introduction

Euler numbers, Euler polynomials, q-Euler numbers, q-Euler polynomials, the second kind Euler

number and the second kind Euler polynomials were studied by many authors. Euler numbers

and polynomials posses many interesting properties and arising in many areas of mathematics and

physics(see for details [1-9]). In this paper, we introduce the second kind twisted q-Euler numbers

and polynomials. In this paper, by using the symmetry of p-adic q-integral on Zp, we give recurrence

identities the second twisted q-Euler polynomials and the power sums.

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · } denotes
the set of natural numbers, Zp denotes the ring of p-adic rational integers, Qp denotes the field of

p-adic rational numbers, and Cp denotes the completion of algebraic closure of Qp. Let νp be the

normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. We say that f is uniformly

differentiable function at a point a ∈ Zp and denote this property by g ∈ UD(Zp), if the difference

quotients

Fg(x, y) =
g(x)− g(y)

x− y

have a limit l = g′(a) as (x, y) → (a, a). For g ∈ UD(Zp), Kim defined the fermionic p-adic integral

on Zp (see [1])

I−1(g) = lim
q→−1

Iq(g) =

∫
Zp

g(x)dμ−1(x) = lim
N→∞

∑
0≤x<pN

g(x)(−1)x. (1.1)

If we take g1(x) = g(x+ 1) in (1.1), then we easily see that

I−1(g1) + I−1(g) = 2g(0). (1.2)

Let Tp = ∪N≥1CpN = limN→∞ CpN , where CpN = {ω|ωpN

= 1} is the cyclic group of order pN . For

ω ∈ Tp, we denote by φω : Zp → Cp the locally constant function x �−→ ωx.

Let us define the second kind twisted q-Euler numbers En,q,ω and polynomials En,q,ω(x) as

follows:

I−1(φω(y)q
ye(2y+1)t) =

∫
Zp

φω(y)q
ye(2y+1)tdμ−1(y) =

∞∑
n=0

En,q,ω
tn

n!
, (1.3)

I−1(φω(y)q
ye(2y+1+x)t) =

∫
Zp

φω(y)q
ye(2y+1+x)tdμ−1(y) =

∞∑
n=0

En,q,ωx)
tn

n!
. (1.4)
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By (1.3) and (1.4), we obtain the following Witt’s formula.

Theorem 1. For ω ∈ Tp, we have∫
Zp

φω(x)q
x(2x+ 1)ndμ−1(x) = En,q,ω,

∫
Zp

φω(y)q
y(2y + 1 + x)ndμ−1(y) = En,q,ω(x).

Theorem 2. For any positive integer n, we have

En,q,w(x) =

n∑
k=0

(
n

k

)
Ek,q,wx

n−k.

2. The alternating sums of powers of consecutive q-odd integers

In this section, we assume that q ∈ C, with |q| < 1. Let ω be the pN -th root of unity. By using

(1.4), we give the alternating sums of powers of consecutive q-integers as follows:

∞∑
n=0

En,q,ω
tn

n!
=

2et

ωqe2t + 1
= 2

∞∑
n=0

(−1)nωnqne(2n+1)t.

From the above, we obtain

−
∞∑

n=0

(−1)nωnqne(2n+2k+1)t +

∞∑
n=0

(−1)n−kωn−kq(n−k)e(2n+1)t =

k−1∑
n=0

(−1)n−kωn−kq(n−k)e(2n+1)t.

By using (1.3)and (1.4), we obtain

−1

2

∞∑
j=0

Ej,q,ω(2k)
tj

j!
+
1

2
(−1)−kω−kq−k

∞∑
j=0

Ej,q,ω
tj

j!
=

∞∑
j=0

(
(−1)−kω−kq−k

k−1∑
n=0

(−1)nωnqn(2n+ 1)j

)
tj

j!
.

By comparing coefficients
tj

j!
in the above equation, we obtain

k−1∑
n=0

(−1)nωnqn(2n+ 1)j =
(−1)k+1ωkqkEj,q,ω(2k) + Ej,q,ω

2
.

By using the above equation we arrive at the following theorem:

Theorem 3. Let k be a positive integer and q ∈ C with |q| < 1 and ω be the pN -th root of

unity. Then we obtain

Tj,q,ω(k − 1) =

k−1∑
n=0

(−1)nωnqn(2n+ 1)j =
(−1)k+1ωkqkEj,q,ω(2k) + Ej,q,ω

2
. (2.1)

Remark 4. For the alternating sums of powers of consecutive odd integers, we have

lim
q→1

Tj,q,ω(k − 1) =

k−1∑
n=0

(−1)nωn(2n+ 1)j =
(−1)k+1ωkEj,ω(2k) + Ej,ω

2
,

where Ej,ω(x) and Ej,ω denote the second kind twisted Euler polynomials and the second kind

twisted Euler numbers, respectively (see [5]).
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3. The symmetry property of the q-deformed fermionic integral on Zp

In this section, we assume that q ∈ Cp and ω ∈ Tp. In this section, we obtain recurrence

identities the second twisted q-Euler polynomials and the alternating sums of powers of consecutive

q-odd integers. By using (1.1), we have

I−1(gn) + (−1)n−1I−1(g) = 2
n−1∑
k=0

(−1)n−1−kg(k), (see [1], [2], [3], [5]),

where n ∈ N, gn(x) = g(x+ n). If n is odd from the above, we obtain

I−1(gn) + I−1(g) = 2
n−1∑
k=0

(−1)n−1−kg(k). (3.1)

It will be more convenient to write (3.1) as the equivalent integral form∫
Zp

g(x+ n)dμ−1(x) +

∫
Zp

g(x)dμ−1(x) = 2
n−1∑
k=0

(−1)n−1−kg(k). (3.2)

Substituting g(x) = ωxqxe(2x+1)t into the above, we obtain∫
Zp

ωx+nqx+ne(2(x+n)+1)tdμ−1(x) +

∫
Zp

ωxqxe(2x+1)tdμ−1(x) = 2

n−1∑
j=0

(−1)jωjqje(2j+1)t. (3.3)

After some elementary calculations, we have∫
Zp

ωxqxe(2x+1)tdμ−1(x) =
2et

ωqe2t + 1
,

∫
Zp

ωx+nqx+ne(2(x+n)+1)tdμ−1(x) = ωnqne2nt
2et

ωqe2t + 1
.

(3.4)

By using (3.3) and (3.4), we have∫
Zp

ωx+nqx+ne(2(x+n)+1)tdμ−1(x) +

∫
Zp

ωxqxe(2x+1)tdμ−1(x) =
2et(1 + ωnqne2nt)

ωqe2t + 1
.

From the above, we get∫
Zp

ωx+nqx+ne(2(x+n)+1)tdμ−1(x) +

∫
Zp

ωxqxe(2x+1)tdμ−1(x)

=
2
∫
Zp

ωxqxe(2x+1)tdμ−1(x)∫
Zp

ωnxqnxe2ntxdμ−1(x)
.

(3.5)

By substituting Taylor series of e(2x+1)t into (3.3), we obtain

∞∑
m=0

(∫
Zp

ωx+nqx+n(2x+ 1 + 2n)mdμ−1(x) +

∫
Zp

ωxqx(2x+ 1)mdμ−1(x)

)
tm

m!

=
∞∑

m=0

⎛
⎝2

n−1∑
j=0

(−1)jωjqj(2j + 1)m

⎞
⎠ tm

m!

By comparing coefficients
tm

m!
in the above equation, we obtain

ωnqn
m∑

k=0

(
m

k

)
(2n)m−k

∫
Zp

ωxqx(2x+ 1)kdμ−1(x) +

∫
Zp

ωxqx(2x+ 1)mdμ−1(x)

= 2

n−1∑
j=0

(−1)jωjqj(2j + 1)m
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By using (2.1), we have

ωnqn
m∑

k=0

(
m

k

)
(2n)m−k

∫
Zp

ωxqx(2x+ 1)kdμ−1(x) +

∫
Zp

ωxqx(2x+ 1)mdμ−1(x)

= 2Tm,q,ω(n− 1).

(3.6)

By using (3.5) and (3.6), we arrive at the following theorem:

Theorem 5. Let n be odd positive integer. Then we obtain

2
∫
Zp

ωxqxe(2x+1)tdμ−1(x)∫
Zp

ωnxqnxe2ntxdμ−1(x)
=

∞∑
m=0

(2Tm,q,ω(n− 1))
tm

m!
. (3.7)

Let w1 and w2 be odd positive integers. By using (3.7), we have∫
Zp

∫
Zp

ω(w1x1+w2x2)q(w1x1+w2x2)e(w1(2x1+1)+w2(2x2+1)+w1w2x)tdμ−1(x1)dμ−1(x2)∫
Zp

ωw1w2xqw1w2xe2w1w2xtdμ−1(x)

=
2ew1tew2tew1w2xt(ωw1w2qw1w2e2w1w2t + 1)

(ωw1qw1e2w1t + 1)(ωw2qw2e2w2t + 1)

(3.8)

By using (3.7) and (3.8), after elementary calculations, we obtain

a =

(
1

2

∫
Zp

ωw1x1qw1x1e(w1(2x1+1)+w1w2x)tdμ−1(x1)

)(
2
∫
Zp

ωw2x2qw2x2e(2x2+1)(w2t)dμ−1(x2)∫
Zp

ωw1w2xqw1w2xe2w1w2txdμ−1(x)

)

=

(
1

2

∞∑
m=0

Em,qw1 ,ωw1 (w2x)w
m
1

tm

m!

)(
2

∞∑
m=0

Tm,qw2 ,ωw2 (w1 − 1)wm
2

tm

m!

)
.

(3.9)

By using Cauchy product in the above, we have

a =
∞∑

m=0

⎛
⎝ m∑

j=0

(
m

j

)
Ej,qw1 ,ωw1 (w2x)w

j
1Tm−j,qw2 ,ωw2 (w1 − 1)wm−j

2

⎞
⎠ tm

m!
(3.10)

By using the symmetry in (3.9), we have

a =

(
1

2

∫
Zp

ωw2x2qw2x2e(w2(2x2+1)+w1w2x)tdμ−1(x2)

)(
2
∫
Zp

ωw1x1qw1x1e(2x1+1)(w1t)dμ−1(x1)∫
Zp

ωw1w2xqw1w2xe2w1w2txdμ−1(x)

)

=

(
1

2

∞∑
m=0

Em,qw2 ,ωw2 (w1x)w
m
2

tm

m!

)(
2

∞∑
m=0

Tm,qw1 ,ωw1 (w2 − 1)wm
1

tm

m!

)
.

Thus we have

a =

∞∑
m=0

⎛
⎝ m∑

j=0

(
m

j

)
Ej,qw2 ,ww2 (w1x)w

j
2Tm−j,qw1 ,ww1 (w2 − 1)wm−j

1

⎞
⎠ tm

m!
(3.11)

By comparing coefficients
tm

m!
in the both sides of (3.10) and (3.11), we arrive at the following

theorem:

Theorem 6. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

(
m

j

)
wm−j

1 wj
2Ej,qw2 ,ωw2 (w1x)Tm−j,qw1 ,ωw1 (w2 − 1)

=

m∑
j=0

(
m

j

)
wj

1w
m−j
2 Ej,qw1 ,ωw1 (w2x)Tm−j,qw2 ,ωw2 (w1 − 1),
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where Ek,q,ω(x) and Tm,q,ω(k) denote the second kind twisted q-Euler polynomials and the alter-

nating sums of powers of consecutive q-odd integers, respectively.

