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In an effort to access dense baryonic matter relevant for compact stars in a unified framework
that handles both single baryon and multibaryon systems on the same footing, we first address
a holographic dual action for a single baryon focusing on the role of the infinite tower of vector
mesons deconstructed from five dimensions. To leading order in ’t Hooft coupling λ = Ncg

2

YM, one
has the Bogomol’nyi-Prasad-Sommerfield (BPS) Skyrmion that results when the warping of the bulk
background and the Chern-Simons term in the Sakai-Sugimoto D4/D8-D8 model are ignored. The
infinite tower was found by Sutcliffe to induce flow to a conformal theory, i.e., the BPS. We compare
this structure to that of the SS model consisting of a 5D Yang-Mills action in warped space and
the Chern-Simons term in which higher vector mesons are integrated out while preserving hidden
local symmetry and valid to O(λ0) and O(p4) in the chiral counting. We point out the surprisingly
important role of the ω meson that figures in the Chern-Simons term that encodes chiral anomaly in
the baryon structure and that may be closely tied to short-range repulsion in nuclear interactions.

PACS numbers: 12.39.Dc, 12.39.Fe, 14.20.-c

I. INTRODUCTION

There is a growing evidence that the infinite tower
of vector mesons play an important role for the baryon
structure and consequently for dense baryonic matter.
From the theoretical point of view, there is a natural
rationale for their role, both bottom-up and top-down.

At very low energy, Quantum Chromodynamics
(QCD) is effectively modeled by nonlinear sigma model
encapsulating current algebra and as the energy scale in-
creases, there emerge massive vector excitations. An ele-
gant way of capturing the physics of vector mesons is to
exploit that there are redundancies in the chiral field rep-
resenting the pseudo-Goldstone bosons, pions, and intro-
duce gauge symmetry associated with the redundancies.
The nonlinear sigma model is gauge-equivalent to hid-
den local symmetry (HLS) [1, 2], so the vector mesons so
generated can be identified with the hidden local gauge
fields. In fact, there are an infinite number of redundan-
cies as the energy goes up and hence an infinite number of
gauge fields. The infinite number of hidden gauge vector
fields together with the pion field in 4D can be dimen-
sionally de-constructed to 5D Yang-Mills (YM) action in
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curved space [3]. Here the 5th dimension represents en-
ergy scale. This is referred to as “bottom-up” approach.

A similar 5D YM structure arises in the gravity sector
(that is referred to as “bulk” sector) of gravity/gauge
(holographic) duality that comes from string theory.
Among a variety of models given in the bulk sector, re-
ferred to as holographic models, the one which has the
properties closest to QCD is the model constructed by
Sakai and Sugimoto (SS) using D4/D8-D8 branes [4].
When Kaluza-Klein(KK)-decomposed to 4D, this model
gives an infinite tower of vector mesons plus the pions
which map to those of the dimensionally de-constructed
gauge theory given on the boundary. This dual (bulk-
sector) model is justified in the largeNc and large ’t Hooft
λ = Ncg

2
YM limit and the chiral limit where the quark

masses are taken to be zero. In these limits, there are
only two parameters in the model and they are fixed from
meson dynamics. We call this “top-down” approach.

This paper is the first in the series of studies made
to arrive at a description of dense baryonic matter in a
unified scheme in which both single baryon and mutl-
baryons are treated on the same footing. In this paper
which will focus on the single baryon properties, we will
simply adopt the SS model in developing the dynamics
of baryons which will in subsequent publications be ap-
plied to many-baryon systems, including dense baryonic
matter relevant to compact stars. Given the three lim-
its adopted, large Nc, large λ and chiral limit, which do
not always apply in nuclear dynamics, the model can-
not be expected to work well for all baryonic properties
and processes, but the merit of this model is that one
can make a precise set of parameter-free calculations that
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have not been done in the past in the field. Such a feat is
made feasible because there are no unknown parameters
once they are fixed in the meson sector. For the single
baryon, regardless of how well it fares with Nature, this
could be taken as a land-mark calculation in that it is
the first complete and parameter-free soliton calculation
with a chiral Lagrangian with vector mesons written up
to O(p4) including all of the homogeneous Wess-Zumino
terms.
Up to date, there is no workable model-independent

theoretical tool available to treat simultaneously the
structure of elementary baryon and many-baryon sys-
tems (such as nuclei and nuclear matter). Lattice QCD
cannot access dense matter because of the sign prob-
lem which remains unresolved. One possible approach
that unifies both elementary baryons and multi-baryon
systems was proposed in Ref. [5] where starting with a
chiral Lagrangian, the single baryon is generated as a
Skyrmion and multi-Skyrmions are put on crystal lat-
tice to simulate many-baryon systems and dense matter.
In this series of work, we apply the same strategy with
the Lagrangian having the infinite-tower of vector mesons
that arises either from string theory or dimensionally de-
constructed theory to both nucleon structure and dense
matter. The former is treated here and the latter will be
given in a forthcoming publication.1