By using Theorem 2, we have the following corollary:

Corollary 7. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wm−k

1 wj
2x

j−kEk,qw2 ,ωw2Tm−j,qw1 ,ωw1 (w2 − 1)

=
m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wj

1w
m−k
2 xj−kEk,qw1 ,ωw1Tm−j,qw2 ,ωw2 (w1 − 1).

By using (3.8), we have

a =

(
1

2
ew1w2xt

∫
Zp

ωw1x1qw1x1e(2x1+1)w1tdμ−1(x1)

)(
2
∫
Zp

ωw2x2qw2x2e(2x2+1)(w2t)dμ−1(x2)∫
Zp

ωw1w2xqw1w2xe2w1w2txdμ−1(x)

)

=

(
1

2
ew1w2xt

∫
Zp

ωw1x1qw1x1e(2x1+1)w1tdμ−1(x1)

)⎛⎝2

w1−1∑
j=0

(−1)jωw2jqw2je(2j+1)(w2t)

⎞
⎠

=

w1−1∑
j=0

(−1)jωw2jqw2j

∫
Zp

ωw1x1qw1x1e

(
2x1+1+w2x+(2j+1)

w2

w1

)
(w1t)

dμ−1(x1)

=
∞∑

n=0

⎛
⎝w1−1∑

j=0

(−1)jωw2jqw2jEn,qw1 ,ωw1

(
w2x+ (2j + 1)

w2

w1

)
wn

1

⎞
⎠ tn

n!
.

(3.12)

By using the symmetry property in (3.12), we also have

a =

(
1

2
ew1w2xt

∫
Zp

ωw2x2qw2x2e(2x2+1)w2tdμ−1(x2)

)(
2
∫
Zp

ωw1x1qw1x1e(2x1+1)(w1t)dμ−1(x1)∫
Zp

ωw1w2xqw1w2xe2w1w2txdμ−1(x)

)

=

(
1

2
ew1w2xt

∫
Zp

ωw2x2qw2x2e(2x2+1)w2tdμ−1(x2)

)⎛⎝2

w2−1∑
j=0

(−1)jωw1jqw1je(2j+1)(w1t)

⎞
⎠

=

w2−1∑
j=0

(−1)jωw1jqw1j

∫
Zp

ωw2x2qw2x2e

(
2x2+1+w1x+(2j+1)

w1

w2

)
(w2t)

dμ−1(x1)

=
∞∑

n=0

⎛
⎝w2−1∑

j=0

(−1)jωw1jqw1jEn,qw2 ,ωw2

(
w1x+ (2j + 1)

w1

w2

)
wn

2

⎞
⎠ tn

n!
.

(3.13)

By comparing coefficients
tn

n!
in the both sides of (3.12) and (3.13), we have the following theorem.

Theorem 8. Let w1 and w2 be odd positive integers. Then we obtain

w1−1∑
j=0

(−1)jωw2jqw2jEn,qw1 ,ωw1

(
w2x+ (2j + 1)

w2

w1

)
wn

1

=

w2−1∑
j=0

(−1)jωw1jqw1jEn,qw2 ,ωw2

(
w1x+ (2j + 1)

w1

w2

)
wn

2 .

(3.14)

Substituting w1 = 1 into (3.14), we arrive at the following corollary.
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Corollary 9. Let w2 be odd positive integer. Then we obtain

En,q,ω(x) = wn
2

w2−1∑
j=0

(−1)jωjqjEn,qw2 ,ωw2

(
x− w2 + (2j + 1)

w2

)
.
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In this article, we obtain certain simple sufficiency criteria for a subclass of
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1 Introduction

Let A(p, n) denote the class of functions f (z) of the form

f(z) = zp +

∞∑
k=p+n

akz
k, (p ∈ N = {1, 2, 3, ...}), (1)

which are analytic and multivalent in the open unit disk U = {z : |z| < 1} . For func-
tions f (z), g (z) ∈ A(p, n) of the form (1), We define the convolution (Hadamard
product) of f (z) and g (z) by

(f ? g) (z) = zp +

∞∑
k=p+n

akbkz
k, (z ∈ U) . (2)

1Corresponding author.
a. Department of Mathematics, Abdul Wali Khan University
Mardan, Khyber Pakhtunkhwa, Pakistan
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Also let Qλ (p, n, α; g (z)), λ is real with |λ| < π
2

, 0 ≤ α < p, n ∈ N and p ∈ N, denote
the subclass of A(p, n) consisting of all functions f (z) which is defined with the help
of convolution by

<eiλ
z
(
(f ? g)′ (z)

)
(f ? g) (z)

> α cosλ, (z ∈ U) . (3)

By suitably choosing g (z) in (3), we obtain the subclasses S∗λ (p, n, α) and Cλ (p, n, α)
of A(p, n) which are defined, respectively, by

<eiλ zf
′ (z)

f (z)
> α cosλ, (z ∈ U) , (4)

<eiλ
(

1 +
zf ′′ (z)

f ′ (z)

)
> α cosλ, (z ∈ U) . (5)

We note that for λ = 0, the classes S∗λ (p, n, α) and Cλ (p, n, α) reduces to the classes
S∗p (n, α) and Cp (n, α) respectively studied by Goyal et al [1]. Further if we take α = 0,
p = 1 and n = 1 in the classes (4) and (5) , we obtain the class of spiral-like functions
introduced by Spacek [2] and the class of Robertson functions studied by Robertson
[3] respectively.

We will assume throughout our discussion, unless otherwise stated, that λ is real
with |λ| < π

2
, 0 ≤ α < p, n ∈ N and p ∈ N

2 Sufficient conditions for the class Qλ (p, n, α; g (z))

To obtain our main results, we need the following Lemma due to Mocanu [4].
Lemma 2.1. If q(z) ∈ A(n) satisfies the condition∣∣q′ (z)− 1

∣∣ < n+ 1√
(n+ 1)2 + 1

(z ∈ U) , (6)

then
q (z) ∈ S∗ (n, 0) . (7)

Theorem 2.1. If f(z) ∈ A(p, n) satisfies∣∣∣∣∣∣
(

(f ? g) (z)

zp

) eiλ

(p−α) cosλ
{
eiλ

z (f ? g)′ (z)

(f ? g) (z)
− α cosλ− ip sinλ

}
− (p− α) cosλ

∣∣∣∣∣∣
<

n+ 1√
(n+ 1)2 + 1

(p− α) cosλ (z ∈ U), (8)

then f(z) ∈ Qλ (p, n, α; g (z)) .
Proof. Let us set a function p (z) by

p(z) = z

(
(f ? g) (z)

zp

) eiλ

(p−α) cosλ

= z +
eiλap+nbp+n
(p− α) cosλ

zn+1 + . . . (9)

for f (z) , g (z) ∈ A(p, n). Then clearly (9) shows that p (z) ∈ A (n).
Differentiating (9) logarithmically, we have

p′(z)

p(z)
=

eiλ

(p− α) cosλ

[
(f ? g)′ (z)

(f ? g) (z)
− p

z

]
+

1

z
(10)
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which gives∣∣p′(z)− 1
∣∣ (11)

=

∣∣∣∣∣∣
(

(f ? g) (z)

zp

) eiλ

(p−α) cosλ 1

(p− α) cosλ

{
eiλ

z (f ? g)′ (z)

(f ? g) (z)
− α cosλ− ip sinλ

}
− 1

∣∣∣∣∣∣ .
(12)

Thus using (8), we have∣∣p′(z)− 1
∣∣ ≤ n+ 1√

(n+ 1)2 + 1
, (z ∈ U) . (13)

Hence, using Lemma 2.1, we have p(z) ∈ S∗(n, 0).
From (10), we can write

zp′(z)

p(z)
=

1

(p− α) cosλ

[
eiλ z (f ? g)′ (z)

(f ? g) (z)
− (α cosλ+ ip sinλ)

]
. (14)

Since p(z) ∈ S∗(n, 0), it implies that < zp
′(z)
p(z)

> 0. Therefore, we get

1

(p− α) cosλ

[
<
(
eiλ

z (f ? g)′ (z)

(f ? g) (z)

)
− α cosλ

]
= <zp

′(z)

p(z)
> 0 (15)

or

<
(
eiλ

z (f ? g)′ (z)

(f ? g) (z)

)
> α cosλ. (16)

and this implies that f(z) ∈ Qλ (p, n, α; g (z)) . By taking g (z) is an identity function
and Koebe p-valent functions with λ = 0 in Theorem 2.1, we obtain Corollary 2.2 and
Corollary 2.3 respectively proved by Goyal et.al [1].
Corollary 2.2. If f(z) ∈ A(p, n) satisfies∣∣∣∣∣
(
f (z)

z

) 1
p−α

{
z

1−α
p−α

f ′ (z)

f (z)
− αz

1−p
p−α

}
− p+ α

∣∣∣∣∣ < n+ 1√
(n+ 1)2 + 1

(p− α) (z ∈ U),

(17)
for 0 ≤ α < p, then f(z) ∈ S∗p (n, α) .
Corollary 2.3. If f(z) ∈ A(p, n) satisfies∣∣∣∣∣
{

(f ′ (z))
α+1−p

pzp−1

} 1
p−α {

zf ′′ (z) + (1− α) f ′ (z)
}
− p+ α

∣∣∣∣∣ < n+ 1√
(n+ 1)2 + 1

(p−α) (z ∈ U),

(18)
for 0 ≤ α < p, then f(z) ∈ Cp (n, α) .

Further If we take n = 1 and p = 1 in Corollary 2.2 and Corollary 2.3, we get the
following result proved by Uyanik et al [5].

Corollary 2.4. If f(z) ∈ A satisfies∣∣∣∣∣
(
f (z)

z

) 1
1−α

{
zf ′ (z)

f (z)
− α
}
− 1 + α

∣∣∣∣∣ < 2√
5

(1− α) (z ∈ U), (19)

for 0 ≤ α < 1, then f(z) ∈ S∗ (α) .
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Corollary 2.5. If f(z) ∈ A satisfies∣∣∣(f ′ (z)) α
1−α

{
f ′ (z) +

1

1− αzf
′′ (z)

}
− 1

∣∣∣ < 2√
5

(z ∈ U), (20)

for 0 ≤ α < 1, then f(z) ∈ C (α) .
Remark 2.1. If we put α = 0 and p = 1 in Corollary 2.4 and Corollary 2.5, we

get the result proved by Mocanu [6] and Nunokawa et al [7] respectively.
Theorem 2.6. If p(z), given by (9), satisfies∣∣p′′(z)∣∣ < n+ 1√

(n+ 1)2 + 1
(z ∈ E) , (21)

then f(z) ∈ Qλ (p, n, α; g (z)).
Proof. From (9) , we have p(z) ∈ A(n). Also∣∣p′(z)− 1

∣∣ =

∣∣∣∣∫ z

0

p′′(t)dt

∣∣∣∣ ≤ ∫ |z|
0

∣∣h′′(ρeiθ)∣∣ dρ (22)

≤ n+ 1√
(n+ 1)2 + 1

|z| ≤ n+ 1√
(n+ 1)2 + 1

, (23)

where we have used (21). This proves that p(z) satisfies the condition of Lemma 2.1
and therefore p(z) ∈ S∗(n, 0), which leads f(z) ∈ Qλ (p, n, α; g (z)) . Theorem 2.7.
If f(z) ∈ A(p, n) satisfies∣∣∣∣∣∣
(

(f ? g) (z)

zp

) eiλ

(p−α) cosλ

( (f ? g)′ (z)

(f ? g) (z)

) eiλ

(p−α) cosλ

− p

z

∣∣∣∣∣∣
≤ (n+ 1) (p− α) cosλ

2
√

(n+ 1)2 + 1
, (24)

then f(z) ∈ Qλ (p, n, α; g (z)) .
Proof. Let us define a function p(z) by

p(z) =

∫ z

0

(
(f ? g) (t)

tp

) eiλ

(p−α) cosλ

dt. (25)

Then

zp′(z) = z

(
(f ? g) (z)

zp

) eiλ

(p−α) cosλ

. (26)

Let g(z) = zp′(z). Then g(z) ∈ A (n). Consider∣∣g′(z)− 1
∣∣ =
∣∣p′(z) + zp′′(z)− 1

∣∣ ≤ ∣∣p′(z)− 1
∣∣+
∣∣zp′′(z)∣∣ =

∣∣∣∣∫ z

0

p′′(t)dt

∣∣∣∣+
∣∣zp′′(z)∣∣

≤
∫ |z|
0

∣∣∣∣ eiλ

(p− α) cosλ
H (z)

∣∣∣∣ dt+

∣∣∣∣ eiλ

(p− α) cosλ
H (z)

∣∣∣∣ |z|
≤
∫ |z|
0

(n+ 1)

2
√

(n+ 1)2 + 1
dt+

(n+ 1)

2
√

(n+ 1)2 + 1
|z| < (n+ 1)√

(n+ 1)2 + 1
. (27)
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with

H (z) =

(
(f ? g) (z)

zp

) eiλ

(p−α) cosλ

( (f ? g)′ (z)

(f ? g) (z)

) eiλ

(p−α) cosλ

− p

z

 . (28)

Therefore, by using Lemma 2.1, we have

g(z) = zp′(z) ∈ S∗(n, 0). (29)

This means that p (z) ∈ C (n, 0), which implies that f(z) ∈ Qλ (p, n, α; g (z)) .
3. Generalized Alexander Integral Operator
For f(z), g (z) ∈ A(p, n), we consider

G(z) =

∫ z

0

(
(f ∗ g) (t)

tp

)γ
dt = z +

γap+nbp+n
n+ 1

zn+1 + . . . (30)

Clearly G(z) ∈ A(n) and when p = 1, γ = 1, g (z) = z
1−z , then (30) reduces to the

well-known Alexander integral operator [8].
Theorem 3.1. If γ ≥ 1

p
and f(z), g (z) ∈ A(p, n) satisfies∣∣∣∣∣γ ((f ∗ g) (z))

γeiλ

cosλ

z
pγeiλ

cosλ
+1

(
z
(
(f ∗ g)′ (z)

)
(f ∗ g) (z)

− p

)∣∣∣∣∣ ≤ (n+ 1) cosλ

2
√

(n+ 1)2 + 1
, (31)

then f(z) ∈ Qλ (p, n, 0; g (z)) .
Proof. From (30), we get

G′(z) =

(
(f ∗ g) (z)

zp

)γ
. (32)

Differentiating (32), logarithmically, we get

G′′(z)

G′(z)
= γ

(
(f ∗ g)′ (z)

(f ∗ g) (z)
− p

z

)
. (33)

Then by simple computation, we have,∣∣∣∣G′′(z) [G′(z)] eiλcosλ
−1

∣∣∣∣ =

∣∣∣∣∣∣γ
(

(f ∗ g) (z)

zp

) γeiλ

cosλ
(

(f ∗ g)′ (z)

(f ∗ g) (z)
− p

z

)∣∣∣∣∣∣
≤ (n+ 1) cosλ

2
√

(n+ 1)2 + 1
,

where we have used (31). Therefore∣∣∣∣G′′(z) [G′(z)] eiλcosλ
−1

∣∣∣∣ ≤ (n+ 1) cosλ

2
√

(n+ 1)2 + 1
(34)

By using Theorem 2.7 with p = 1, α = 0 and g (z) = z
(1−z)2 , we have G(z) ∈

Cλ (1, n, 0) .
From (33), we can write

<
[
eiλ
(

1 +
zG′′(z)

G′(z)

)]
= γ<eiλ

(
z
(
(f ∗ g)′ (z)

)
(f ∗ g) (z)

)
− pγ cosλ+ cosλ, (35)
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or

Reeiλ

(
z
(
(f ∗ g)′ (z)

)
(f ∗ g) (z)

)
>

(
p− 1

γ

)
cosλ (sinceG (z) ∈ Cλ (1, n, 0)) (36)

which shows that f(z) ∈ Qλ (p, n, 0; g (z)) , where γ ≥ 1
p
.
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ADDITIVE FUNCTIONAL INEQUALITIES IN PARANORMED
SPACES

SEO-YUN YANG AND CHOONKIL PARK∗

Abstract. In this paper, we investigate the following additive functional inequalities∥∥∥∥1sf(x) + 1

s
f(y) + f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y

s
+ z + w

)∥∥∥∥ ,∥∥∥∥1sf(x) + 1

s
f(y) +

1

s
f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y + z

s
+ w

)∥∥∥∥
in paranormed spaces for a fixed integer s greater than 1. Furthermore, we prove the
Hyers-Ulam stability of the above additive functional inequalities in paranormed spaces.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced
by Fast [3] and Steinhaus [26] independently and since then several generalizations and
applications of this notion have been investigated by various authors (see [5, 14, 16, 17,
25]). This notion was defined in normed spaces by Kolk [15].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [28] Let X be a vector space. A paranorm P : X → [0,∞) is a function
on X such that

(1) P (0) = 0;
(2) P (−x) = P (x) ;
(3) P (x+ y) ≤ P (x) + P (y) (triangle inequality)
(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0,

then P (tnxn − tx) → 0 (continuity of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X.
The paranorm is called total if, in addition, we have
(5) P (x) = 0 implies x = 0.
A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a question of Ulam [27]

concerning the stability of group homomorphisms. Hyers [10] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was gener-
alized by Aoki [1] for additive mappings and by Th.M. Rassias [21] for linear mappings
by considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias
theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by
a general control function in the spirit of Th.M. Rassias’ approach.

2010 Mathematics Subject Classification. Primary 35A17; 39B52; 39B72.
Key words and phrases. Jordan-von Neumann functional equation, Hyers-Ulam stability, paranormed

space; functional inequality.
∗Corresponding author.
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In 1990, Th.M. Rassias [22] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p ≥ 1. In
1991, Gajda [6] following the same approach as in Th.M. Rassias [21], gave an affirmative
solution to this question for p > 1. It was shown by Gajda [6], as well as by Th.M. Rassias
and Šemrl [23] that one cannot prove a Th.M. Rassias’ type theorem when p = 1 (cf.
the books of P. Czerwik [2], D.H. Hyers, G. Isac and Th.M. Rassias [11]).

In 1982, J.M. Rassias [20] followed the innovative approach of the Th.M. Rassias’
theorem [21] in which he replaced the factor ∥x∥p + ∥y∥p by ∥x∥p · ∥y∥q for p, q ∈ R with
p + q ̸= 1. Găvruta [7] provided a further generalization of Th.M. Rassias’ Theorem.
During the last two decades a number of papers and research monographs have been
published on various generalizations and applications of the Hyers-Ulam stability to a
number of functional equations and mappings (see [12, 13, 18]).

In [8], Gilányi showed that if f satisfies the functional inequality

∥2f(x) + 2f(y)− f(xy−1)∥ ≤ ∥f(xy)∥ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [24]. Fechner [4] and Gilányi [9] proved the Hyers-Ulam stability of the functional
inequality (1.1).

Park, Cho and Han [19] proved the Hyers-Ulam stability of the following functional
inequalities

∥f(x) + f(y) + f(z)∥ ≤
∥∥∥∥2f (x+ y + z

2

)∥∥∥∥ ,
∥f(x) + f(y) + f(z)∥ ≤ ∥f(x+ y + z)∥,

∥f(x) + f(y) + 2f(z)∥ ≤
∥∥∥∥2f (x+ y

2
+ z

)∥∥∥∥ .
We proved the Hyers-Ulam stability of the following functional inequalities∥∥∥∥1sf(x) + 1

s
f(y) + f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y

s
+ z + w

)∥∥∥∥ , (1.2)∥∥∥∥1sf(x) + 1

s
f(y) +

1

s
f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y + z

s
+ w

)∥∥∥∥ (1.3)

for a fixed integer s greater than 1.
In Section 2, we prove the Hyers-Ulam stability of the functional inequality (1.2) in

paranormed spaces.
In Section 3, we prove the Hyers-Ulam stability of the functional inequality (1.3) in

paranormed spaces.
Throughout this paper, assume that (X,P (·)) is a total paranormed space and that

(Y, ∥ · ∥) is a Banach space.

2. Hyers-Ulam stability of the functional inequality (1.2)

In this section, we prove the Hyers-Ulam stability of the functional inequality (1.2) in
paranormed spaces.

Proposition 2.1. Let f : X → Y be a mapping such that∥∥∥∥1sf(x) + 1

s
f(y) + f(z) + f(w)

∥∥∥∥ ≤ ∥∥∥∥f (x+ y

s
+ z + w

)∥∥∥∥ (2.1)
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for all x, y, z, w ∈ X. Then f is additive.

Proof. Letting x = y = z = w = 0 in (2.1), we get(
2

s
+ 2

)
∥f(0)∥ =

∥∥∥∥2sf(0) + 2f(0)
∥∥∥∥ ≤ ∥f(0)∥

and so

f(0) = 0.

Letting x = y = 0 and w = −z in (2.1), we get

f(−z) = −f(z)

for all z ∈ X. Letting x = −sz and y = w = 0 in (2.1), we get

f(sz) = f(sz) & f
(
z

s

)
=

1

s
f(z)

for all z ∈ X. Letting z = −x+y
s

and w = 0 in (2.1), we get

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. Thus f is additive. �
Note that P (sx) ≤ sP (x) for all x ∈ X.

Theorem 2.2. Let r be a positive real number with r < 1, and f : X → Y be an odd
mapping such that∥∥∥∥1sf(x) + 1

s
f(y) + f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y

s
+ z + w

)∥∥∥∥ (2.2)

+ P (x)r + P (y)r + P (z)r + P (w)r

for all x, y, z, w ∈ X. Then there exists a unique additive mapping h : X → Y such that

∥f(x)− h(x)∥ ≤ s
(
sr + 1

s− sr

)
P (x)r (2.3)

for all x ∈ X.