To start with, we motivate our development with the
observation made by Sutcliffe [9] on the structure of
Skyrmions when the warping of the holographic direc-
tion and the Chern-Simons term are turned off, which
amounts to taking the large λ limit, that is, keeping
only the O(λ) terms. The resulting Skyrmion is a BPS,
that is, a conformally invariant object, to which, it is
found, the theory flows as more and more of the infi-
nite tower of vector mesons in 4D enter. Of course the
BPS Skyrmion by itself is trivial in the sense that there
is no interaction in it: It cannot capture the physics of
Nature which has interactions. Therefore it is the devi-

ation from BPS, namely, the warping of the background
and the Chern-Simons term both of which enter at O(λ0)
that encodes nontrivial physics. We show how this fea-
ture arises by means of truncating the SS model with the
lowest-lying vector mesons V1 ≡ (ρ, ω). We will see that
the U(1) degree of freedom residing in the Chern-Simons
term, namely the ω meson, that prevents the soliton from

1 There have been works that incorporate vector mesons and other
degrees of freedom in calculating properties of the single Skyr-
mon [6] and dense baryonic matter [7]. There have also been
detailed structure calculations of few-Skyrmion systems using
the Skyrme model [8]. As will be stressed throughout the paper,
what distinguishes the work(s) described in the present paper
from the previous works is that once the pion decay constant
fπ and the ρ-meson mass mρ are fixed from the meson sector,
this work is the first truly parameter-free treatment of single
Skyrmion as well as multi-Skyrmions with a hidden local sym-
metry Lagrangian valid to chiral O(p4) and in the large Nc and
’t Hooft constant limit.

shrinking [10, 11], not only blocks the flow to conformal
fixed point but also plays a very important role in the
Skyrmion structure of baryons and consequently in nu-
clear many-body interactions, i.e., dense matter. It will
also be seen that there is a crucial need for a low-mass
scalar – which is famously missing – in the top-down holo-
graphic model in a way analogous to what happens in the
mean-field model of nuclear matter. In nuclear matter,
the small binding energy ∼ 16 MeV arises from a nearly
exact cancelation between the ω repulsion and the at-
traction due to a scalar of mass comparable to that of
the ω. We conjecture that a similar phenomenon is tak-
ing place in the dynamics for both single Skyrmion and
multi-Skyrmion systems.

II. THE HOLOGRAPHIC MODEL

We start with the holographic action derived by Sakai
and Sugimoto in the large Nc and λ limit. For our pur-
pose, it is not necessary to enter into the details of how
the action is derived from the gravity-gauge duality in
string theory. It suffices for our purpose to state simply
that it gives the generic structure of 5D YM action with
no free parameters that is holographically dual to what
corresponds to QCD in the large Nc and λ limit (and
the chiral limit). As such it can be reliable for certain
quantities where 1/Nc and/or 1/λ corrections are unim-
portant but not for certain others. The holographic dual
action of the SS model [4] can be written after a suitable
redefinition in the form [10, 12]

S = SDBI + SCS (1)

where

SDBI ≈ SYM = −κ
∫

d4xdz
1

2e(z)2
trF2

mn (2)

with κ = λNc

216π3 , e(z) is the effective YM coupling that
depends on the holographic direction z and is propor-

tional to the KK mass as M
−1/2
KK and SCS is the Chern-

Simons (CS) action that comes from the coupling of the
D8-branes to the bulk Ramond-Ramond field. We use
the index m = (µ, z) with µ = 0, 1, 2, 3. The gravity en-
ters in the z dependence of the YM coupling, giving rise
to the warping of the space. A = Aµdx

µ + Azdz is the
five-dimensional U(Nf ) gauge field and F = dA + iAA
is its field strength. We are interested in Nf = 2, so the
gauge field is

A = ASU(2) +
1

2
ÃU(1). (3)

For this the YM term is

SYM = −κ
∫

d4xdz
1

2e2(z)

(

trF 2
mn +

1

2
F̃ 2
mn

)

(4)

and the CS term

SCS =
Nc

16π2

∫

Ã ∧ trF 2 +
Nc

96π2

∫

Ã ∧ F̃ 2. (5)
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In Eqs. (4) and (5) Fmn is the field strength for the SU(2)

gauge field and F̃mn stands for the field strength of the
U(1) gauge field. Back-reactions are ignored in these ex-
pressions.
To the leading order in λ, that is, to O(λ), e(z) is a

constant, so the 5D YM action can be taken to be in
flat space. In fact one can ignore the O(λ0) contribution
in computing static energy, so up to O(λ0), the static
baryon is given by the instanton solution that is self-
dual [12].

III. BPS SKYRMION

The role of the infinite tower of vector mesons in the
baryon structure can be studied in the approximation
that the space is flat in Eq. (2) and the CS term is ig-
nored. This corresponds to taking the leading O(λ) in
the SS action. This looks like a drastic approximation as
we will see later. In particular, the ignoring of the CS
term, although subleading in λ, is found to be suspect for
nucleon structure. However it can give us a good idea of
how the infinite tower encoded in the 5D YM action fig-
ures in the nucleon structure as well as in dense medium.
The Skyrmion of this action, called BPS Skyrmion, was
studied by Sutcliffe [9, 13]. We first review this model be-
cause it illustrates clearly the kind of physics we would
like to explore. We will uncover the role of the lowest
vector mesons ρ and ω and the effect of the higher mem-
bers in the structure of both elementary and multi-body
systems.
As with Sutcliffe, we consider the 5D Euclidean YM

action2

S = −1

2

∫

trF 2
mnd

4x dz, (6)

where

Fmn = ∂mAn − ∂nAm + [Am, An] (7)

with Am = T aAa
m normalized tr(T aT b) = 1

2δab. The
gauge field transforms

Am → g(Am + ∂m)g−1. (8)

The static energy coming from the action (6), known as
BPS action, has a well-known bound, the Bogomolnyi
bound,3

E ≥ 8π2B (9)

2 This is in unit of an arbitrary mass dimension, so the energy
discussed below in this section is in that unit. In the sections
that follow with the SS model, the coefficient will be specified.

3 This bound differs from Sutcliffe’s expression by a factor of 4 be-
cause Sutcliffe’s B seems to be 4 times our definition in Eq. (10).

with

B =
1

16π2

∫

tr(FMN
∗FMN )d3x dz (10)

where M = 1, 2, 3, z and ∗FMN = 1
2ǫMNABFAB is the

dual field strength. Now the bound is satisfied if FMN is
self-dual, i.e.,

FMN = ∗FMN . (11)

This means that the energy of the system cannot be lower
than the bound.
In order to see how the 4D meson fields that are mea-

sured in the laboratories enter into the theory, one needs
to do the mode expansion,

Aµ(x
µ, z) =

∑

n≥1

V n
µ (xµ)ψn(z),

Az(x
µ, z) =

∑

n≥0

ϕn(xµ)φn(z). (12)

We work with the gauge Az = 0 which can be obtained
by taking

g(x, z) = P exp

∫ z

0

Az(x, z
′) dz′. (13)

In the new gauge with the gauge-transformed field Ag
z =

0, with the requirement that Am → 0 for |z| → ∞, we
have (in the absence of external fields)

Ag
i → −ξR,L∂iξ

−1
R,L ≡ αR,L

i , z → ±∞ (14)

where

ξR,L(r) ≡ g(x,±∞). (15)

This shows that the chiral field U ≡ ξ†L · ξR = eif(r)τ ·π

appears at the boundary – with the external fields turned
off – and is given by the holonomy as in the Atiyah-
Manton ansatz [14].4

Then gauge-transformed mode expansion (12) takes
the form

Ag
µ(x

µ, z) = αR
µ (x

µ)φR(z) + αL
µ (x

µ)φL(z)

+
∑

n≥1

[

An
µ(x

µ)ψ2n(z)− V n
µ (xµ)ψ2n−1(z)

]

.

(16)

Here V n
µ (xµ) and An

µ(x
µ) are the vector and axial-vector

meson fields, respectively, and ψn is a function that sat-
isfies the equation

− ∂2zψn(z) = λnψn. (17)

4 Note that in the case of Atiyah and Manton, the holonomy is in
the time direction while here it is in the fifth (z) direction.
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Note that this eigenvalue equation by itself has plane
wave solutions and continuous spectra. However, in the
present case, Eq. (17) is subject to the requirement that
the solution be a complete orthonormal basis for square
integrable functions on the real line with unit weight
functions, which is necessary to obtain canonical kinetic
terms for the vector mesons [13]. This requirement leads
to a Hermite function

ψn(z) =
(−1)n

√

n! 2n
√
π
e

1

2
z2 dn

dzn
e−z2

(18)

normalized as
∫ ∞

−∞
ψm(z)ψn(z) dz = δmn. (19)

This allows to do the z integration, so the problem re-
duces to 4D. With the Hermite function, we have

φR,L(z) =
1√

2π1/4

∫ ±z

∓∞
ψ0(ξ) dξ

=
1

2
± 1

2
erf(z/

√
2), (20)

where erf(z) is the usual error function erf(z) =
2√
π

∫ z

0
e−ξ2 dξ. The normalization of φR,L(z) is chosen

so that φR,L(∓∞) = 0 and φR,L(±∞) = 1.
What we are interested in is how the tower of vec-

tor mesons contributes to the static energy of the action
given in Eq. (6). Briefly the important observation made
by Sutcliffe is this. The more vector mesons are included,
the closer the static energy goes down and approaches the
BPS bound. In other words, the higher tower of vector
mesons drive the theory to a conformal theory.
In order to explore the role of the tower, first consider

eliminating all the vector mesons and leave only the pi-
ons as the explicit degrees of freedom. Written in terms
of the tower of hidden local gauge fields as is explained
in Refs. [4], this can be done by “integrating out” the
(hidden local) gauge fields. Then one winds up with the
energy of the Skyrme model with the current algebra
term and an “effective” or renormalized Skyrme quartic
term [15]