Proof. Letting y = w = 0 and z = −x
s
in (2.2), we get∥∥∥∥1sf(x)− f

(
x

s

)∥∥∥∥ = ∥∥∥∥1sf(x) + f
(
−x

s

)∥∥∥∥ ≤ P (x)r + P
(
−x

s

)r

and so ∥∥∥∥1sf(sx)− f(x)
∥∥∥∥ ≤ P (sx)r + P (−x)r ≤ (sr + 1)P (x)r

for all x ∈ X. Hence∥∥∥∥ 1sl f(slx)− 1

sm
f(smx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1sj f(sjx)− 1

sj+1
f(sj+1x)

∥∥∥∥
≤ (sr + 1)

m−1∑
j=l

srj

sj
P (x)r (2.4)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.4) that
the sequence { 1

sn
f(snx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence { 1
sn
f(snx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

sn
f(snx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.4), we get
(2.3).

It follows from (2.2) that∥∥∥∥1sh(x) + 1

s
h(y) + h(z) + h(w)

∥∥∥∥
= lim

n→∞

1

sn

∥∥∥∥1sf (snx) +
1

s
f (sny) + f (snz) + f (sny)

∥∥∥∥
≤ lim

n→∞

1

sn

∥∥∥∥f (sn (x+ y

s
+ z + w

))∥∥∥∥+ lim
n→∞

snr

sn
(P (x)r + P (y)r + P (z)r + P (w)r)

=
∥∥∥∥h(x+ y

s
+ z + w

)∥∥∥∥
for all x, y, z, w ∈ X. So∥∥∥∥1sh(x) + 1

s
h(y) + h(z) + h(w)

∥∥∥∥ = ∥∥∥∥h(x+ y

s
+ z + w

)∥∥∥∥
for all x, y, z, w ∈ X. By Proposition 2.1, the mapping h : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.3). Then we have

∥h(x)− T (x)∥ =
1

sn
∥h (snx)− T (snx)∥

≤ 1

sn
(∥h (snx)− f (snx)∥+ ∥T (snx)− f (snx)∥)

≤ 2s(sr + 1)snr

(s− sr)sn
P (x)r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for
all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique
additive mapping satisfying (2.3). �

3. Hyers-Ulam stability of the functional inequality (1.3)

In this section, we prove the Hyers-Ulam stability of the functional inequality (1.3) in
paranormed spaces.

Proposition 3.1. Let f : X → Y be a mapping such that∥∥∥∥1sf(x) + 1

s
f(y) +

1

s
f(z) + f(w)

∥∥∥∥ ≤ ∥∥∥∥f (x+ y + z

s
+ w

)∥∥∥∥ (3.1)

for all x, y, z, w ∈ X. Then f is additive.

Proof. Letting x = y = z = w = 0 in (3.1), we get(
3

s
+ 1

)
∥f(0)∥ =

∥∥∥∥3sf(0) + f(0)
∥∥∥∥ ≤ ∥f(0)∥
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and so

f(0) = 0.

Letting y = z = x and w = −x in (3.1), we get

f(−x) = −f(x)

for all x ∈ X. Letting w = −x
s
and y = z = 0 in (3.1), we get

1

s
f(x) = f

(
1

s
x
)

for all x ∈ X. Letting z = −x− y and w = 0 in (3.1), we get

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. Thus f is additive. �
Note that P (sx) ≤ sP (x) for all x ∈ X.

Theorem 3.2. Let r be a positive real number with r < 1, and let f : X → Y be an odd
mapping such that∥∥∥∥1sf(x) + 1

s
f(y) +

1

s
f(z) + f(w)

∥∥∥∥ ≤
∥∥∥∥f (x+ y + z

s
+ w

)∥∥∥∥ (3.2)

+ P (x)r + P (y)r + P (z)r + P (w)r

for all x, y, z, w ∈ X. Then there exists a unique additive mapping h : X → Y such that

∥f(x)− h(x)∥ ≤ s
(
sr + 1

s− sr

)
P (x)r (3.3)

for all x ∈ X.

Proof. Letting y = x = 0 and z = −x
s
in (3.2), we get∥∥∥∥1sf(x)− f

(
x

s

)∥∥∥∥ = ∥∥∥∥1sf(x) + f
(
−x

s

)∥∥∥∥ ≤ P (x)r + P
(
−x

s

)r

and so ∥∥∥∥1sf(sx)− f(x)
∥∥∥∥ ≤ P (sx)r + P (−x)r ≤ (sr + 1)P (x)r

for all x ∈ X. Hence∥∥∥∥ 1sl f(slx)− 1

sm
f(smx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1sj f(sjx)− 1

sj+1
f(sj+1x)

∥∥∥∥
≤ (sr + 1)

m−1∑
j=l

srj

sj
P (x)r (3.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.4) that
the sequence { 1

sn
f(snx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence { 1
sn
f(snx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

sn
f(snx)
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for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.4), we get
(3.3).

It follows from (3.2) that∥∥∥∥1sh(x) + 1

s
h(y) + h(z) + h(w)

∥∥∥∥
= lim

n→∞

1

sn

∥∥∥∥1sf (snx) +
1

s
f (sny) + f (snz) + f (sny)

∥∥∥∥
≤ lim

n→∞

1

sn

∥∥∥∥f (sn (x+ y

s
+ z + w

))∥∥∥∥+ lim
n→∞

snr

sn
(P (x)r + P (y)r + P (z)r + P (w)r)

=
∥∥∥∥h(x+ y

s
+ z + w

)∥∥∥∥
for all x, y, z, w ∈ X. So∥∥∥∥1sh(x) + 1

s
h(y) + h(z) + h(w)

∥∥∥∥ = ∥∥∥∥h(x+ y

s
+ z + w

)∥∥∥∥
for all x, y, z, w ∈ X. By Proposition 3.1, the mapping h : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (3.3). Then we have

∥h(x)− T (x)∥ =
1

sn
∥h (snx)− T (snx)∥

≤ 1

sn
(∥h (snx)− f (snx)∥+ ∥T (snx)− f (snx)∥)

≤ 2s(sr + 1)snr

(s− sr)sn
P (x)r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for
all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique
additive mapping satisfying (3.3). �
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SOME IDENTITIES FOR BERNOULLI POLYNOMIALS

INVOLVING CHEBYSHEV POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM AND SANG-HUN LEE

Abstract. In this paper we derive some new and interesting identities for

Bernoulli, Euler and Hermite polynomials associated with Chebyshev polyno-

mials.

1. Introduction

The Bernoulli number are defined by the generating function to be

t

et − 1
= eBt =

∞∑
n=0

Bn
n!
tn, (see [3,13,14]),(1)

with the usual convention about replacing Bn by Bn.
As is well known, the Bernoulli polynomials are given by

Bn(x) = (B + x)n =
n∑
l=0

(
n

l

)
Bn−lx

l, (see [1-8]).(2)

From (1), we note that the recurrence relation for the Bernoulli numbers is given
by

B0 = 1, (B + 1)n −Bn = δ1,n, (see [6-8]),

where δm,n is the Kronecker symbol.
By (2), we get

dBn(x)

dx
= n

n−1∑
l=0

(
n− 1

l

)
Bn−1−lx

l = nBn−1(x).(3)

Thus, by (3), we see that∫
Bn(x)dx =

Bn+1(x)

n+ 1
+ C, (see [3]),(4)

where C is a some constant.
The Euler polynomials are defined by the generating function to be

2

et + 1
ext = eE(x)t =

∞∑
n=0

En(x)
tn

n!
,(5)

with the usual convention about replacing En(x) by En(x), (see [1,2,4,10,11]).
In the special case, x = 0, En(0) = En are called the n-th Euler numbers.

1
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2 DAE SAN KIM, TAEKYUN KIM AND SANG-HUN LEE

It is well known [6, 15] that Hermite polynomials are given by the generating
function to be

e2xt−t
2

= eH(x)t =
∞∑
n=0

Hn(x)
tn

n!
,(6)

with the usual convention about replacing Hn(x) by Hn(x).
From (6),we have

dHn(x)

dx
= 2nHn−1(x), Hn(x) = (−1)nHn(−x).(7)

By (1) and (2), we easily get

Bn(x) =
n∑
k=0
k 6=1

(
n

k

)
En−k(x), (see [1-15]),(8)

En(x) = −2
n∑
l=0

(
n

l

)
El+1

l + 1
En−l(x),(9)

and

xn =
1

n+ 1

(
Bn+1(x+ 1)−Bn+1(x)

)
=

1

n+ 1

n∑
l=0

(
n+ 1

l

)
Bl(x).(10)

The Chebyshev polynomial Tn(x) of the first kind is a polynomial in x of degree n,
defined by the relation

Tn(x) = cosnθ, when x = cos θ, (see [9]).(11)

If the range of the variable x is the interval [−1, 1], then the range of the cor-
responding variable θ can be taken as [0, π]. It is known that cosnθ is a poly-
nomial of degree n in cos θ, and indeed we are familiar with elementary formulas
cos 3θ = 4 cos3 θ − 3 cos θ, cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, · · · .

Thus, by (11), we get

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, · · · .
The Chebyshev polynomial Un(x) of the second kind is a polynomial of degree n
in x defined by

Un(x) = sin (n+ 1)θ/ sin θ, when x = cos θ, (see [9]).(12)

Thus, from (12), we have

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, · · · .

By (11), we see that Tn(x) is a polynomial of degree n with integral coefficients
and the leading coefficient 2n−1 (n ≥ 1) and 1 (n = 0). It is not difficult to show
that Un(x) is a polynomial of degree n with integral coefficients and the leading
coefficient 2n (n ≥ 0). Tn(x) is a solution of (1− x2)y′′ − xy′ + n2y = 0 and Un(x)
is a solution of (1 − x2)y′′ − 3xy′ + n(n + 2)y = 0. It is well known [9] that the
generating functions of Tn(x) and Un(x) are given by

1− xt
1− 2xt+ t2

=
∞∑
n=0

Tn(x)tn,(13)

173

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

KIM ET AL 172-180



IDENTITIES FOR BERNOULLI POLYNOMIALS INVOLVING CHEBYSHEV POLYNOMIALS 3

and

1

1− 2xt+ t2
=
∞∑
n=0

Un(x)tn, for |x| ≤ 1, |t| < 1.(14)

From (11) and (12), we have

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

 0, if n 6= m
π
2 , if n = m > 0
π, if n = m = 0

,(15)

and ∫ 1

−1
(1− x2)1/2Un(x)Um(x)dx =

π

2
δn,m, (see [9]).(16)

The equations (15) and (16) are used to derive our main result in this paper.
The Rodrigues’ formulae for Tn(x) and Un(x) are known as follows:

Tn(x) =
(−1)n2nn!

(2n)!
(1− x2)1/2

(
dn

dxn
(1− x2)n−1/2

)
,(17)

and

Un(x) =
(−1)n2n(n+ 1)!