E(0) =

∫
(

C1

2
tr(∂µU

†∂µU)

+
C2

16
tr
[

U †∂µU,U
†∂νU

]2
)

d3x, (21)

where Ci’s are constants given by the integral over the
Hermite polynomials and U is given by the “holonomy”
in Eq. (15),

U(x) = P exp

∫ ∞

−∞
Az(x, z

′)dz′. (22)

One can calculate the energy of the soliton by using an
instanton ansatz as in Atiyah-Manton [14] or in the exact
numerical way [16, 17]. They give very close results

E(0) = 1.235 (8π2B). (23)

This is the usual 1.24 times the bound, here the Bogo-
mol’nyi bound (9) which corresponds in the case of the
Skyrme Lagrangian to the Faddeev bound 12π2B.

A. The infinite tower and conformal symmetry

Now what happens when the vector mesons are in-
cluded? There are no free parameters so this question
can be answered precisely. The result is quite striking.
As shown by Sutcliffe, the lowest lying vector meson ρ
brings the energy from Eq. (23) down to

E(1) = 1.071(8π2B) (24)

and the next-lying axial-vector meson a1 brings this fur-
ther down to

E(2) = 1.048(8π2B). (25)

Since the full tower will bring this to the bound E(∞) =
8π2B, it follows that the high-lying vector mesons make
the theory flow to a conformal theory. That the lowest-
lying vector meson does nearly all the work in flowing
to the conformality is reminiscent of the near complete
saturation of the charge sum rule5 of the pion [4] and
nucleon [10, 18] form factors.
A very analogous tendency is seen when the BPS model

is applied to finite nuclei: the vector mesons mediate the
flow to conformality and furthermore, reduce the over-
binding of nuclei in the Skyrme model [9].

B. The ω meson and the Chern-Simons term

As stated, the BPS Skyrmion considered above is
strictly justified in the large λ limit (in addition to the
largeNc and chiral limits). To next order in λ, the metric
is curved in the holographic direction. To that order, the
Chern-Simons term enters bringing in a U(1) degree of
freedom, i.e., the ω meson and its tower. In fact the en-
tire tower gives rise to the universal 1/r2 repulsion in the
holographic model [19]. We know from nuclear physics
that the ω meson brings in repulsion, without which nu-
clei will collapse. In the Skyrmion description, what it
does is to make the soliton mass appreciably increased
compared with the one without it [20]. In nuclei, the
binding requires the presence of a scalar, say, φ (often
denoted as σ – which is not the fourth component of
the chiral four-vector in sigma models). It is the near
cancellation of the ω repulsion and the scalar attraction
that gives the small binding energy of nuclear matter
∼ 16 MeV.
It is clear from the above consideration that both the

warping of the background deviating from the BPS struc-
ture and the Chern-Simons term needs to be confronted.

5 In fact it overshoots the charge.
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This means that we have to address the infinite tower
structure in the presence of warping and the Chern-
Simons term including all the terms to O(λ0) and chiral
order O(p4). This problem has been worked out fully in
a highly involved calculation with no free parameters in
Ref. [21]. Here we use their results to show certain in-
tricately contrary roles played by the iso-vector and iso-
scalar vector mesons in the baryon structure and make
conjectures on their potential influence in dense matter.

IV. INTEGRATING-OUT OF THE TOWER OF

VECTOR MESONS

We return to the Sakai-Sugimoto model in its original
form6

S = −κ1
2

∫

tr
(

K(z)−1/3F 2
µν + 2K(z)Fµz

)

d4x dz.

(26)

Here the KK mass MKK is set equal to 1 but will be
recovered in actual calculations. The warping factor is
reduced in a series of approximations to the simple form

K(z) = 1 + z2. (27)

Setting K(z) = 1, one arrives at the flat space. This
will be considered below in connection with the BPS
Skyrmion. The topological CS term, being background-
independent, is the same as given in Eq. (5).
The structure of baryons as instantons in the 5D

YM action (26) plus the CS term was worked out in
Refs. [10, 18]. They correspond to the Skyrmions in
the presence of the pion and the infinite tower of vec-
tor mesons. What we would like to do is to compare the
truncated models where certain vector mesons are omit-
ted to this infinite-tower structure. One can then learn
how the vector mesons contribute in the presence of the
warping. To do this we integrate out all vector mesons
in the tower except for the lowest, ρ and ω. We shall call
the resulting Lagrangian HLS1.
How to integrate out the tower preserving hidden local

symmetry of the vector mesons that are being eliminated
was worked out in Ref. [22] and the full expression valid
to the chiral order O(p4) needed for the exact Skyrmion
calculation to that order is listed in Ref. [21]. In a nut-
shell, the idea is as follows. When the YM action is
KK-decomposed by dimensional reduction to an infinite
tower of both vector and axial-vector mesons, one can
rewrite the resulting action in terms of a tower of hidden

6 Here, we only keep the leading terms in the 1/λ expansion. The
inclusion of other terms in the 1/λ expansion will introduce more
terms in the action such as the F 3 terms. But the contribution
from these non-leading 1/λ expansion terms to the action is at
a higher order than O(p4) in the chiral counting which is not
considered in the present work.

local symmetric fields. One then integrates out n HLS
fields with n > 1 preserving hidden local symmetry for
the remaining n = 1 fields that are to be treated as the
relevant degrees of freedom. As shown in Ref. [22], this
turns out to be equivalent to setting the mass eigenstate
fields – but not hidden local fields – for n > 1 to zero. It
should be noticed that the “integrating out” adopted here
is different from the “naive truncation” which violates
the chiral invariance, as explained in detail in Ref. [22].
Actually, in the procedure, the equations of motion for
the higher modes are solved based on the order counting
of the derivative expansion, and the solutions are sub-
stituted back into the action. To the same chiral order
O(p4), there are of course one-loop graphs that give non-
local contributions but they are suppressed by Nc. The
power of this integrating-out procedure is that hidden
local symmetry allows to do a systematic power count-
ing in the sense of chiral perturbation theory. This is
not just a “philosophical advantage” but has a predictive
power when applied to vector mesons in medium where
the masses can go to zero in the chiral limit [2, 23].
To O(p4) in the large Nc limit, when the external

sources are switched off, the HLS1 Lagrangian [2] is

LHLS1
= L(2) + L(4)y + L(4)z + Lan, (28)

where the subscript (n) represents the power O(pn) and

L(2) = f2
π tr[α̂⊥µα̂

µ
⊥] + af2

π tr[α̂‖µα̂
µ
‖ ]−

1

2g2
tr[VµνV

µν ],

(29)

L(4)y =
9

∑

i=1

yi L4
i , (30)

L(4)z = iz4 tr [Vµν α̂
µ
⊥α̂

ν
⊥] + iz5 tr[Vµν α̂

µ
‖ α̂

ν
‖ ], (31)

Lan =
Nc

16π2

∫

M4

3
∑

i=1

ci Li, (32)

where

L1 = i tr
[

α̂3
Lα̂R − α̂3

Rα̂L

]

, (33)

L2 = i tr [α̂Lα̂Rα̂Lα̂R] , (34)

L3 = tr [FV (α̂Lα̂R − α̂R α̂L)] . (35)

Here, fπ is the pion decay constant. The axial-vector
field α̂⊥µ and vector field α̂‖µ are defined as

α̂⊥µ =
1

2i

(

DµξRξ
†
R −DµξLξ

†
L

)

,

α̂‖µ =
1

2i

(

DµξRξ
†
R +DµξLξ

†
L

)

, (36)

where

DµξL,R = (∂µ − igVµ) ξL,R (37)

with the vector meson field Vµ. The field strength tensor
of the vector meson field is Vµν and FV is its 1-form
notation, FV = dV − iV 2. We also define

α̂L = α̂‖ − α̂⊥, α̂R = α̂‖ + α̂⊥. (38)



6

The L4
i ’s in Eq. (30) are independent O(p4) (hidden)

gauge invariant terms built with the covariants α̂µ
⊥ and

α̂µ
‖ , and their explicit expressions can be found in Ref. [2].

What we have here is the most general expression of the
HLS1 Lagrangian to O(p4) relevant to the problem at
issue. It contains 17 parameters. In standard chiral per-
turbation theory, these constants will have to be fixed
from experimental or theoretical information in the me-
son sector. This is, however, not feasible at present be-
cause of the lack of enough information. What makes
the calculation performed in Ref. [21] feasible is that all
the parameters are given in terms of the two parameters
fπ and λ that are determined in the meson sector by the
pion decay constant and the mass of the ρ meson in the
hQCD model. It is this feat that we shall exploit in what
follows.
If we integrate out the entire tower of vector mesons,

namely, the lowest vector mesons as well in Eq. (28), then
we wind up with the Skyrme model with pions only,

LChPT = f2
πtr [α⊥µα

µ
⊥] +

1

2e2
tr ([α⊥µ, α⊥ν ][α

µ
⊥, α

ν
⊥])

=
f2
π

4
tr
(

∂µU∂
µU †)+

1

32e2
tr[U †∂µU,U

†∂νU ]2

(39)

with

1

2e2
=

1

2g2
− z4

2
− y1 − y2

4
. (40)

We should note that there are no other quartic-order
terms than the Skyrme term. A term of the form
y
1
+y

2

4 tr[{α⊥µ, α⊥ν}{αµ
⊥, α

ν
⊥}], where the curly bracket

represent the anti-commutator, is present but it vanishes
because the coefficient is exactly zero by cancellation in
the SS model. This is not the case in general. However,
it is noteworthy that in chiral perturbation theory for π-
π scattering, this term, while nonzero, is small compared
with the Skyrme term [24]. Note also that integrating out
the vectors from HLS1 term brings in corrections to what
one would obtain when all the vector fields are set equal
to zero. The second and third terms of Eq. (40) result
from terms involving vector mesons when the latter are

integrated out. It turns out that
(

z
4

2 +
y
1
−y

2

4

)

> 0, so

the constant 1/e is less than 1/g that one gets by sending
the mass of the ρ meson to infinity.