(2n+ 1)!
(1− x2)−1/2

(
dn

dxn
(1− x2)n+1/2

)
.(18)

The equations (17) and (18) are also used to derive our result related to orthogo-
nality of Chebyshev polynomials.

From (11) and (12), we can easily derive the following equations (19) and (20):

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
,(19)

and

Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

.(20)

By the definitions of Tn(x) and Un(x), we easily get

dTn(x)

dx
= nUn−1(x),

dUn(x)

dx
=

(n+ 1)Tn+1(x)− xUn(x)

x2 − 1
.(21)

From (21), we have∫
Un(x)dx =

Tn+1(x)

n+ 1
,

∫
Tn(x)dx =

nTn+1(x)

n2 − 1
− xTn(x)

n− 1
.(22)

In this paper we derive some new and interesting identities for Bernoulli, Euler and
Hermite polynomials arising from the orthogonality of the Chebyshev polynomials
for the inner product space with weighted inner product.
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2. Some identities for Bernoulli, Euler and Hermite polynomials
involving Chebyshev polynomials

Let Pn = {p(x) ∈ Q[x] | deg p(x) ≤ n}. Then Pn is an inner product space with
the weighted inner product

〈p(x), q(x)〉 =

∫ 1

−1

p(x)q(x)√
1− x2

dx, where p(x), q(x) ∈ Pn.

From (15), we note that {T0(x), T1(x), · · · , Tn(x)} is an orthogonal basis for Pn.
Let us assume p(x) ∈ Pn. Then p(x) is generated by {T0(x), T1(x), · · · , Tn(x)} to
be

p(x) =
n∑
k=0

CkTk(x).(23)

By (15) and (23), we get

Ck =
δk
π

∫ 1

−1

Tk(x)p(x)√
1− x2

dx =
δk
π

(−1)k2kk!

(2k)!

∫ 1

−1

(
dk

dxk
(1− x2)k−1/2

)
p(x)dx,

where δk =

{
1, if k = 0
2, if k > 0.

(24)

Let us take p(x) = xn ∈ Pn. From (24), we have

Ck =
(−1)k2kk!δk
π(2k)!

∫ 1

−1

(
dk

dxk
(1− x2)k−1/2

)
xndx

=
(−1)k2kk!

π(2k)!
δk(−1)k

n!

(n− k)!

∫ 1

−1
(1− x2)k−1/2xn−kdx.

(25)

It is easy to show that

∫ 1

−1
(1− x2)k−1/2xn−kdx =

(1 + (−1)n−k)

2

∫ 1

0

(1− y)k−1/2y
n−k+1

2 −1dy

=
(1 + (−1)n−k)

2

Γ(k + 1/2)Γ(n−k+1
2 )

Γ(k+n+2
2 )

=
(1 + (−1)n−k)

2

(n− k)!(2k)!π

2n+k(n+k2 )!(n−k2 )!k!
.

(26)

By (25) and (26), we get

Ck =

{
0, if n− k ≡ 1 (mod 2)
n!δk

2n(n+k
2 )!(n−k

2 )!
, if n− k ≡ 0 (mod 2).(27)

From (27), we note that

xn =
n∑
k=0

CkTk(x) =
n!

2n−1

∑
1≤k≤n

k≡1 (mod 2)

Tk(x)

(n+k2 )!(n−k2 )!
,

(28)

where n ≡ 1 (mod 2).
For n ≡ 0 (mod 2), we have

xn =
n!

2n

{
T0(x)(
(n2 )!

)2 + 2
∑

2≤k≤n
k≡0 (mod 2)

Tk(x)

(n+k2 )!(n−k2 )!

}
.(29)
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Let us take p(x) = Bn(x) ∈ Pn. Then

Ck =
(−1)k2kk!δk
π(2k)!

∫ 1

−1

(( d
dx

)k
(1− x2)k−1/2

)
Bn(x)dx

=
(−1)k2kk!δk
π(2k)!

(−1)k
n!

(n− k)!

∫ 1

−1
(1− x2)k−1/2Bn−k(x)dx

=
2kk!δk
π(2k)!

n!

(n− k)!

n−k∑
l=0

(
n− k
l

)
Bn−k−l

∫ 1

−1
(1− x2)k−1/2xldx.

(30)

Now, we compute
∫ 1

−1(1− x2)k−1/2xldx.∫ 1

−1
(1− x2)k−1/2xldx = (1 + (−1)l)

∫ 1

0

(1− x2)k−1/2xldx

=

{
0, if l ≡ 1 (mod 2)

l!(2k)!π

22k+l( 2k+l
2 )!( l

2 )!k!
, if l ≡ 0 (mod 2).

(31)

By (30) and (31), we get

Ck =
2kk!δk
π(2k)!

× n!

(n− k)!
× (2k)!π

22kk!

∑
0≤l≤n−k
l≡0 (mod 2)

(
n− k
l

)
Bn−k−l

l!

2l( 2k+l
2 )!( l2 )!

=
n!δk

2k(n− k)!

∑
0≤l≤n−k
l≡0 (mod 2)

(
n−k
l

)
Bn−k−ll!

2l( 2k+l
2 )!( l2 )!

.

(32)

Therefore, by (32), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, we have

Bn(x) = n!
∑

0≤k≤n

(
δk

2k(n− k)!

∑
0≤l≤n−k
l≡0 (mod 2)

(
n−k
l

)
Bn−k−ll!

2l( 2k+l
2 )!( l2 )!

)
Tk(x).

By the same method, we can derive the following identity:

En(x) = n!
∑

0≤k≤n

(
δk

2k(n− k)!

∑
0≤l≤n−k
l≡0 (mod 2)

(
n−k
l

)
En−k−ll!

2l( 2k+l
2 )!( l2 )!

)
Tk(x).

Let us take p(x) = Hn(x) ∈ Pn. From (24), we have

Ck =
(−1)k2kk!δk
π(2k)!

∫ 1

−1

(
dk

dxk
(1− x2)k−1/2

)
Hn(x)dx

=
(−1)k2kk!δk

(2k)!π
× (−1)k2k

n!

(n− k)!

∫ 1

−1
(1− x2)k−1/2Hn−k(x)dx

=
22kk!δkn!

(2k)!(n− k)!π

n−k∑
l=0

(
n− k
l

)
Hn−k−l2

l

∫ 1

−1
(1− x2)k−1/2xldx,

(33)

where Hn−k−l is the (n− k − l)th Hermite number.
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By (31) and (33), we get

Ck = n!δk
∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l

(n− k − l)!( 2k+l
2 )!( l2 )!

.
(34)

Therefore, by (34), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, we have

Hn(x) = n!
∑

0≤k≤n

(
δk

∑
0≤l≤n−k
l≡0 (mod 2)

Hn−k−l

(n− k − l)!( 2k+l
2 )!( l2 )!

)
Tk(x).

Let P∗n = {p(x) ∈ Q[x] | deg p(x) ≤ n}. Then P∗n is an inner product space with

the weighted inner product 〈p(x), q(x)〉 =
∫ 1

−1
√

1− x2p(x)q(x)dx, where p(x), q(x) ∈
Pn . Then {U0(x), U1(x), · · · , Un(x)} is an orthogonal basis for the inner product
space P∗n.
For p(x) ∈ P∗n, let

p(x) =
n∑
k=0

CkUk(x),(35)

where

Ck =
2

π
〈p(x), Uk(x)〉 =

2

π

∫ 1

−1
(1− x2)1/2Uk(x)p(x)dx

=
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1

(
dk

dxk
(1− x2)k+1/2

)
p(x)dx.

(36)

Let us assume that p(x) = xn ∈ P∗n. Then, by (36), we get

Ck =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1

(
dk

dxk
(1− x2)k+1/2

)
xndx

=
(−1)k22k+1(k + 1)!

(2k + 1)!π
× (−1)kn!

(n− k)!

∫ 1

−1
(1− x2)k+1/2xn−kdx.

(37)

It is easy to show that

∫ 1

−1
(1− x2)k+1/2xn−kdx = (1 + (−1)n−k)

∫ 1

0

(1− x2)k+1/2xn−kdx

=

{
0, if n− k ≡ 1 (mod 2)

(n−k)!(2k+2)!π

2n+k+2(n+k+2
2 )!(n−k

2 )!(k+1)!
, if n− k ≡ 0 (mod 2).

(38)

Therefore, by (37) and (38), we obtain the following proposition.

Proposition 2.3. For n ∈ Z+, we have

xn =
n!

2n

∑
0≤k≤n

k≡n (mod 2)

k + 1

(n+k+2
2 )!(n−k2 )!

Uk(x).
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Let us consider p(x) = Bn(x) ∈ P∗n. From (36), we have

Ck =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1

(
dk

dxk
(1− x2)k+1/2

)
Bn(x)dx

=
(−1)k2k+1(k + 1)!

(2k + 1)!π
× (−1)kn!

(n− k)!

∫ 1

−1
(1− x2)k+1/2Bn−k(x)dx

=
2k+1(k + 1)!

(2k + 1)!π
× n!

(n− k)!

n−k∑
l=0

(
n− k
l

)
Bn−k−l

∫ 1

−1
(1− x2)k+1/2xldx.

(39)

It is not difficult to show that∫ 1

−1
(1− x2)k+1/2xldx = (1 + (−1)l)

∫ 1

0

(1− x2)k+1/2xldx

=

{
0, if l ≡ 1 (mod 2)

(2k+2)!l!π

22k+2+l( 2k+2+l
2 )!(k+1)!( l

2 )!
, if l ≡ 0 (mod 2).

(40)

By (39) and (40), we get

Ck =
(k + 1)n!

2k

∑
0≤l≤n−k
l≡0 (mod 2)

Bn−k−l

(n− k − l)!2l( 2k+l+2
2 )!( l2 )!

.
(41)

Therefore, by (41), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, we have

Bn(x) = n!
∑

0≤k≤n

(
k + 1

2k

∑
0≤l≤n−k
l≡0 (mod 2)

Bn−k−l

2l(n− k − l)!( 2k+l+2
2 )!( l2 )!

)
Uk(x).

By the same method, we can derive the following identity:

En(x) = n!
∑

0≤k≤n

(
k + 1

2k

∑
0≤l≤n−k
l≡0 (mod 2)

En−k−l

2l(n− k − l)!( 2k+l+2
2 )!( l2 )!

)
Uk(x).

Let us take p(x) = Hn(x) ∈ P∗n. Then Hn(x) =
∑n
k=0 CkUk(x), with

Ck =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1

(
dk

dxk
(1− x2)k+1/2

)
Hn(x)dx

=
22k+1(k + 1)!n!

(2k + 1)!π(n− k)!

n−k∑
l=0

(
n− k
l

)
2lHn−k−l

∫ 1

−1
(1− x2)k+1/2xldx

= n!(k + 1)
∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l

(n− k − l)!
× 1

( 2k+l+2
2 )!( l2 )!

.

(42)

Thus, by (42) and (43), we get

Hn(x) = n!
∑

0≤k≤n

(
(k + 1)

∑
0≤l≤n−k
l≡0 (mod 2)

Hn−k−l

(n− k − l)!( 2k+l+2
2 )!( l2 )!