V. RESULTS OF HLS1 SKYRMION IN A

WARPED SPACE

A. Instanton

The “reference result” to which comparison is to be
made is that of the instanton description with the SS
model obtained in Refs. [10, 11, 18]. For the parameters
fπ = 92.4 MeV and λ = 17 fixed in the meson sector [4],

the mass of the instanton is [10]7

Minstanton ≃ 1800 MeV. (41)

This corresponds to the mass of a Skyrmion in the infinite
tower of vector mesons in a warped space and the Chern-
Simons term. The collective quantization gives the ∆-N
mass difference that arises at O(1/Nc) as [11]

∆M ≡ m∆ −mN ≈ 570 MeV, (42)

wherem∆,N is the mass that contains the rotational 1/Nc

contribution.
In the above estimates, the KK mass MKK which sets

the scale or cutoff was taken to be MKK ≃ 950 MeV
as fixed by the two parameters in the meson sector [4].
Both the mass in Eq. (41) and the splitting in Eq. (42) are
much too big compared with the experimental data. As
noted in Ref. [11], were we to reduceMKK to ∼ 500 MeV,
we would get ∼ 950 MeV for the soliton mass and
∼ 300 MeV for the ∆-N mass difference, both consis-
tent with experiments. This is similar to the reduced
effective fπ first used in Ref. [17] for the Skyrme model.
How to reconcile results with Nature by implementing a
dilaton scalar degree of freedom will be discussed in the
last section.

B. HLS1 Skyrmion with ρ, ω and π

Next we consider integrating out all vector mesons ex-
cept for the lowest vector mesons ρ and ω. The resulting
Lagrangian is given in Eq. (28). What distinguishes this
Lagrangian from the conventional – and truncated – HLS
Lagrangian used in the past is that it is complete in chiral
order to O(p4) in both the normal and anomalous com-
ponents of the Lagrangian and furthermore there are no
unknown parameters. In the past, the anomalous part
of the Lagrangian – referred to as “homogenous Wess-
Zumino (hWZ)” term – was often approximated by one
term proportional to ωµB

µ where Bµ is the baryon num-
ber current. This form requires assumingmρ → ∞ in the
hWZ term which is not consistent with the notion that
the ρ mass is of the same chiral order as the pion mass
indispensable for hidden local symmetric approaches.
There is one more important aspect of the HLS1 soliton

we are considering that needs to be signaled and that
is that the properties of the soliton of this HLS1 model
should have no a dependence that appears in Eq. (29). In
the holographic setting, a is linked to the normalization of
the lowest eigenvalue λ1 for ψ1(z) and physical quantities
of the baryon should be independent of a. The proof for

7 We give approximate numerical values with the understanding
that the parameters fixed in the meson sector that we use are
highly approximative. Precise values for the HLS1 Skyrmions
are found in Ref. [21].
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this observation is given in detail in Ref. [21]. In the
standard – or boundary or gauge sector – HLS theory [1,
2], a is defined in the range 1 ≤ a ≤ 2. It takes a ≃ 2
in free space and a ≃ 1 in hadronic medium, i.e., at high
temperature and/or density [2].
We now quote the results of the involved calculation

of Ref. [21] for the soliton mass and collective quantiza-
tion, and comment on their implications. Denoting by
M those degrees of freedom left un-integrated out, we
have

• M = π, ρ, ω:

MHLS1
(π, ρ, ω) ≈ 1184 MeV,

∆M ≡ m∆ −mN ≈ 448 MeV. (43)

Note that the soliton mass is of O(Nc) while ∆M
is of O(1/Nc).

• M = π, ρ: Now we integrate out the ω meson and
find

MHLS1
(π, ρ) ≈ 835 MeV,

∆M ≈ 1707 MeV. (44)

• M = π: Finally integrating out the last vector
meson ρ winding up with the Skyrme model, one
gets

MHLS1
(π) ≈ 922 MeV,

∆M ≈ 1014 MeV. (45)

What transpires here can be summarized as follows:
As the isovector vector mesons are added, the soliton
mass decreases as in the BPS case while the ∆M in-
creases. On the other hand, when the isoscalar vector
meson is added, the soliton mass increases while ∆M
decreases. One can easily understand this inverse corre-
lation between the soliton mass and the ∆-N mass split-
ting by looking at what happens when all vector mesons
are integrated out giving the Skyrme model. Because
of the reduction of 1/e2 by the second and third terms
in Eq. (40), the soliton mass gets reduced. But it in-
creases the ∆-N splitting which goes proportional to e.
This problem is avoided in Ref. [17] by reducing both fπ
and e. We suggest that this is intricately correlated with
the axial-vector coupling constant gA. Keeping fπ at its
physical value and adjusting e to give gA = 1.26 would
lead to the soliton mass MSkyrme ∼ 1500 MeV.8

Two points are worth noticing here. One is that while
there is a tendency of flow to conformality in the soli-
ton mass with the isovector vector mesons even with
a warped space, the isoscalar vector mesons strongly

8 See Ref. [25] for a discussion on this matter.

counter this tendency. On the other hand, the ω meson
that plays a crucial role in the repulsion in nucleon in-
teractions reduces an unrealistically large ∆-N splitting
from that without the ω meson. This feature is generic
independent of the background warping as we shall see
below with BPS Skyrmions. The striking influence of
the ω meson in the soliton structure was also observed
in dense medium described by HLS Lagrangian treated
in terms of crystals in Ref. [20]. The connection between
these diverse phenomena, i.e., the universal hard-core re-
pulsion, the apparent obstruction to conformal flow and
the ∆-N splitting etc. is a deep open problem in nuclear
physics.
We now suggest that what is happening here with gA

can be exploited to remove the defects in the instanton re-
sults (41) and (42), both of which are too big. As noted in
Refs. [10], when an O(N0

c ) correction is suitably made to
the axial coupling constant in the Sakai-Sugimoto model,

one gets gA =
g0

A

3 Nc(1+2/Nc) where g
0
A comes out to be

∼ 0.75, so for Nc = 3, one gets gA ≈ 1.25 consistent with
the experimental value 1.27.
Up to date, there has been no derivation of this O(N0

c )
Casimir contribution in holographic models. It is tanta-
mount to making 1/Nc corrections and this task remains
unresolved in holographic approaches, so is ignored in
the string theory community. However this O(1) term
comes out naturally in the large Nc counting in the non-
relativistic quark model as well as in the Skyrmion quan-
tization. In a similar vein, we note that the instanton
mass is of O(Nc) whereas the splitting ∆M is of O(1/Nc).
The O(1) Casimir energy is glaringly missing. Just as the
O(1) term is important for gA, such an O(1) term could
also be important for the baryon mass. The Casimir
calculation is notoriously difficult to perform given that
we have a non-renormalizable theory but there is noth-
ing that suggests that it should not be there. In fact, the
presently available estimate in the Skyrme model, though
admittedly very rough, does indeed give an attractive
Casimir contribution of order ∼ −500 MeV, going in the
right direction with a correct order of magnitude [25].
As we will discuss below (in the last section), this de-
fect could be remedied by implementing scalar degrees of
freedom missing in the holographic model. Such scalars
could contribute the missing O(1) effects.

VI. BPS SKYRMION AND THE

CHERN-SIMONS TERM

We learned from the work of Sutcliffe [9, 13] that the
Skyrmion in the flat space 5D YM action, i.e., BPS
Skyrmion, has the potentially important feature that the
more vector mesons in the infinite tower in 4D are im-
plemented, the closer the Skyrmion mass approaches the
BPS mass 8π2B, that is, the theory flows to conformal
theory. In this consideration the Chern-Simons term
which encapsulates chiral anomaly has not been taken
into account. The CS term is background-independent
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and hence should be independent of the warping. We
show that the CS term plays a qualitatively similar role
in the BPS Skyrmion model as in the HLS1 model with
the warped background.
Using our energy unit, we have the BPS massMBPS ≈

λNc

27πMKK ≈ 559 MeV [10]9 in agreement with Ref. [13].
When the CS term contribution is added, we get

MBPS−CS =MBPS+
√

2
15NcMKK ≈ 1038 MeV. In look-

ing at the cases where the tower is integrated out, we
will follow the same procedure as in the case of the SS
model. We will first integrate out all except the lowest
vector mesons ρ and ω and the pion, then integrate out
the ω and then finally the ρ. For the given M, the results
are:

• M = π, ρ, ω:

MBPS(π, ρ, ω) ≈ 1162 MeV,

∆MBPS(π, ρ, ω) ≈ 456 MeV. (46)

• M = π, ρ:

MBPS(π, ρ) ≈ 577 MeV,

∆MBPS(π, ρ) ≈ 4541 MeV. (47)

• M = π:

MBPS(π) ≈ 673 MeV,

∆MBPS(π) ≈ 2611 MeV. (48)

Although in magnitude they are different, one observes
qualitatively the same tendency in the opposing effect in
the soliton mass and the mass splitting as in the HLS1
model: The ω meson blocks the flow to the conformal
fixed point while reducing the ∆-N mass splitting.