)
Uk(x).
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An economical aggregation algorithm for algebraic

multigrid (AMG)∗

Liang-Jian Deng†, Ting-Zhu Huang‡, Xi-Le Zhao§

Liang Zhao¶, Si Wang∥

School of Mathematical Sciences,

University of Electronic Science and Technology of China,

Chengdu, Sichuan, 611731, P.R. China

Abstract

Aggregation-based AMG method is a widely studied technique of robustness
for large-scale linear systems. Some previous aggregation algorithms, belonging
to a part of aggregation-based AMG method, exhibit certain excellent properties.
These aggregation methods, however, have to aggregate every grid points so that
these methods lead expensive computation with grid points increasing. In the
paper, a property that the aggregations hold particular structure associated with
certain condition is discovered to damp the computation of aggregation algorithm-
s. Meanwhile, this property is under the condition of the system matrix derived
from the 9-point Finite Difference Method (FDM) and the particular setting of
grid number. Furthermore, the conclusions about multilevel, such as the setting
rule of grid number and corresponding theoretical analysis, are obtained from the
extension of two level issues. Computational experiments demonstrate that the
CPU time of new aggregation algorithm which generates the same aggregations
with previous aggregation algorithms, keeps on a low level evidently, even for the
linear systems of millions grade.

Key words: Aggregation-based AMG; Aggregation algorithms; Economical com-
putation; Poisson-like equations; Helmholtz-like equations; Millions grade problems

1 Introduction

Several methods can be utilized to solve the large-scale sparse linear systems

Ax = b, (1)

∗This research is supported by NSFC (61170311), Chinese Universities Specialized Research Fund for
the Doctoral Program (20110185110020), Sichuan Province Sci. & Tech. Research Project (12ZC1802),
the Fundamental Research Funds for the Central Universities.

†E-mail: liangjian1987112@126.com
‡E-mail: tingzhuhuang@126.com
§E-mail: xlzhao122003@163.com
¶E-mail: 391475@163.com
∥E-mail: wangsi1989@yahoo.cn
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where A ∈ RN×N arises from the discretization of a scalar second-order elliptic partial
differential equation (PDE). AMG method for large-scale linear systems is among the
most efficient and convenient iterative methods [1, 2, 3, 4, 5, 6, 7, 8].

AMGmethod is composed with two parts: one is the setup phase and the other is the
solve phase. Setup phase is associated with three parts on each level, i.e., defining coarse
grids (aggregations), constructing transfer operators (i.e., prolongation and restriction
operators), computing the linear systems on the coarse level, respectively. Solve phase
involves a recursive process with solving the linear systems level by level and contains
three parts mainly, i.e., the smoothing steps, the transferring of linear systems among
levels and solving linear systems on the coarsest level, respectively.

AMG method is a recursive method of efficiency for large-scale linear systems with
mainly recursive forms: V-cycle and W-cycle, for instance, in [9, 10, 11, 12]. It projects
the large-scale problems, level by level, to the small-scale problems until the problems
can be solved as accurate as possible. The most important issue is making the computed
solutions approximate to the true solutions. We transfer the linear systems of different
levels through the restriction and prolongation operators R and P . AMG method has
the following relationship among levels

Ai+1 = RiAiPi, i = 1, 2, · · · , lmax − 1, (2)

where lmax labels the number of levels. Ri is the restriction operator from the i -th level
to the (i + 1)-th level while Pi, Pi = RT

i , is prolongation operator from the (i + 1)-th
level to the i -th level. The subscripts of Ai denote corresponding belonging levels, and
the levels range from fine to coarse with i increasing.

AMG method mainly refers to classical AMG method, aggregation-based AMG
method, adaptive AMG method and AMGe method [6, 7, 13, 14]. Classical AMG
method is introduced by Brandt, McCormick, Ruge and Stüben [15, 16], it has been em-
ployed to solve linear systems whose coefficient matrices areM -matrices. For aggregation-
based AMG method, the most critical step is the construction of the prolongation oper-
ators by the aggregation algorithms [17, 18, 19, 20, 21, 22] based on different definitions
of strength of Connection. Adaptive AMG method utilizes a multigrid algorithm to
enhance the efficiency of the prolongation, aiming to earn a more efficient AMG al-
gorithm [23, 24]. The AMGe method, located in [25, 26], was first introduced as a
measure to improve the robustness of AMG for the finite element problems. It is differ-
ent from standard AMG method for requiring access to local element stiffness matrices
(in addition to the assembled global stiffness matrices). The main differences among
these AMG methods, e.g., classical AMG method, aggregation-based AMG method,
adaptive AMG method and AMGe method, can be discriminated by the constructions
of transfer operators and coarse grids, respectively. Particularly, transfer operators of
aggregation-based AMG method can be generated by a classical aggregation algorithm,
corresponding details in [17]. The motivation of our work is to acquire the aggrega-
tions, same as the aggregations of the algorithm in [17], with cheaper computation by
utilizing the property discovered in this paper.

In this paper, we mainly focus on the setup phase and establish a novel construction,
aiming to reduce the computation of constructing aggregations. During the process of
generating aggregations, an excellent discovery is found that the aggregations , obtained

2
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under the condition of the square grid number satisfying (3i+4)× (3i+4), i ∈ N , are
symmetric. Besides, the system matrix on the finest level should be derived from the
discretization of a scalar second-order PDE with 9-point FDM. Then we make use of
these properties, the symmetry of aggregations and the relationship among subscripts of
the grid points, to construct a new aggregation algorithm to decrease the computation.
Computational experiments present that the new aggregation algorithm gains a lower
consuming-time, besides, the same aggregations compared with previous aggregation
algorithm in [17]. Particularly, we have to emphasize that this paper is mainly to
improve the aggregation algorithm in the setup phase, aiming to gain more economical
computation. The solve phase, meanwhile, keeps unchanged while our proposed method
is applied in the setup phase.

The paper is organized as follows. In section 2, we introduce the basic scheme
of AMG method and the classical aggregation algorithm. Section 3 is about the new
aggregation algorithm based on 9-point FDM. Meanwhile, some theoretical analysis
and conclusions on the parameter and grid number on finest level, respectively, are
presented in this section. Section 4 shows the capability of our aggregation algorithm
on some numerical experiments about 2D Poisson-like equation and 2D Helmholtz-like
equation. A compact conclusion will be presented in section 5.

2 Aggregation-based AMG methods

Aggregation-based AMGmethod clusters the fine grid of unknowns to aggregations rep-
resenting the unknowns on the coarse level. Different with other methods, aggregation-
based AMG method constructs the transfer operators mentioned in section 1 by ag-
gregating the unknowns on each level. The coarsening part in classic AMG method is
realized mainly by the aggregation algorithm (i.e., the setup phase mentioned in section
1) generating prearranged conditions for solve phase, e.g., aggregations, transfer oper-
ators and linear systems on coarse level. Meanwhile, it is necessary to introduce the
basic AMG scheme ( See the following forma). Where A1 = A ∈ RN×N , b1 = b ∈ RN ,

yi = MGM(x0, bi, i)
If (i = m) Then ym = Solve(Am, bm, em)

Else xi = Smooth(Ai, bi, x0)
ri+1 = Ri(bi −Aixi)
Ai+1 = RiAiPi

di+1= MGM(0, ri+1, i+ 1)
x̂i = xi + Pidi+1

xi = Smooth(Ai, bi, x̂i)

x0 = 0 ∈ RN and transfer operators Ri = P T
i . The above recursive process is called

V-cycle while another recursive type of AMG is called W-cycle doing twice on the fifth
row. Aggregation-based AMG is divide into two parts: one is setup phase and the
other is solve phase mentioned in above section. The setup phase may be considered
as the prearranged section of the solve phase for solving the linear system (1), i.e.,
aggregations, transfer operators (i.e., Ri and Pi) and coarse linear systems Ai on each

3
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level, respectively, so the setup phase part acts actually an important role in the whole
process of AMG.

2.1 The classical aggregation algorithm

Before giving the new algorithm, it is necessary to introduce the classical aggregation
algorithm coming from [17, 27]. The following content is about the graph GAl

(Vl, El)
of the system matrices Al on the l-th level. We have to emphasize that the goal of
illustrating this classical algorithm is to present that our new algorithm generates the
same aggregations with the classical algorithm.

The system matrix A, generating the graph GA(V,E), is generally gained by han-
dling the PDE with different methods of discretization, e.g., 5-point FDM and 9-point
FDM, etal. In this section, some definitions about graph theory are summarized again.

Definition 1 ([27]). Corresponding to a sparse matrix A with symmetric sparsity
pattern (i.e., ai,j ̸= 0 ⇔ aj,i ̸= 0), let GA(V,E) be the graph that consists of a set
V = {v1, v2, v3, · · · , vn} of n ordered vertices (nodes, unknowns), and a set of edges E
such that the edge ei,j ∈ E exists (connecting vi and vj) if and only if ai,j ̸= 0, i ̸= j.

For a vertex vi, the set of neighbor vertices Ni is defined in the following form,

Ni = {vj ∈ V |ei,j ∈ E} , (3)

|Ni| denotes the number of the elements in the set Ni. The degree of a vertex vi is
deg(vi) = |Ni|.

For example, if the matrix is

A =


4 −1 −1 −1
−1 4 0 −1
−1 0 4 −1
−1 −1 −1 4

 ,
and the GA(V,E) of the matrix A is shown in Figure 1.

Figure 1: The matrix graph

The following contents introduce the classical aggregation algorithm and the con-

struction of aggregations
{
Al

i

}Nl+1

i=1
(i.e., the i-th aggregation on the l-th level), only

depending on the l-th level system matrix Al.
For a given parameter θ ∈ (0, 1], the strongly coupled neighborhood of the node vi

on the l-th level is defined as

N l
i (θ) =

{
vj ∈ Vl||ai,j | ≥ θ

√
ai,iaj,j

}
. (4)

4
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The classical aggregation algorithm, proposed by P. Vaněk, J. Mandel and M. Brez-
ina [17] and utilized by Wagner [27], is presented in the following part.

Algorithm 1 Let a Nl × Nl matrix Al with the corresponding graph GAl
(Vl, El)

and θ ∈ (0, 1] be given. The following Aggregation (GAl
(Vl, El)) generates a disjoint

covering
{
Al

i

}Nl+1

i=1
of the set V = {v1, v2, v3, · · · , vNl

}.

Aggregation(GAl
(Vl, El))

{
initialization:
U = {vi ∈ Vl|N l

i (0) ̸= {vi}};
j=0;
step 1:
for(vi ∈ U)
{
if(N l

i (θ) ⊂ U){
j ++;Al

j = N l
i (θ);U = U\Al

j ;
}

}
end

step 2:
for(z ≤ j) Ãl

z = Al
z; end

for(vi ∈ U)
{

for(z ≤ j)
{

if(N l
i (θ) ∩ Ãl

z ̸= {})
{
Al

z = Al
z ∪ {vi};U = U\{vi}; break;

}
}
end

}
end

step 3:

for(vi ∈ U)

{
j ++;Al

j = N l
i (θ) ∩ U ;U = U\Al

j ;

}
end

}

In the part of initialization, the set U does not contain all nodes, meanwhile, isolated
nodes are not aggregated. In step 1, disjoint strongly coupled neighborhoods are se-
lected as the initial approximation of the covering. Step 2 adds remaining nodes vi ∈ U
to one of the sets Al

z to which the node vi is strongly connected if any such set exists.
Finally, in step 3, the still remaining nodes vi ∈ U are clustered into aggregations that
consist of subsets of strongly coupled neighborhoods.