VII. DISCUSSIONS

In this Section we briefly summarize our findings in
the single-baryon sector and then make a few comments
on their implications on dense matter relevant for the
physics of compact stars, the main objective of the series
of work in progress.
In the large Nc and large λ limit, the Skyrmion embed-

ded in the tower of isovector vector mesons as described
by a 5D YM action without the CS term (which is ab-
sent at the leading order in λ) flows to a BPS instan-
ton as more vector mesons are included. The interaction
gets weaker and the size becomes smaller. This tendency
however gets blocked at the next order in λ, namely at

9 Here we used λ = 16.66,MKK = 948 MeV determined from our
inputs.

O(λ0), by the presence of the ω meson present in the CS
term. The effect of the ω meson is two-fold. It increases
the soliton mass way above the empirical nucleon mass
and decreases its size way below the empirical size [21].
This correlation is not difficult to understand. What is
surprising however is what happens with the hyperfine
splitting ∆M between the ground state N and its rota-
tion excitation ∆. It comes out to be more than 5 times
the empirical value in the absence of the ω (lodged in the
CS term) and gets reduced by a factor of more than ∼ 3
in its presence. As mentioned, these drastic effects of the
ω at the next-to-leading order in 1/λ, points to a possi-
ble importance of both 1/Nc and 1/λ corrections in the
baryon structure. It has been observed in the standard
Skyrme model that some, if not all, of the problems can
be resolved by 1/Nc corrections – via Casimir energy – to
the mass and to the axial coupling constant gA. In terms
of hidden local symmetry Lagrangian, there has been an
attempt, with some success, to remedy these difficulties
by implementing a scalar degree of freedom, dilaton, as-
sociated with the QCD trace anomaly [26]. The dilaton
provides an attraction that significantly compensates the
ω repulsion, thereby reducing the mass. The basic diffi-
culty in the bulk-sector model, however, is that there is
no way known to introduce a low-mass scalar that would
simulate the attraction required.10

One of the most striking – and puzzling – observations
made in this paper is the role of the ω meson in the ∆-N
mass splitting. It involves both the large Nc and large
λ approximations. The effect in question appears both
in the warped space, (44)-(45), and in the flat space,
(47)-(48). That the O(1/Nc) terms associated with the
mass splitting are an order of magnitude greater than
the O(Nc) terms of the soliton mass suggest either that
the large Nc expansion and/or large λ expansion make
no sense whatsoever or the role of ω meson is not at all
understandable, or both. This observation appears to
crack wide open the issue of the right degrees of free-
dom that should figure in effective Lagrangians for the
solitonic approach to baryons.
The prominent effects of the ω meson in the baryon

structure observed in this paper must be correlated also
with the role it plays in nuclear interactions. In the ef-
fective field theory framework modeling QCD, it is well
established that the vector, ω, degree of freedom is es-
sential for the stability of nuclear matter. In a mean-
field theoretic description, it is the balance between the
ω repulsion and the scalar attraction of a range compa-
rable to that of the ω that provides the nuclear satura-
tion. Thus very two effects that have not been handled
in the bulk sector must play an important role in nuclear
physics, namely 1/λ and 1/Nc corrections and a low-mass

10 There is a scalar attraction in the Sakai-Sugimoto model but
the scalar is much too heavy to be identified with the scalar
that is needed for the single baryon as well as in nuclear matter,
discussed below [27].
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scalar (of ∼ 600 MeV). What happens to the balance be-
tween the attraction and the repulsion when the system is
squeezed to high density as in compact stars is therefore
totally unknown.
In a recent work based on renormalization group prop-

erty of hidden local symmetric Lagrangian taken atO(p2)
in baryonic medium, it was found that as density ap-
proaches the chiral restoration density, the vector-meson–
nucleon coupling should go to zero at some density re-
ferred to as “dilaton limit fixed point” [28, 29]. This
would mean that the ωNN coupling should decrease as
density increases. This turns out to bring havoc to nu-
clear matter at a density n & 2n0 as it would make the
neutron-star equation of state (EoS) much too soft to
support the observed 2-solar mass star [30]. Assuming
that this consideration applies also to the bulk-sector
theory, a way out of this difficulty might be the inter-
vention of the tower of isoscalar vector mesons which be-
come important as the lowest ω gets suppressed. This
would make the nature of short-range repulsion basically
different from the standard interpretation in terms of ω-
exchange many-body forces.
An extension of the model so far studied to dense mat-

ter is to put the Skyrmions considered in this paper on
crystal lattice and determine where in density a Skyrmion
(or instanton) transforms to two half-Skyrmions [31, 32]
(or half-instantons/dyons [33]). This is important in cal-
culating the EoS for compact-star matter as shown in
Ref. [30]. In doing so, the missing ingredient is the scalar
degree of freedom which figures importantly in the previ-
ous studies with truncated HLS Lagrangian [28, 29, 34].
Although putting a scalar of a mass relevant to nuclear

matter at high density into the SS model is still unknown,
the indication from the Skyrmion case [34] is that the
density at which the change-over occurs is highly insen-
sitive to the mass of the scalar. What is relevant then
would be the vector mesons considered in this paper and
what was found here is expected to be of importance to
the problem.
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