The above algorithm acts crucial role for AMG method due to generating the pre-
arranged information that mentioned at the beginning of this section. The above
algorithm, however, runs slowly because it has to aggregate every point in the domain

5
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and judge whether the points belong to certain aggregation. Can we accelerate the
process of above algorithm by some particular constructions? Fortunately, next section
will introduce the new discovery about the 9-point FDM based aggregation algorithm.
We draw this inspiration of the discovery to develop a completely different algorithm
with Algorithm 1.

3 The new aggregation algorithm

In this section, the discovery about the aggregations is illustrated clearly, meanwhile,
the aggregation algorithm, according to the discovery, obtains the aggregations without
through Algorithm 1 entirely but a new way of more economical computation. In
classical algorithm (i.e., Algorithm 1), the final aggregations have to be gained by
aggregating every point while the new way only needs to satisfy the particular condition
about number of grids.

The new aggregation algorithm is based on the following definition of strongly
coupled neighborhood, i.e., the eq. (4). If the problems are from the discretization of
9-point FDM, the Ni(θ), strongly coupled neighborhood of the node vi, contains eight
nodes around the vi, e.g., N10(θ) = {v2, v3, v4, v9, v11, v16, v17, v18} (Figure 2). Besides,
the parameter θ must ensure existent according to the results in subsection 3.2.

Figure 2: The instruction figure
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Figure 3: The process of constructing aggregations according to Algorithm 1 with
9-point FDM

3.1 The discovery for constructing aggregations based on 9-point FD-
M

To demonstrate our new aggregation algorithm clearly, we give the Figure 3 with small
grid number n. From Figure 3, we learn that

1. When n = 2+ 3x, (x = 0, 1, 2, · · · ), the aggregations are symmetrical about back
diagonal direction, and the number of aggregations is (1 + x)2.

2. When n = 4 + 3x, (x = 0, 1, 2, · · · ), the aggregations are symmetrical about
horizontal direction and vertical direction (See Figure 2), and the number of final
aggregations is (2 + x)2.

Particularly, when n = 4 + 3x, (x = 0, 1, 2, · · · ) (See • of Figure 3), there is the
property of symmetry so that the aggregations can be gained by fixed scheme easily
when the grid number is set as n = 4+3x, (x = 0, 1, 2, · · · ) (See details in the following
algorithm). We note the subscripts from left to right and then from down to up (See
Figure 2) to illustrate our algorithm clearly.

Based on the discovery, the finally aggregation algorithm is given as follows.
Algorithm 2. Consider matrix A ∈ RNl×Nl(Nl = n2l , nl = 4 + 3x, x = 0, 1, 2, · · · )

and corresponding graph GAl
(Vl, El) and θ ∈ (0, 1] being given. Then Aggregation

(GAl
(Vl, El)) generates a disjoint covering

{
Al

i

}Nl+1

i=1
of the set V = {v1, v2, v3, · · · , vNl

}.

Aggregation(GAl
(Vl, El))

{
/* firstly, we have the relation: nl = 4 + 3x, (x = 0, 1, 2, · · · ),Al

k,j = Al
(k−1)(x+2)+j

(See the following paragraph)*/

/*step 1: get four angle’s aggregations (See Figure 4 (a)) */

Get Al
1,1 Al

1,(x+2) Al
(x+2),1 Al

(x+2),(x+2)

8
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/* step 2: get the aggregations of upper boundary and lower boundary (See
Figure 4 (b) (c)) */

for j=2:(x+1)
/* get the aggregations of lower boundary */

Al
1,j = {V3(j−1), V3(j−1)+1, V3(j−1)+2, V3(j−1)+n, V3(j−1)+n+1, V3(j−1)+n+2};

/* get the aggregations of upper boundary */

Al
(x+2),j = {V3(j−1)+(3x+2)·n, V3(j−1)+(3x+2)·n+1, V3(j−1)+(3x+2)·n+2,

V3(j−1)+(3x+2)·n+n, V3(j−1)+(3x+2)·n+n+1, V3(j−1)+(3x+2)·n+n+2};

end
/* step 3: get the aggregations of left boundary and right boundary and central

zone (See Figure 4 (d) (e) (f)) */

for k=2:(x+1)
/* get the aggregations of left boundary (See Figure 4 (d))*/

Al
k,1 = {V(3k−4)·n+1, V(3k−4)·n+2,

V(3k−4)·n+n+1, V(3k−4)·n+n+2,
V(3k−4)·n+2n+1, V(3k−4)·n+2n+2};

/* get the aggregations of right boundary (See Figure 4 (e))*/

Al
k,(x+2) = {V(3k−4)·n+3x+3, V(3k−4)·n+3x+4,

V(3k−4)·n+3x+3+n, V(3k−4)·n+3x+4+n,
V(3k−4)·n+3x+3+2n, V(3k−4)·n+3x+4+2n};

/* get the aggregations of central zone (See Figure 4 (f))*/

for j=2:(x+1)
Al

k,j = {V(3k−4)·n+3(j−1), V(3k−4)·n+3(j−1)+1, V(3k−4)·n+3(j−1)+2,

V(3k−4)·n+3(j−1)+n, V(3k−4)·n+3(j−1)+n+1, V(3k−4)·n+3(j−1)+n+2,

V(3k−4)·n+3(j−1)+2n, V(3k−4)·n+3(j−1)+2n+1, V(3k−4)·n+3(j−1)+2n+2};
end

end
}
where the aggregation algorithm is under the condition that PDEs are discretilized
by 9-point FDM when n = 4 + 3x, (x = 0, 1, 2, · · · ). We utilize a useful formula
Ak,j = A(k−1)(x+2)+j , matching the Algorithm 2 for two-dimensional Ak,j . The formula
is easy to be proved. Seeing Figure 5, we learn that A1 = A1,1, A2 = A1,2, A3 = A1,3,
etc. By n = 4+3x, (x = 0, 1, 2, · · · ), the aggregations’ number of every row is x+2 and

9

189

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 16, NO.1, 2014, COPYRIGHT 2014 EUDOXUS PRESS, LLC

DENG ET AL 181-198



the total number of k−1 rows is (k−1)(x+2). So Ak,j = A(k−1)(x+2)+j is proved easily.
We can obtain the aggregations of boundary and central zone easily through step 2 and
step 3 of the above Algorithm 2, respectively. Finally, this algorithm generates the
same aggregations with classical algorithm (i.e., Algorithm 1).

Figure 4: The instruction figure

Figure 5: The instruction figure of formula Ak,j = A(k−1)(x+2)+j

3.2 About the parameter θ

The parameter θ ∈ (0, 1] in equation (4) plays a significant role, because θ can decide
the node vj whether belongs to certain strongly coupled neighborhood Ni(θ) of node
vi. For example, if the parameter θ is smaller enough, then the corresponding strongly
coupled neighborhood of node vi will contain more nodes. Moreover, maybe the finally
aggregations by the Algorithm 2 are changed obviously with slightly change of θ ∈ (0, 1],
so it is necessary to discuss the parameter in equation (4).

Due to the discretization method (i.e., 9-point FDM) of corresponding problems,
we hope the Ni(θ), the strongly coupled neighborhood of node vi, contains the corre-
sponding eight nodes of around vi. We will demonstrate the existence of parameter θ
firstly for this condition.

Theorem 1. Let the strongly coupled neighborhood of node vi be defined as equation
(4). Consider the coefficient matrix A ∈ RN×N arising from 9-point FDM, if aij ̸=
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0, (i ̸= j), then, there must exist θ ∈ (0, 1], such that Ni(θ) contains the corresponding
eight nodes of around vi, i = 1, 2, 3, · · · , N .

Proof. We learn that the coupled neighborhood of vi is defined as (4)

N l
i (θ) =

{
vj ∈ Vl||ai,j | ≥ θ

√
ai,iaj,j

}
.

According to known conditions by 9-point FDM, all diagonal elements of matrix A are
the nonzero (i.e, aii ̸= 0), so above definition can be written as follows

0 < θ ≤ |ai,j |√
ai,i · aj,j

,

by θ ∈ (0, 1], we have

θ ∈ (0, 1] ∩ (0,
|ai,j |√
ai,i · aj,j

].

So we are sure that there must exist a θ such that Ni(θ) contains the corresponding
eight nodes of around vi, i = 1, 2, 3, · · · , N . 2

For 9-point FDM, the Theorem 1 can ensure the Ni(θ) containing the correspond-
ing eight nodes of around vi so that the Algorithm 2 is available. Furthermore, the
simplified corollary will be presented in following part.

Corollary 1. There exists the following definition of strongly couple neighborhood
of node vi where coefficient matrix A ∈ RN×N arising from 9-point FDM

N l
i (θ) = {vj ∈ Vl||ai,j > 0} , (5)

such that Ni(θ) contains the corresponding eight nodes of around vi, i = 1, 2, 3, · · · , N .
Proof. Due to the 9-point FDM, the coefficient matrix A ∈ RN×N is a nine diagonal

matrix that every row of A has only nine nonzero elements including ai,i ̸= 0. According
to the new definition (5) and 9-point FDM, it is easy to know that Ni(θ) contains the
corresponding eight nodes of around vi, i = 1, 2, 3, · · · , N . 2

3.3 Extending to multilevel

This section mainly makes a discussion about extending the proposed Algorithm 2 to
multilevel. According to section 3.1, if the grid number on the fine level is (3x+ 4) ×
(3x+4) (x = 0, 1, 2, · · · ), then the grid number on the next coarse level is (x+2)×(x+2)
under the condition that one aggregation on the fine level generates only one grid node
on the coarse level. In order to extend the relationship from two level to multilevel,
two significant conclusions are given in the following analysis.

Theorem 2. Let the number of levels of multigrid be L and assuming the gird
number is nL = 3i+ 4 (i.e., the square grid is (3i+ 4)× (3i+4)) on the coarsest level.
If the girds number n on the finest level satisfies the following equation

n = (

L−1∑
j=1

3j · 2) + 3L · i+ 4, (6)

then the Algorithm 2 can be extended to multilevel.

11
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Proof. Since the number of levels is L and the gird number on the coarsest level
L is nL = 3i + 4. According to the conclusions of section 3.1, the grid number on the
(L− 1)-th level should be

nL−1 = 3(nL − 2) + 4 = 3(3 · i+ 4− 2) + 4 = 32 · i+ 3 · 2 + 4,

and the grid number on the (L− 2)-th level should be

nL−2 = 3(nL−1 − 2) + 4 = 3(32 · i+ 3 · 2 + 4− 2) + 4

= 33 · i+ 32 · 2 + 3 · 2 + 4 = (
2∑

j=1

3j · 2) + 33 · i+ 4,

and similar to above, the grids number on the (L− 3)-th level should be

nL−3 = 3(nL−2 − 2) + 4 = 3(33 · i+ 32 · 2 + 3 · 2 + 4− 2) + 4

= 33 · i+ 32 · 2 + 3 · 2 + 4 = (
3∑

j=1

3j · 2) + 34 · i+ 4,

it is easy to extend to the finest level by mathematical induction, the grids number on
the finest level should satisfy

n1 = 3(n2 − 2) + 4 = 3((
L−2∑
j=1

3j · 2) + 3L−1 · i+ 4− 2) + 4 = (
L−1∑
j=1

3j · 2) + 3L · i+ 4,

and n = n1 is the grids number satisfying Algorithm 2 on the finest level and it also
extends the Algorithm 2 to multilevel. 2

Theorem 2 requires the grid number on coarsest level being nL = 3i + 4, i =
0, 1, 2, · · · , moreover, we can also extend to the arbitrary grids number nL = i, i =
0, 1, 2, · · · , on coarsest level.

Corollary 2. For arbitrary grid number nL = i, i = 0, 1, 2, · · · , on the coarsest
level, if the number of levels is L, then the gird number n on the finest level satisfy

n = (

L−2∑
j=1

3j · 2) + 3L−1 · (i− 2) + 4, (7)

then the Algorithm 2 can be extended to multilevel.
Proof. It is easy to gain the Corollary 2 by replacing nL = 3i+4 in Theorem 2 with

nL = i. 2

4 Computational experiments

All experimental problems are discretized by 9-point FDM. Before our experiments, we
will introduce the 9-point FDM briefly.

12
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Figure 6: The instruction figure

We can get the 9-point FDM from the 5-point FDM in which one point (i, j) is
only relevant to its adjacent four points (See Figure 6), i.e., (i− 1, j), (i+ 1, j), (i, j −
1), (i, j + 1). For example, if the elliptic PDE in a square domain is Poisson equation

−∆u = −(
∂2u

∂x2
+
∂2u

∂y2
) = f(x, y), (x, y) ∈ R[a,b]×[a,b], (8)

if h1 = h2 = (b− a)/(n+ 1), then the 5-point FDM scheme can be obtained as follows

−∆hui,j =
1

h2
(−ui,j+1 − ui,j−1 − ui+1,j − ui−1,j + 4ui,j) = fi,j , (9)

We define the vector uh = [u11, u21, · · · , un,1; · · · ;u1,n, u2,n, · · · , un,n]T and assume
zero boundary, then the finally linear system is obtained by (9)

1

h2
Huh = g, (10)

where

H =


B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B

 , B =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

 ,

where the right hand vector is known beforehand and I is the identity matrix.
Then we rotate the coordinate system with π/4 so that the point (i, j) is relevant

to its adjacent four points (See Figure 6), i.e., (i − 1, j + 1), (i − 1, j − 1), (i + 1, j −
1), (i+ 1, j + 1). By this rotation, another 5-point FDM scheme is as follows

−∆̄hui,j =
1

2h2
(−ui+1,j+1 − ui+1,j−1 − ui−1,j+1 − ui−1,j−1 + 4ui,j) = fi,j , (11)

and it also gains the similar linear system with (10) but the wider bandwidth of coef-
ficient matrix.
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Combining with the above two 5-point FDM scheme (9) and (11), the finally 9-point
FDM scheme of Poisson equation [10] is determined,

−(
2

3
∆h +

1

3
∆̄h)uij = fij +

h2

12
∆hfij , (12)

where this scheme has smaller truncation error of O(h4) than 5-point FDM scheme.
Besides, some notations are necessary to be introduced. The ti where i = 1, 2, · · · , L−

1, is just the CPU time of constructing aggregations by Algorithm 2 on the i-th level.
Ti, i = 1, 2, · · · , L− 1, represents the total CPU time of generating prolongation opera-
tors by the following equation (13) and the coefficient matrices by equation (2) on the
i-th level, respectively.

P l
ij =

{
1, i ∈ Al

j ,

0, otherwise.
(13)

Moreover, the dimension N of coefficient matrix on the finest level, i.e., n2, is computed
by equation (6). Next, we will present two examples to demonstrate the efficiency of
our algorithm.

4.1 Example 1: Poisson-like equation

First example is a 2D Poisson-like equation containing two scalars α, β ∈ R, it can be
written in the form of

−(α
∂2u

∂x2
+ β

∂2u

∂y2
) = f(x, y), (x, y) ∈ Ω = [a, b]× [a, b], (14)

where the f(x, y) ∈ R is an arbitrary function and the boundary condition is

u(a, y) = u(b, y) = u(x, a) = u(x, b) = C ∈ R. (15)

It is easy to obtain the finally coefficient matrix A ∈ RN×N arising from the 9-point
FDM of equation (14). A is nine diagonal matrix

A =


B R
R B R

. . .
. . .

. . .

R B R
R B

 , B =


e k
k e k

. . .
. . .

. . .

k e k
k e

 , R =


p q
q p q

. . .
. . .

. . .

q p q
q p

 ,

where e = 12(α+ β)− 4αβ, k = 2αβ − 6α, p = 2αβ − 6β, q = −αβ.
In Table 1, we choose the L being 3 levels and set the grid number nL on the coarsest

level being 64, 94 and 124, respectively. According to Theorem 2, the dimensions of
linear systems on the finest level are 322624, 702244, 1227664, respectively. The CPU
time t, constructing aggregation on each level, is very short and not exceeding 0.4s
for the large-scale matrix with dimension 1227664 while the classical algorithm exceeds
1000s. The total time for the dimension with 322624, 702244, 1227664 is about 10.824s,
49.501s, 148.483s, respectively.
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Table 1: CPU time for Poisson-like equation by our method with 3 levels

t T Total

N t1 t2 T1 T2 t+T

322624 0.102 0.009 10.525 0.188 10.824

702244 0.192 0.018 48.601 0.690 49.501

1227664 0.320 0.033 146.160 1.970 148.483

Table 2: CPU time for Poisson-like equation by our method with 4 levels

t T Total

N t1 t2 t3 T1 T2 T3 t+T

237169 0.081 0.006 0.0008 5.65 0.108 0.007 5.853

795664 0.215 0.021 0.003 62.150 0.849 0.027 63.265

1682209 0.436 0.045 0.005 274.050 3.644 0.077 278.257

In Table 2, L is 4 and the grid number nL is 19, 34, 49, respectively. The dimensions
of linear systems on the finest level are 237169, 795664, 1682209, respectively, according
to Theorem 2. The consuming time t for constructing aggregations on each level is not
exceeding 0.5s for the large-scale matrix with dimension 1682209 while the classical
algorithm can not compute the consuming time. Total time for the dimension with
237169, 795664, 1682209 is about 5.853s, 63.265s, 278.257s, respectively. The two
tables with different maximal levels illustrate that the Algorithm 2 is indeed a novel
and fast method for the setup phase of aggregation-base AMG method.

From Table 1 and Table 2, it is easy to learn that the total time does not only
contain the time t, constructing aggregations by Algorithm 2, but also the time T ,
constructing prolongation operators and generating the system matrices on each level.
Furthermore, the mainly cost of total time is clearly T1, because the matrices, keeping
largest dimension on the finest level, are referred to vast matrix-matrix multiplication
according to equation (2). The time on other levels are shorter seriously than the finest
level and decreased evidently.

4.2 Example 2: Helmholtz equation

The second example containing a scalars ω ∈ R is a 2D Helmholtz equation, the form
of this equation is as follows

−(
∂2u

∂x2
+
∂2u

∂y2
)− ω2u = f(x, y), (x, y) ∈ Ω = [a, b]× [a, b], (16)

where the f(x, y) ∈ R can be also an arbitrary function and the boundary condition is

u(a, y) = u(b, y) = u(x, a) = u(x, b) = C ∈ R, (17)
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Table 3: Time consuming for Helmholtz equation by our method with 4 levels

t T Total

N t1 t2 t3 T1 T2 T3 t+T

237169 0.085 0.008 0.001 5.84 0.119 0.009 6.062

795664 0.275 0.026 0.004 62.450 0.836 0.030 63.621

1682209 0.442 0.055 0.006 280.150 3.744 0.087 284.484

where ω ∈ R is a determined scalar, h = (b − a)/(n + 1). Similar to section 4.1, A is
also a nine diagonal matrix

A =


B R
R B R

. . .
. . .

. . .

R B R
R B

 ,

and

B =


20− 2h2ω2 −4

−4 20− 2h2ω2 −4

. . .
. . .

. . .

−4 20− 2h2ω2 −4
−4 20− 2h2ω2

 , R =


−4 −1
−1 −4 −1

. . .
. . .

. . .

−1 −4 −1
−1 −4

 ,

In this example, ω, set to be 0.2, is utilized for all experiments. Actually the linear
system generated by 9-point FDM has the same form with example 1, so the CPU time
for the same dimension problem is almost not different. In Table 3, similar to Table
2, L is set to be 4 and nL is also 19, 34, 49, respectively. The dimensions of linear
systems on the finest level are 237169, 795664, 1682209, respectively. From Table 3, it
is easy to learn that our algorithm speeds much less time while the classical one can not
finish the setup phase within 1000s. Besides, the number of nonzero elements (NNZ)
of system matrices on each level is presented in Table 4 where the NNZ1, NNZ2, NNZ3
and NNZ4 represent the number of nonzero elements on level 1, 2, 3 and 4, respectively.

Furthermore, we will try some larger scale system matrices to illustrate our Algo-
rithm 2 all alone, i.e., the prolongation operators and system matrices on each level is
out of range in the following test. L and is chosen to be 3 and nL is set to be 229, 379,
604, 754, 904, respectively, i.e., the dimensions of the system matrices on the finest lev-
el are 4214809, 11580409, 29463184, 45941284 and 66064384, respectively. The finally
shown results are in Table 5 clearly and indeed quite attractive.

5 Conclusion

This paper describes a new algorithm for constructing the aggregations in the setup
phase of aggregation-based AMGmethod. The new algorithm, utilizing some particular
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Table 4: NNZ on each level for Helmholtz equation by our method with 4 levels

N NNZ1 NNZ2 NNZ3 NNZ4

237169 2128681 237169 26569 3025

795664 7150276 795664 88809 10000

1682209 15124321 1682209 187489 21025

Table 5: Time consuming of constructing aggregations by Algorithm 2 with 3 levels

N 4214809 11580409 29463184 45941284 66064384

t1 1.028 2.815 7.002 10.844 15.553

t2 0.091 0.260 0.713 0.112 1.620

Total 1.119 3.075 7.715 10.956 17.173

settings, e.g., the particular grid number on the finest level according to Theorem 2
and the discretization with 9-point FDM, is different with the any previous aggregation
algorithms. During the process of constructing aggregations, the symmetry of the
aggregations was discovered if the number of square grid satisfies the conditions of
equation (5), (6) and (7). Moreover, some theoretical and practical conclusions such as
Theorem 1, etal., were also illustrated in this paper. Computational experiments for
Poisson-like equation and Helmholtz-like equation presented that the new aggregation
algorithm captured the perfect results in the CPU time even for millions grade problems.
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